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Lecture 12:
Deep Learning Software
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A1 Regrades + A2 grades

Submit regrade requests on Piazza under ”Regrade” folder by Friday 2/18

A2 grades should be out next week
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Midterm

Sample midterm will be out on Friday 

Most office hours for next week are shifted to Wednesday for you to ask 
questions during the exam – Check Google Calendar
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 
AWS

Chainer 

JAX
(Google)
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A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 
AWS

Chainer 

JAX
(Google)

We’ll focus on these
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Recall: Computational Graphs

x

W

hinge 
loss

R

+ Ls (scores)*
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The point of deep learning frameworks

1. Allow rapid prototyping of new ideas
2. Automatically compute gradients for you
3. Run it all efficiently on GPU (or TPU)
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PyTorch
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PyTorch: Versions

For this class we are using PyTorch version 1.10
(Released October 2021)

Be careful if you are looking at older PyTorch code –
the API changed a lot before 1.0 
(0.3 to 0.4 had big changes!)
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PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

Autograd: Package for building computational graphs 
out of Tensors, and automatically computing gradients

10
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PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

Autograd: Package for building computational graphs 
out of Tensors, and automatically computing gradients

A1, A2, A3

A4, A5, A6
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PyTorch: Tensors

Running example: Train a 
two-layer ReLU network on 
random data with L2 loss
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PyTorch: Tensors

Create random tensors 
for data and weights
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PyTorch: Tensors

Forward pass: compute 
predictions and loss
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PyTorch: Tensors

Backward pass: manually 
compute gradients
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PyTorch: Tensors

Gradient descent 
step on weights
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PyTorch: Tensors

To run on GPU, just use a 
different device!
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PyTorch: Autograd

Creating Tensors with 
requires_grad=True enables autograd

Operations on Tensors with 
requires_grad=True cause PyTorch to 
build a computational graph
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PyTorch: Autograd

We will not want gradients 
(of loss) with respect to data

Do want gradients with 
respect to weights 
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PyTorch: Autograd

Forward pass looks exactly the 
same as before, but we don’t 
need to track intermediate 
values - PyTorch keeps track of 
them for us in the graph
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PyTorch: Autograd

Computes gradients with 
respect to all inputs that 
have requires_grad=True!
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PyTorch: Autograd
x w1

mm

Every operation on a tensor with 
requires_grad=True will add to 
the computational graph, and the 
resulting tensors will also have 
requires_grad=True

22



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

Every operation on a tensor with 
requires_grad=True will add to 
the computational graph, and the 
resulting tensors will also have 
requires_grad=True
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PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

w2
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PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

-

w2

25
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PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

-

pow

yw2
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PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
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PyTorch: Autograd
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Backprop to 
all inputs that 
require grad
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PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed
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PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Make gradient step on weights

30



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Set gradients to zero – forgetting 
this is a common bug!
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PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Tell PyTorch not to build a 
graph for these operations
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PyTorch: New functions
Can define new operations 
using Python functions
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PyTorch: New functions
Can define new operations 
using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd
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PyTorch: New functions Define new autograd operators 
by subclassing Function, define 
forward and backwardCan define new operations 

using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

Recall:
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PyTorch: New functions Define new autograd operators 
by subclassing Function, define 
forward and backward

x Sigmoid

Can define new operations 
using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

Now when our function runs, 
it adds one node to the graph!
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PyTorch: New functions Define new autograd operators 
by subclassing Function, define 
forward and backwardCan define new operations 

using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

In practice this is pretty rare – in most 
cases Python functions are good enough
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PyTorch: nn

Higher-level wrapper for 
working with neural nets

Use this! It will make your 
life easier
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PyTorch: nn

Object-oriented API: Define 
model object as sequence 
of layers objects, each of 
which holds weight tensors
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PyTorch: nn

Forward pass: Feed data to 
model and compute loss
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PyTorch: nn

Forward pass: Feed data to 
model and compute loss

torch.nn.functional has useful 
helpers like loss functions
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PyTorch: nn

Backward pass: compute 
gradient with respect to all 
model weights (they have 
requires_grad=True)
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PyTorch: nn

Make gradient step on 
each model parameter 
(with gradients disabled)
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PyTorch: optim

Use an optimizer for 
different update rules
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PyTorch: optim

After computing 
gradients, use optimizer to 
update and zero gradients
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PyTorch: nn
Defining Modules

A PyTorch Module is a neural net 
layer; it inputs and outputs Tensors

Modules can contain weights or 
other modules

Very common to define your own 
models or layers as custom Modules
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PyTorch: nn
Defining Modules

Define our whole model as 
a single Module
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PyTorch: nn
Defining Modules

Initializer sets up two 
children (Modules can 
contain modules)
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PyTorch: nn
Defining Modules

Define forward pass using child 
modules and tensor operations

No need to define backward -
autograd will handle it
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PyTorch: nn
Defining Modules

Very common to mix and match 
custom Module subclasses and 
Sequential containers
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PyTorch: nn
Defining Modules

Define network component 
as a Module subclass

x

Linear Linear

*

relu
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PyTorch: nn
Defining Modules
Stack multiple instances of the 
component in a sequential

x

Linear Linear

*

relu

x

Linear Linear

*

relu

Linear

Very easy to quickly 
build complex network 
architectures!
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PyTorch: DataLoaders

A DataLoader wraps a 
Dataset and provides 
minibatching, shuffling, 
multithreading, for you

When you need to load 
custom data, just write your 
own Dataset class
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PyTorch: DataLoaders

Iterate over loader to 
form minibatches
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PyTorch: DataLoaders

Iterate over loader to 
form minibatches
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PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision

56

https://github.com/pytorch/vision
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PyTorch: Dynamic Computation Graphs

57
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects
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PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

w2

Build graph data structure 
AND perform computation

y
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PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure 
AND perform computation
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PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop, 
throw away graph
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PyTorch: Dynamic Computation Graphs
x w1 yw2

Perform backprop, 
throw away graph
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PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

w2

Build graph data structure 
AND perform computation

y
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PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure 
AND perform computation
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PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop, 
throw away graph

65
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PyTorch: Dynamic Computation Graphs

Dynamic graphs let you use 
regular Python control flow 
during the forward pass!
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PyTorch: Dynamic Computation Graphs

Dynamic graphs let you use 
regular Python control flow 
during the forward pass!

Initialize two different 
weight matrices for 
second layer
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PyTorch: Dynamic Computation Graphs

Dynamic graphs let you use 
regular Python control flow 
during the forward pass!

Decide which one to use 
at each layer based on 
loss at previous iteration

(this model doesn’t 
makes sense! Just a 
simple dynamic example)

68



Justin Johnson February 16, 2022Lecture 12 -

Alternative: Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph 
describing our computation 
(including finding paths for backprop)

Step 2: Reuse the same graph on 
every iteration
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PyTorch: Static Graphs with JIT

Define model as a 
Python function
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PyTorch: Static Graphs with JIT

Just-In-Time compilation: 
Introspect the source code 
of the function, compile it 
into a graph object.

Lots of magic here!
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PyTorch: Static Graphs with JIT
x w1

mm

clamp

mm

y_pred

-

pow

yw2a

sum loss

w2b prev
loss

if < 5.0

Graph includes a conditional 
node to handle both cases!
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PyTorch: Static Graphs with JIT

Use our compiled graph 
object at each forward pass
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PyTorch: Static Graphs with JIT

Even easier: add annotation
to function, Python function 
compiled to a graph when it 
is defined

Calling function uses graph
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Static vs Dynamic Graphs: Optimization

With static graphs, 
framework can 
optimize the graph 
for you before it runs!

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 
fused operations

Conv+ReLU

Conv+ReLU
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Static vs Dynamic Graphs: Serialization

Once graph is built, can 
serialize it and run it 
without the code that 
built the graph!

e.g. train model in 
Python, deploy in C++

Graph building and execution are 
intertwined, so always need to 
keep code around

Static Dynamic
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Static vs Dynamic Graphs: Debugging

Lots of indirection 
between the code you 
write and the code that 
runs – can be hard to 
debug, benchmark, etc

The code you write is the code 
that runs! Easy to reason about, 
debug, profile, etc

Static Dynamic
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Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015

Model structure 
depends on the input:
- Recurrent Networks

78
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Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015

The cat ate a big rat

Model structure 
depends on the input:
- Recurrent Networks
- Recursive Networks
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Dynamic Graph Applications

Model structure 
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017
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Dynamic Graph Applications

Model structure 
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks
- (Your idea here!)

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017
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TensorFlow

82
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TensorFlow Versions

TensorFlow 1.0
- Final release: 1.15.3
- Default: static graphs
- Optional: dynamic graphs 

(eager mode)

TensorFlow 2.0
- Current release: 2.8.0

- Released 2/2/2022
- Default: dynamic graphs
- Optional: static graphs
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TensorFlow 1.0: 
Static Graphs

(Assume imports at the 
top of each snippet)
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TensorFlow 1.0: 
Static Graphs

First define computational 
graph

Then run the graph many 
times
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TensorFlow 2.0: 
Dynamic Graphs

Create TensorFlow 
Tensors for data and 
weights

Weights need to be 
wrapped in tf.Variable
so we can mutate them
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TensorFlow 2.0: 
Dynamic Graphs

Scope forward pass 
under a GradientTape to 
tell TensorFlow to start 
building a graph
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TensorFlow 2.0: 
Dynamic Graphs

Scope forward pass 
under a GradientTape to 
tell TensorFlow to start 
building a graph

88

In PyTorch, all ops build graph by default; opt out via torch.no_grad
In Tensorflow, ops do not build graph by default; opt in via GradientTape



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0: 
Dynamic Graphs

Ask the tape to 
compute gradients
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TensorFlow 2.0: 
Dynamic Graphs

Gradient descent 
step, update weights
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TensorFlow 2.0: 
Static Graphs

Define a function that 
implements forward, 
backward, and update

Annotating with 
tf.function will compile 
the function into a graph! 
(similar to torch.jit.script)
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TensorFlow 2.0: 
Static Graphs

Define a function that 
implements forward, 
backward, and update

Annotating with 
tf.function will compile 
the function into a graph! 
(similar to torch.jit.script)

(note TF graph can 
include gradient 
computation and update, 
unlike PyTorch)
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TensorFlow 2.0: 
Static Graphs

Call the compiled step 
function in the training 
loop
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Keras: High-level API

94



Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Object-oriented API: 
build the model as a 
stack of layers
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Keras: High-level API

Keras gives you 
common loss 
functions and 
optimization 
algorithms
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Keras: High-level API

Forward pass: 
Compute loss, 
build graph

Backward pass: 
compute gradients
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Keras: High-level API

Optimizer object 
updates parameters
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Keras: High-level API

Define a function 
that returns the loss
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Keras: High-level API

Optimizer computes 
gradients and 
updates parameters
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TensorBoard

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!
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TensorBoard

Also works with PyTorch: torch.utils.tensorboard

102

https://pytorch.org/docs/stable/tensorboard.html
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PyTorch vs TensorFlow

PyTorch
- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Hard / inefficient to use on TPUs
- Not easy to deploy on mobile

TensorFlow 1.0
- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0
- Dynamic by default
- Standardized on Keras API
- API still confusing
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Summary: Software

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow
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Next time: 
Object Detection
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