
Justin Johnson February 16, 2022Lecture 12 -

Lecture 12:
Deep Learning Software

1



Justin Johnson February 16, 2022Lecture 12 -

A1 Regrades + A2 grades

Submit regrade requests on Piazza under ”Regrade” folder by Friday 2/18

A2 grades should be out next week

2



Justin Johnson February 16, 2022Lecture 12 -

Midterm

Sample midterm will be out on Friday 

Most office hours for next week are shifted to Wednesday for you to ask 
questions during the exam – Check Google Calendar

3



Justin Johnson February 16, 2022Lecture 12 -

A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 
AWS

Chainer 

JAX
(Google)

4



Justin Johnson February 16, 2022Lecture 12 -

A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 
AWS

Chainer 

JAX
(Google)

We’ll focus on these

5



Justin Johnson February 16, 2022Lecture 12 -

Recall: Computational Graphs

x

W

hinge 
loss

R

+ Ls (scores)*

6



Justin Johnson February 16, 2022Lecture 12 -

The point of deep learning frameworks

1. Allow rapid prototyping of new ideas
2. Automatically compute gradients for you
3. Run it all efficiently on GPU (or TPU)

7



Justin Johnson February 16, 2022Lecture 12 -

PyTorch

8



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Versions

For this class we are using PyTorch version 1.10
(Released October 2021)

Be careful if you are looking at older PyTorch code –
the API changed a lot before 1.0 
(0.3 to 0.4 had big changes!)

9



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

Autograd: Package for building computational graphs 
out of Tensors, and automatically computing gradients

10



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Fundamental Concepts

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

Autograd: Package for building computational graphs 
out of Tensors, and automatically computing gradients

A1, A2, A3

A4, A5, A6

11



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Running example: Train a 
two-layer ReLU network on 
random data with L2 loss

12



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Create random tensors 
for data and weights

13



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Forward pass: compute 
predictions and loss

14



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Backward pass: manually 
compute gradients

15



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

Gradient descent 
step on weights

16



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Tensors

To run on GPU, just use a 
different device!

17



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Creating Tensors with 
requires_grad=True enables autograd

Operations on Tensors with 
requires_grad=True cause PyTorch to 
build a computational graph

18



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

We will not want gradients 
(of loss) with respect to data

Do want gradients with 
respect to weights 

19



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Forward pass looks exactly the 
same as before, but we don’t 
need to track intermediate 
values - PyTorch keeps track of 
them for us in the graph

20



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd

Computes gradients with 
respect to all inputs that 
have requires_grad=True!

21



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

Every operation on a tensor with 
requires_grad=True will add to 
the computational graph, and the 
resulting tensors will also have 
requires_grad=True

22



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

Every operation on a tensor with 
requires_grad=True will add to 
the computational graph, and the 
resulting tensors will also have 
requires_grad=True

23



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

w2

24



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

-

w2

25

y



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

-

pow

yw2

26



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss

27



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

Backprop to 
all inputs that 
require grad

28



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

29



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Make gradient step on weights

30



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Set gradients to zero – forgetting 
this is a common bug!

31



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Autograd
x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Tell PyTorch not to build a 
graph for these operations

32



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions
Can define new operations 
using Python functions

33



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions
Can define new operations 
using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

34



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions Define new autograd operators 
by subclassing Function, define 
forward and backwardCan define new operations 

using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

Recall:

35



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions Define new autograd operators 
by subclassing Function, define 
forward and backward

x Sigmoid

Can define new operations 
using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

Now when our function runs, 
it adds one node to the graph!

36



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: New functions Define new autograd operators 
by subclassing Function, define 
forward and backwardCan define new operations 

using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

In practice this is pretty rare – in most 
cases Python functions are good enough

37



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Higher-level wrapper for 
working with neural nets

Use this! It will make your 
life easier

38



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Object-oriented API: Define 
model object as sequence 
of layers objects, each of 
which holds weight tensors

39



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Forward pass: Feed data to 
model and compute loss

40



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Forward pass: Feed data to 
model and compute loss

torch.nn.functional has useful 
helpers like loss functions

41



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Backward pass: compute 
gradient with respect to all 
model weights (they have 
requires_grad=True)

42



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn

Make gradient step on 
each model parameter 
(with gradients disabled)

43



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: optim

Use an optimizer for 
different update rules

44



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: optim

After computing 
gradients, use optimizer to 
update and zero gradients

45



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

A PyTorch Module is a neural net 
layer; it inputs and outputs Tensors

Modules can contain weights or 
other modules

Very common to define your own 
models or layers as custom Modules

46



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Define our whole model as 
a single Module

47



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Initializer sets up two 
children (Modules can 
contain modules)

48



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Define forward pass using child 
modules and tensor operations

No need to define backward -
autograd will handle it

49



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Very common to mix and match 
custom Module subclasses and 
Sequential containers

50



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules

Define network component 
as a Module subclass

x

Linear Linear

*

relu

51



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: nn
Defining Modules
Stack multiple instances of the 
component in a sequential

x

Linear Linear

*

relu

x

Linear Linear

*

relu

Linear

Very easy to quickly 
build complex network 
architectures!

52



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: DataLoaders

A DataLoader wraps a 
Dataset and provides 
minibatching, shuffling, 
multithreading, for you

When you need to load 
custom data, just write your 
own Dataset class

53



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: DataLoaders

Iterate over loader to 
form minibatches

54



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: DataLoaders

Iterate over loader to 
form minibatches

55



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision

56

https://github.com/pytorch/vision


Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs

57



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects

58



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

w2

Build graph data structure 
AND perform computation

y

59



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure 
AND perform computation

60



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop, 
throw away graph

61



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1 yw2

Perform backprop, 
throw away graph

62



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

w2

Build graph data structure 
AND perform computation

y

63



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure 
AND perform computation

64



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs
x w1

mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop, 
throw away graph

65



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs

Dynamic graphs let you use 
regular Python control flow 
during the forward pass!

66



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs

Dynamic graphs let you use 
regular Python control flow 
during the forward pass!

Initialize two different 
weight matrices for 
second layer

67



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Dynamic Computation Graphs

Dynamic graphs let you use 
regular Python control flow 
during the forward pass!

Decide which one to use 
at each layer based on 
loss at previous iteration

(this model doesn’t 
makes sense! Just a 
simple dynamic example)

68



Justin Johnson February 16, 2022Lecture 12 -

Alternative: Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph 
describing our computation 
(including finding paths for backprop)

Step 2: Reuse the same graph on 
every iteration

69



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT

Define model as a 
Python function

70



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT

Just-In-Time compilation: 
Introspect the source code 
of the function, compile it 
into a graph object.

Lots of magic here!

71



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT
x w1

mm

clamp

mm

y_pred

-

pow

yw2a

sum loss

w2b prev
loss

if < 5.0

Graph includes a conditional 
node to handle both cases!

72



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT

Use our compiled graph 
object at each forward pass

73



Justin Johnson February 16, 2022Lecture 12 -

PyTorch: Static Graphs with JIT

Even easier: add annotation
to function, Python function 
compiled to a graph when it 
is defined

Calling function uses graph

74



Justin Johnson February 16, 2022Lecture 12 -

Static vs Dynamic Graphs: Optimization

With static graphs, 
framework can 
optimize the graph 
for you before it runs!

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 
fused operations

Conv+ReLU

Conv+ReLU

75



Justin Johnson February 16, 2022Lecture 12 -

Static vs Dynamic Graphs: Serialization

Once graph is built, can 
serialize it and run it 
without the code that 
built the graph!

e.g. train model in 
Python, deploy in C++

Graph building and execution are 
intertwined, so always need to 
keep code around

Static Dynamic

76



Justin Johnson February 16, 2022Lecture 12 -

Static vs Dynamic Graphs: Debugging

Lots of indirection 
between the code you 
write and the code that 
runs – can be hard to 
debug, benchmark, etc

The code you write is the code 
that runs! Easy to reason about, 
debug, profile, etc

Static Dynamic

77



Justin Johnson February 16, 2022Lecture 12 -

Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015

Model structure 
depends on the input:
- Recurrent Networks

78



Justin Johnson February 16, 2022Lecture 12 -

Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015

The cat ate a big rat

Model structure 
depends on the input:
- Recurrent Networks
- Recursive Networks

79



Justin Johnson February 16, 2022Lecture 12 -

Dynamic Graph Applications

Model structure 
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

80



Justin Johnson February 16, 2022Lecture 12 -

Dynamic Graph Applications

Model structure 
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks
- (Your idea here!)

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

81



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow

82



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow Versions

TensorFlow 1.0
- Final release: 1.15.3
- Default: static graphs
- Optional: dynamic graphs 

(eager mode)

TensorFlow 2.0
- Current release: 2.8.0

- Released 2/2/2022
- Default: dynamic graphs
- Optional: static graphs

83



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 1.0: 
Static Graphs

(Assume imports at the 
top of each snippet)

84



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 1.0: 
Static Graphs

First define computational 
graph

Then run the graph many 
times

85



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0: 
Dynamic Graphs

Create TensorFlow 
Tensors for data and 
weights

Weights need to be 
wrapped in tf.Variable
so we can mutate them

86



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0: 
Dynamic Graphs

Scope forward pass 
under a GradientTape to 
tell TensorFlow to start 
building a graph

87



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0: 
Dynamic Graphs

Scope forward pass 
under a GradientTape to 
tell TensorFlow to start 
building a graph

88

In PyTorch, all ops build graph by default; opt out via torch.no_grad
In Tensorflow, ops do not build graph by default; opt in via GradientTape



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0: 
Dynamic Graphs

Ask the tape to 
compute gradients

89



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0: 
Dynamic Graphs

Gradient descent 
step, update weights

90



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0: 
Static Graphs

Define a function that 
implements forward, 
backward, and update

Annotating with 
tf.function will compile 
the function into a graph! 
(similar to torch.jit.script)

91



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0: 
Static Graphs

Define a function that 
implements forward, 
backward, and update

Annotating with 
tf.function will compile 
the function into a graph! 
(similar to torch.jit.script)

(note TF graph can 
include gradient 
computation and update, 
unlike PyTorch)

92



Justin Johnson February 16, 2022Lecture 12 -

TensorFlow 2.0: 
Static Graphs

Call the compiled step 
function in the training 
loop

93



Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

94



Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Object-oriented API: 
build the model as a 
stack of layers

95



Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Keras gives you 
common loss 
functions and 
optimization 
algorithms

96



Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Forward pass: 
Compute loss, 
build graph

Backward pass: 
compute gradients

97



Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Optimizer object 
updates parameters

98



Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Define a function 
that returns the loss

99



Justin Johnson February 16, 2022Lecture 12 -

Keras: High-level API

Optimizer computes 
gradients and 
updates parameters

100



Justin Johnson February 16, 2022Lecture 12 -

TensorBoard

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

101



Justin Johnson February 16, 2022Lecture 12 -

TensorBoard

Also works with PyTorch: torch.utils.tensorboard

102

https://pytorch.org/docs/stable/tensorboard.html


Justin Johnson February 16, 2022Lecture 12 -

PyTorch vs TensorFlow

PyTorch
- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Hard / inefficient to use on TPUs
- Not easy to deploy on mobile

TensorFlow 1.0
- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0
- Dynamic by default
- Standardized on Keras API
- API still confusing

103



Justin Johnson February 16, 2022Lecture 12 -

Summary: Software

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow

104



Justin Johnson February 16, 2022Lecture 12 -

Next time: 
Object Detection

105


