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Lecture 11:
CNN Architectures

Part 2

Lecture 11 - 1



Justin Johnson February 14, 2022

Administrative: A1 grades released
• A1 grades are out on Canvas
• We will accept regrade requests until Friday 2/19 5pm ET
• To request a regrade (or for questions about late days, etc): Make a private 

post on Piazza under the regrade folder
• Do not make regrade requests via Canvas or Email

Lecture 11 - 2
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Administrative: A1 grades released
• Some students lost points for not including plots etc. From 

assignment page:

Lecture 11 - 3
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Administrative: A1 grades released
• Some students lost points for not including plots etc. From 

assignment page:

• If you are affected by this on A1, or think you will be affected by this 
on A2 or A3, make a regrade request on Piazza by Tuesday 5pm ET 
and you can resubmit your notebook only with no penalty

Lecture 11 - 4
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Administrative: Midterm

Lecture 11 - 5

• Wednesday, February 23
• Will be remote as a Canvas quiz (most likely)
• Exam is 90 minutes
• You can take it any time in a 24-hour window
• We will have 3-4 “on-call” periods during the 24-hour window where 

GSIs will answer questions within ~15 minutes
• Open note
• True / False, multiple choice, short answer
• For short answer questions requiring math, either write LaTeX or 

upload an image with handwritten math
• We will try to get practice midterm out this week
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Last Time: Training Deep Networks

Lecture 11 - 6

1.One time setup
Activation functions, data preprocessing, 
weight initialization, regularization

2.Training dynamics
Learning rate schedules; 
hyperparameter optimization

3.After training
Model ensembles
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Previously: CNN Architectures

Lecture 11 - 7
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ImageNet Classification Challenge

Lecture 11 - 8
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ImageNet Classification Challenge

Lecture 11 - 9
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Post-ResNet Architectures

Lecture 11 - 10
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ResNet made it possible to 
increase accuracy with 
larger, deeper models

Many followup
architectures emphasize 
efficiency: can we improve 
accuracy while controlling 
for model “complexity”? 
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Measures of Model Complexity

Lecture 11 - 11

Parameters: How many learnable parameters does the model have?

Floating Point Operations (FLOPs): How many arithmetic operations does it take to 
compute the forward pass of the model?
Watch out, lots of subtlety here:
- Many papers only count operations in conv layers (ignore ReLU, pooling, BatchNorm)

Most papers use “1 FLOP” = ”1 multiply and 1 addition” so dot product of two N-dim 
vectors takes N FLOPs; some papers say MADD or MACC instead of FLOP

- Other sources (e.g. NVIDIA marketing material) count “1 multiply and one addition” = 2 
FLOPs, so dot product of two N-dim vectors takes 2N FLOPs

Network Runtime: How long does a forward pass of the model take on real hardware? 
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Comparing Complexity

Lecture 11 - 12

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017
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Key ingredient: 
Grouped / Separable convolution

Lecture 11 - 13
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Recall: Convolution Layer

Lecture 11 - 14
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channels as the input
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Recall: Convolution Layer

Lecture 11 - 15
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Each filter has the 
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channels as the input
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full input and one filter
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Recall: Convolution Layer

Lecture 11 - 16
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full input and one filter
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Recall: Convolution Layer

Lecture 11 - 17
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output depends on the 
full input and one filter
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Recall: Convolution Layer

Lecture 11 - 18
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output depends on the 
full input and one filter
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Grouped Convolution

Lecture 11 - 19
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Grouped Convolution

Lecture 11 - 20
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Grouped Convolution

Lecture 11 - 21
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Grouped Convolution

Lecture 11 - 22
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Grouped Convolution

Lecture 11 - 23
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Grouped Convolution

Lecture 11 - 24

Cin

W

H

Input: Cin x H x W Weights: Cout x (Cin/G) x K x K
Cin/G K

K

Cout

Cout

W’

H’

Output: Cout x H’ x W’

Divide channels of input into G 
groups with (Cin/G) channels each

Divide filters into G groups; 
each group looks at a 
subset of input channels 

Group 1

Group 2

Cin/G

Example:
G = 2

Each plane of the output 
depends on one filter and a 
subset of the input channels



Justin Johnson February 14, 2022

Grouped Convolution

Lecture 11 - 25
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Grouped Convolution

Lecture 11 - 26
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Grouped Convolution

Lecture 11 - 27
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Grouped Convolution

Lecture 11 - 28
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Special Case: Depthwise Convolution

Lecture 11 - 29
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information from input; 
channel information not mixed
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Special Case: Depthwise Convolution

Lecture 11 - 30

Cin
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Cout
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Number of groups equals 
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Output only mixes spatial
information from input; 
channel information not mixed
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Grouped Convolution

Lecture 11 - 31

Grouped Convolution (G groups):
G parallel conv layers; each “sees” 
Cin/G input channels and produces 
Cout/G output channels

Input: Cin x H x W
Split to G x [(Cin / G) x H x W]
Weight: G x (Cout / G) x (Cin / G) x K x K
G parallel convolutions
Output: G x [(Cout / G) x H’ x W’]
Concat to Cout x H’ x W’
FLOPs: CoutCinK2HW/G

Input: Cin x H x W

Group 1: 
(Cin / G) x H x W

Group G: 
(Cin / G) x H x W

Split

Conv(Cin/G -> Cout/G) Conv(Cin/G -> Cout/G)

Out 1:
(Cout / G) x H’ x W’

Out G:
(Cout / G) x H’ x W’

Concat

Output: Cout x H’ x W’

Group i
… 
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Grouped Convolution vs Standard Convolution

Lecture 11 - 32

Standard Convolution (groups=1)

Input: Cin x H x W
Weight: Cout x Cin x K x K
Output: Cout x H’ x W’
FLOPs: CoutCinK2HW

All convolutional kernels touch 
all Cin channels of the input

Grouped Convolution (G groups):
G parallel conv layers; each “sees” 
Cin/G input channels and produces 
Cout/G output channels

Input: Cin x H x W
Split to G x [(Cin / G) x H x W]
Weight: G x (Cout / G) x (Cin x G) x K x K
G parallel convolutions
Output: G x [(Cout / G) x H’ x W’]
Concat to Cout x H’ x W’
FLOPs: CoutCinK2HW/G Using G groups reduces 

FLOPs by a factor of G!
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Grouped Convolution in PyTorch

Lecture 11 - 33

PyTorch convolution gives an option for groups!
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Improving ResNets

Lecture 11 - 34

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

FLOPs: 
4HWC2

FLOPs: 
9HWC2

FLOPs: 
4HWC2

Total FLOPs:
17HWC2

“Bottleneck”
Residual block
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Improving ResNets: ResNeXt

Lecture 11 - 35

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

FLOPs: 
4HWC2

FLOPs: 
9HWC2

FLOPs: 
4HWC2

Total FLOPs:
17HWC2

“Bottleneck”
Residual block

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

…

G parallel pathways

Xie et al, “Aggregated residual transformations for deep neural networks”, CVPR 2017
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Improving ResNets: ResNeXt

Lecture 11 - 36

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

FLOPs: 
4HWC2

FLOPs: 
9HWC2

FLOPs: 
4HWC2

Total FLOPs:
17HWC2

“Bottleneck”
Residual block

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

…

G parallel pathways

4HWCc

9HWc2

4HWCc

Total FLOPs:
(8Cc + 9c2)*HWG

Xie et al, “Aggregated residual transformations for deep neural networks”, CVPR 2017
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Improving ResNets: ResNeXt

Lecture 11 - 37

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

FLOPs: 
4HWC2

FLOPs: 
9HWC2

FLOPs: 
4HWC2

Total FLOPs:
17HWC2

“Bottleneck”
Residual block

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

…

G parallel pathways

4HWCc

9HWc2

4HWCc

Total FLOPs:
(8Cc + 9c2)*HWGSame FLOPs when

9Gc2 + 8GCc – 17C2 = 0
Example: C=64, G=4, c=24;  C=64, G=32, c=4Xie et al, “Aggregated residual transformations for deep neural networks”, CVPR 2017
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Improving ResNets: ResNeXt

Lecture 11 - 38

Conv(1x1, 4C->Gc)

Conv(3x3, Gc->Gc, 
groups=G)

Conv(1x1, Gc->4C)

ResNeXt block: 
Grouped convolution

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

Conv(1x1, 4C->c)

Conv(3x3, c->c)

Conv(1x1, c->4C)

…

G parallel pathways

4HWCc

9HWc2

4HWCc

Total FLOPs:
(8Cc + 9c2)*HWGSame FLOPs when

9Gc2 + 8GCc – 17C2 = 0
Example: C=64, G=4, c=24;  C=64, G=32, c=4

Equivalent formulation 
with grouped convolution

Xie et al, “Aggregated residual transformations for deep neural networks”, CVPR 2017
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ResNeXt: Maintain computation by adding groups!

Lecture 11 - 39

Model Groups Group width Top-1 Error
ResNet-50 1 64 23.9
ResNeXt-50 2 40 23
ResNeXt-50 4 24 22.6
ResNeXt-50 8 14 22.3
ResNeXt-50 32 4 22.2

Model Groups Group width Top-1 Error
ResNet-101 1 64 22.0
ResNeXt-101 2 40 21.7
ResNeXt-101 4 24 21.4
ResNeXt-101 8 14 21.3
ResNeXt-101 32 4 21.2

Xie et al, “Aggregated residual transformations for deep neural networks”, CVPR 2017

Adding groups improves performance with same FLOPs!

Often denoted e.g. ResNeXt-50-32x4d: 32 groups,
Blocks in first stage have 4 channels per group (#channels still doubles at each stage)
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Squeeze-and-Excitation Networks (SENet)

Lecture 11 - 40

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

Global Avg Pooling

Fully-Connected

ReLU

Fully-Connected

Sigmoid

4C x H x W

4C x 1 x 1

C/4 x 1 x 1

C/4 x 1 x 1

4C x 1 x 1

4C x 1 x 1

Bottleneck ResNet block Bottleneck ResNet block 
with Squeeze + Excite

Hu et al, “Squeeze-and-Excitation networks”, CVPR 2018

Adds global 
context to each 
ResNet block
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Squeeze-and-Excitation Networks (SENet)

Lecture 11 - 41

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

Global Avg Pooling

Fully-Connected

ReLU

Fully-Connected

Sigmoid

4C x H x W

4C x 1 x 1

C/4 x 1 x 1

C/4 x 1 x 1

4C x 1 x 1

4C x 1 x 1

Bottleneck ResNet block
FLOPs: 17HWC2

Bottleneck ResNet block 
with Squeeze + Excite
FLOPs: 8CHW + 2C2 + 17C/4

Hu et al, “Squeeze-and-Excitation networks”, CVPR 2018

4CHW

C2

C/4

C2

4C
4CHW

Adds global 
context to each 
ResNet block
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Squeeze-and-Excitation Networks (SENet)

Lecture 11 - 42

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

Conv(1x1, 4C->C)

Conv(3x3, C->C)

Conv(1x1, C->4C)

Global Avg Pooling

Fully-Connected

ReLU

Fully-Connected

Sigmoid

4C x H x W

4C x 1 x 1

C/4 x 1 x 1

C/4 x 1 x 1

4C x 1 x 1

4C x 1 x 1

Bottleneck ResNet block
FLOPs: 17HWC2

H=W=56, C=64: 218 MFLOP

Bottleneck ResNet block 
with Squeeze + Excite
FLOPs: 8CHW + 2C2 + 17C/4
H=W=56, C=64: 1.6 MFLOP

Hu et al, “Squeeze-and-Excitation networks”, CVPR 2018

4CHW

C2

C/4

C2

4C
4CHW

Adds global 
context to each 
ResNet block

Increases 
overall FLOPs 
by < 1%!
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Squeeze-and-Excitation Networks (SENet)

Lecture 11 - 43

72.98

75.2

76.83
77.58 77.89

78.82

74.78

76.71
77.62

78.43 78.9 79.3

70

72

74

76

78

80

VGG-16 ResNet-50 ResNet-101 ResNet-152 ResNeXt-50 ResNeXt-101

ImageNet Top-1 Accuracy

Original SENet

Add SE to any architecture, enjoy 1-2% boost in accuracy

Hu et al, “Squeeze-and-Excitation networks”, CVPR 2018
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Tiny Neural Networks for Mobile Devices

Lecture 11 - 44

Instead of pushing for the largest 
network with biggest accuracy, 
consider tiny networks and 
accuracy / complexity tradeoff

Model Complexity
(FLOPs, #params, runtime speed)

Accuracy

Compare families of models:

Model family
e.g. MobileNet
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Tiny Neural Networks for Mobile Devices

Lecture 11 - 45

Instead of pushing for the largest 
network with biggest accuracy, 
consider tiny networks and 
accuracy / complexity tradeoff

Model Complexity
(FLOPs, #params, runtime speed)

Accuracy

Compare families of models:

One family is better than another if it 
moves the whole curve up and to the left

Model family
e.g. MobileNet

New model family
e.g. MobileNetV2
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MobileNets: Tiny Networks (For Mobile Devices)

Lecture 11 - 46

Batch Norm

ReLU

Conv(3x3, C->C)

Conv(3x3, C->C,
groups=C)

Batch Norm

ReLU

Conv(1x1, C->C)

Batch Norm

ReLU

9C2HW

9CHW

C2HW

Standard Convolution Block
Total cost: 9C2HW

Depthwise Separable Convolution
Total cost: (9C + C2)HW

“Depthwise Convolution”

“Pointwise Convolution”

Howard et al, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017
Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions”, CVPR 2017

Speedup = 9C2/(9C+C2)
= 9C/(9+C)
=> 9 (as C->inf)
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MobileNets: Tiny Networks (For Mobile Devices)

Lecture 11 - 47

Conv(3x3, C->C,
groups=C)

Batch Norm

ReLU

Conv(1x1, C->C)

Batch Norm

ReLU

9CHW

C2HW

Depthwise Separable Convolution
Total cost: (9C + C2)HW

“Depthwise Convolution”

“Pointwise Convolution”

Howard et al, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, 2017
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MobileNets: Tiny Networks (For Mobile Devices)

Lecture 11 - 48

Conv(3x3, C->C,
groups=C)

Batch Norm

ReLU

Conv(1x1, C->C)

Batch Norm

ReLU

9CHW

C2HW

Depthwise Separable Convolution
Total cost: (9C + C2)HW

“Depthwise Convolution”

“Pointwise Convolution”

Howard et al, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications”, 2017

AlexNet

ResNet-50
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MobileNetV2: Inverted Bottleneck, Linear Residual

Lecture 11 - 49

Conv(3x3, C->C)

Batch Norm

ReLU

Conv(1x1, C->4C)

Batch Norm

ReLU

Conv(1x1, 4C->C)

Batch Norm

ReLU

Re
sN

et
Bo

tt
le

ne
ck

 B
lo

ck

1x1 conv reduces
channels before 3x3 
conv (4HWC2 FLOP)

3x3 conv uses fewer
channels than input
(9HWC2 FLOP)

1x1 conv expands
channels output
(4HWC2 FLOP)

Nonlinearity 
outside residual

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018
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MobileNetV2: Inverted Bottleneck, Linear Residual

Lecture 11 - 50

Conv(3x3, tC->tC,
groups=tC)

Batch Norm

ReLU6

Conv(1x1, tC->C)

Batch Norm

ReLU6

Conv(1x1, C->tC)

Batch Norm

Conv(3x3, C->C)

Batch Norm

ReLU

Conv(1x1, C->4C)

Batch Norm

ReLU

Conv(1x1, 4C->C)

Batch Norm

ReLU

Re
sN

et
Bo

tt
le

ne
ck

 B
lo

ck

1x1 conv reduces
channels before 3x3 
conv (4HWC2 FLOP)

3x3 conv uses fewer
channels than input
(9HWC2 FLOP)

1x1 conv expands
channels output
(4HWC2 FLOP)

Nonlinearity 
outside residual

1x1 conv increases
channels before 3x3 conv 

(inverted bottleneck)
(tHWC2 FLOP)

3x3 Depthwise conv with 
more channels than input

(9tHWC FLOP)

1x1 conv reduces
channels before output

(tHWC2 FLOP)

No nonlinearity after last 
conv! (linear residual)

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018

M
obileN

etV2 Block
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MobileNetV2: Inverted Bottleneck, Linear Residual

Lecture 11 - 51

Conv(3x3, tC->tC,
groups=tC)

Batch Norm

ReLU6

Conv(1x1, tC->C)

Batch Norm

ReLU6

Conv(1x1, C->tC)

Batch Norm

Conv(3x3, C->C)

Batch Norm

ReLU

Conv(1x1, C->4C)

Batch Norm

ReLU

Conv(1x1, 4C->C)

Batch Norm

ReLU

Re
sN

et
Bo

tt
le

ne
ck

 B
lo

ck

1x1 conv reduces
channels before 3x3 
conv (4HWC2 FLOP)

3x3 conv uses fewer
channels than input
(9HWC2 FLOP)

1x1 conv expands
channels output
(4HWC2 FLOP)

Nonlinearity 
outside residual

1x1 conv increases
channels before 3x3 conv 

(inverted bottleneck)
(tHWC2 FLOP)

3x3 Depthwise conv with 
more channels than input

(9tHWC FLOP)

1x1 conv reduces
channels before output

(tHWC2 FLOP)

No nonlinearity after last 
conv! (linear residual)

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018

M
obileN

etV2 Block

Total FLOP: 17HWC2 Total FLOP: 2tHWC2 + 9tHWC
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MobileNetV2: Inverted Bottleneck, Linear Residual

Lecture 11 - 52

Conv(3x3, tC->tC,
groups=tC)

Batch Norm

ReLU6

Conv(1x1, tC->C)

Batch Norm

ReLU6

Conv(1x1, C->tC)

Batch Norm1x1 conv increases
channels before 3x3 conv 

(inverted bottleneck)
(tHWC2 FLOP)

3x3 Depthwise conv with 
more channels than input

(9tHWC FLOP)

1x1 conv reduces
channels before output

(tHWC2 FLOP)

No nonlinearity after last 
conv! (linear residual)

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018

M
obileN

etV2 Block

Total FLOP: 2tHWC2 + 9tHWC

𝑅𝑒𝐿𝑈6 𝑥 = (
0 𝑖𝑓 𝑥 ≤ 0
𝑥 𝑖𝑓 0 < 𝑥 < 6
6 𝑖𝑓 𝑥 ≥ 6

Keeps activations in reasonable range 
when running inference in low precision
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MobileNetV2: Inverted Bottleneck, Linear Residual

Lecture 11 - 53

Sandler et al, "MobileNetV2: Inverted Residuals and Linear Bottlenecks", CVPR 2018

3x3 Depthwise Convolution:
Mixes data across space,
Keeps data across channels separate

1x1 Convolution:
Keeps data across space separate,
Mixes data across channels

Idea: Can we mix 
channel info 
more efficiently 
than 1x1 conv?
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Stacking Grouped Convolutions

Lecture 11 - 54

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 8

Channel 9

Group 1

Group 2

Group 3

Grouped Convolution Grouped Convolution

Problem: Information is never mixed across channels from different groups!Zhang et al, "ShuffleNet: An Extremely 
Efficient Convolutional Neural Network 
for Mobile Devices", CVPR 2018
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Stacking Grouped Convolutions

Lecture 11 - 55

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 8

Channel 9

Group 1

Group 2

Group 3

Grouped Convolution Grouped Convolution

Problem: Information is never mixed across channels from different groups!Zhang et al, "ShuffleNet: An Extremely 
Efficient Convolutional Neural Network 
for Mobile Devices", CVPR 2018
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Stacking Grouped Convolutions

Lecture 11 - 56

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 8

Channel 9

Group 1

Group 2

Group 3

Grouped Convolution Grouped Convolution

Insert “Channel Shuffle” operators that 
permute channels between convolutions

Channel Shuffle

Zhang et al, "ShuffleNet: An Extremely 
Efficient Convolutional Neural Network 
for Mobile Devices", CVPR 2018
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Stacking Grouped Convolutions

Lecture 11 - 57

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

Channel 8

Channel 9

Group 1

Group 2

Group 3

Grouped Convolution Grouped ConvolutionChannel Shuffle

Insert “Channel Shuffle” operators that 
permute channels between convolutions

Now channel information is fully “mixed” after two grouped 
convolutions – no need for any ungrouped convolutions!

Zhang et al, "ShuffleNet: An Extremely 
Efficient Convolutional Neural Network 
for Mobile Devices", CVPR 2018
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ShuffleNet

Lecture 11 - 58

Channel Shuffle

Conv(3x3, C->C, groups=C)

Batch Norm

Conv(1x1, C->C, groups=G)

Batch Norm

ReLU

Conv(1x1, C->C, groups=G)

Batch Norm

1x1 grouped conv

ReLU

Zhang et al, "ShuffleNet: An Extremely Efficient Convolutional 
Neural Network for Mobile Devices", CVPR 2018

3x3 depthwise conv,
No nonlinearity here!

1x1 grouped conv
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ShuffleNet

Lecture 11 - 59

Channel Shuffle

Conv(3x3, C->C, groups=C)

Batch Norm

Conv(1x1, C->C, groups=G)

Batch Norm

ReLU

Conv(1x1, C->C, groups=G)

Batch Norm

1x1 grouped conv

ReLU

Zhang et al, "ShuffleNet: An Extremely Efficient Convolutional 
Neural Network for Mobile Devices", CVPR 2018

3x3 depthwise conv,
No nonlinearity here!

1x1 grouped conv

30
35
40
45
50
55
60
65
70
75

0 100 200 300 400 500 600
GFLOPs

ImageNet Top1 Accuracy
ResNet ResNeXt MobileNet ShuffleNet
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Neural Architecture Search (NAS)

Lecture 11 - 60

Zoph and Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Zoph et al, “Learning transferable architectures for scalable image recognition”, CVPR 2018

Designing neural network architectures 
is hard – let’s automate it!
- One network (controller) outputs 

network architectures
- Sample child networks from 

controller and train them
- After training a batch of child 

networks, make a gradient step on 
controller network (Using policy 
gradient)

- Over time, controller learns to output 
good architectures!
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Neural Architecture Search (NAS)

Lecture 11 - 61

Zoph and Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Zoph et al, “Learning transferable architectures for scalable image recognition”, CVPR 2018

Search for reusable “block” designs 
which can use the following 
operators:
- Identity
- 1x1 conv
- 3x3 conv
- 3x3 dilated conv
- 1x7 then 7x1 conv
- 1x3 then 3x1 conv
- 3x3, 5x5, or 7x7 depthwise-

separable conv
- 3x3 avg pool
- 3x3, 5x5, or 7x7 max pool
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Neural Architecture Search (NAS)

Lecture 11 - 62

Zoph and Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Zoph et al, “Learning transferable architectures for scalable image recognition”, CVPR 2018

Search for reusable “block” designs 
which can use the following 
operators:
- Identity
- 1x1 conv
- 3x3 conv
- 3x3 dilated conv
- 1x7 then 7x1 conv
- 1x3 then 3x1 conv
- 3x3, 5x5, or 7x7 depthwise-

separable conv
- 3x3 avg pool
- 3x3, 5x5, or 7x7 max pool

The “Normal cell” maintains the 
same image resolution

The “Reduction cell” reduces 
image resolution by 2x

Combine two learned cells in a 
regular pattern to create overall 
architecture
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Neural Architecture Search (NAS)

Lecture 11 - 63

Zoph and Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Zoph et al, “Learning transferable architectures for scalable image recognition”, CVPR 2018

Learned Cells
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Neural Architecture Search (NAS)

Lecture 11 - 64

Zoph and Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Zoph et al, “Learning transferable architectures for scalable image recognition”, CVPR 2018
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NAS for MobileNetV3

Lecture 11 - 65

Howard et al, ”Searching for MobileNetV3”, ICCV 2019
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Big Problem: NAS is Very Expensive!

Lecture 11 - 66

Original NAS paper: Each 
update to the controller 
requires training 800 
child models for 50 
epochs on CIFAR10;
Total of 12,800 child 
models are trained

Later work improved 
efficiency, but still 
expensive

Zoph and Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
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Neural Architecture Search: Many followups

Lecture 11 - 67

Zoph and Le, ”Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Pham et al, “Efficient neural architecture search via parameter sharing”, ICML 2018
Brock et al, “SMASH: One-Shot Model Architecture Search through HyperNetworks”, ICLR 2018
Ramachandran et al, “Searching for Activation Functions”, ICLR 2018 Workshop
Zoph et al, “Learning transferable architectures for scalable image recognition”, CVPR 2018
Liu et al, “Progressive Neural Architecture Search”, CVPR 2018
Liu et al, “DARTS: differentiable Architecture Search”, ICLR 2019
Cai et al, “ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware”, ICLR 2019
Xie et al, “SNAS: Stochastic Neural Architecture Search”, ICLR 2019
Real et al, “Regularized evolution for image classifier architecture search”, AAAI 2019
Tan et al, “MnasNet: Platform-Aware Neural Architecture Search for Mobile”, CVPR 2019
Howard et al, “Searching for MobileNetV3”, CVPR 2019
Wu et al, “FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search”, CVPR 2019
Liu et al, “Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation”, CVPR 2019
Ghiasi et al, “NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection”, CVPR 2019
Cubuk et al, “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019
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Model Scaling

Lecture 11 - 68

Starting from a given architecture, how should you scale it up to improve performance?

Baseline 
Architecture

Width :
Increase channels 

in all layers

Depth:
Use more 

layers

Resolution:
Higher res 

input image

Compound:
Scale all 
jointly

Tan and Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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Model Scaling: EfficientNets

Lecture 11 - 69

Tan and Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019

Scale width only Scale depth only Scale resolution only

Scaling any of width, depth, or resolution has diminishing returns. 
For optimal results, need to scale them all jointly!

Doubling 
width 
increases 
FLOPs by 4x

Doubling 
depth 
increases 
FLOPs by 2x

Doubling 
resolution 
increases 
FLOPs by 4x
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Model Scaling: EfficientNets

Lecture 11 - 70

Tan and Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019

1. Use NAS to get initial EfficientNet-B0 architecture;
uses depthwise conv, inverted bottlenecks, and SE

2. Find optimal scaling factors 𝛼 for depth, 𝛽 for width, 𝛾
for resolution with 𝛼, 𝛽, 𝛾 ≥ 1 and 𝛼𝛽!𝛾! ≈ 2 via grid 
search on scaling up initial architecture; 
found 𝛼 = 1.2, 𝛽 = 1.1, 𝛾 = 1.15

3. Scale initial architecture to arbitrary FLOPs: scaling by 
𝛼" , 𝛽" , 𝛾" will increase FLOPs by a factor of ≈ 2"
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Model Scaling: EfficientNets

Lecture 11 - 71

Tan and Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019
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Model Scaling: EfficientNets

Lecture 11 - 72

Tan and Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks”, ICML 2019

Big problem: Real-world runtime does not 
correlate well with FLOPs!
- Runtime depends on the device (mobile CPU, 

server CPU, GPU, TPU); A model which is fast 
on one device may be slow on another

- Depthwise convolutions are efficient on 
mobile, but not on GPU / TPU – they become 
memory-bound

- The “naïve” FLOP counting we have done for 
convolutions can be incorrect – alternate conv 
algorithms can reduce FLOPs in some settings
(FFT for large kernels, Winograd for 3x3 conv)

- EfficientNet was designed to minimize FLOPs, 
not actual runtime – so it is surprisingly slow!

Vasilache et al, “Fast Convolutional Nets With fbfft: A GPU Performance Evaluation”, ICLR 2015
Lavin and Gray, “Fast Algorithms for Convolutional Neural Networks”, CVPR 2016
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Beyond NAS – back to hand-designed models!

Lecture 11 - 73

Work in the last ~year has started to turn away from NAS;
instead smartly tweak ResNet-style models to improve performance, 
scaling, runtime on GPU / TPU

NFNets: Remove Batch Normalization
ResNet-RS: Modern ResNet training recipe, better scaling
RegNets: Simple block design, optimize macro architecture and scaling
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Training ResNets without Batch Normalization

Lecture 11 - 74

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

- Batch Normalization has good properties:
- Makes it easy to train deep networks >= 10 layers
- Makes learning rates, initialization less critical
- Adds regularization
- ”Free” at inference: can be merged into linear layers

- But also has bad properties:
- Doesn’t work with small minibatches
- Different behavior at train and test
- Slow at training time

NFNets are ResNets without Batch Normalization!
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NFNets

Lecture 11 - 75

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

Conv(3x3, C->C)

ReLU

Conv(1x1, C->4C)

ReLU

ReLU

Conv(1x1, 4C->C)

He et al, “Identity 
Mappings in Deep 

Residual Networks”, 
ECCV 2016

Consider a pre-activation ResNet block 𝑥ℓ"# = 𝑓ℓ 𝑥ℓ + 𝑥ℓ

Problem: Variance grows with each block:
𝑉𝑎𝑟 𝑥ℓ"# = 𝑉𝑎𝑟 𝑥ℓ + 𝑉𝑎𝑟 𝑓ℓ 𝑥ℓ

𝑓ℓ
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NFNets

Lecture 11 - 76

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

Conv(3x3, C->C)

ReLU

Conv(1x1, C->4C)

ReLU

ReLU

Conv(1x1, 4C->C)

He et al, “Identity 
Mappings in Deep 

Residual Networks”, 
ECCV 2016

Consider a pre-activation ResNet block 𝑥ℓ"# = 𝑓ℓ 𝑥ℓ + 𝑥ℓ

Problem: Variance grows with each block:
𝑉𝑎𝑟 𝑥ℓ"# = 𝑉𝑎𝑟 𝑥ℓ + 𝑉𝑎𝑟 𝑓ℓ 𝑥ℓ

𝑓ℓ
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NFNets: Scaled Residual Blocks

Lecture 11 - 77

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

Conv(3x3, C->C)

ReLU

Conv(1x1, C->4C)

ReLU

ReLU

Conv(1x1, 4C->C)

Consider a pre-activation ResNet block 𝑥ℓ"# = 𝑓ℓ 𝑥ℓ + 𝑥ℓ

Problem: Variance grows with each block:
𝑉𝑎𝑟 𝑥ℓ"# = 𝑉𝑎𝑟 𝑥ℓ + 𝑉𝑎𝑟 𝑓ℓ 𝑥ℓ

Solution: Re-parameterize block:
𝑥ℓ"# = 𝑥ℓ + 𝛼𝑓ℓ 𝑥ℓ/𝛽ℓ

𝛼 is a hyperparameter, 𝛽ℓ = 𝑉𝑎𝑟 𝑥ℓ at initialization; 
both are constants during training

𝑓ℓ

⋅ 𝛼

/𝛽ℓ



Justin Johnson February 14, 2022

NFNets: Scaled Residual Blocks

Lecture 11 - 78

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

Consider a pre-activation ResNet block 𝑥ℓ"# = 𝑓ℓ 𝑥ℓ + 𝑥ℓ

Problem: Variance grows with each block:
𝑉𝑎𝑟 𝑥ℓ"# = 𝑉𝑎𝑟 𝑥ℓ + 𝑉𝑎𝑟 𝑓ℓ 𝑥ℓ

Solution: Re-parameterize block:
𝑥ℓ"# = 𝑥ℓ + 𝛼𝑓ℓ 𝑥ℓ/𝛽ℓ

𝛼 is a hyperparameter, 𝛽ℓ = 𝑉𝑎𝑟 𝑥ℓ at initialization; 
both are constants during training

Now 𝑉𝑎𝑟 𝑥ℓ"#) = 𝑉𝑎𝑟 𝑥ℓ + 𝛼%; resets to 1 + 𝛼%
after each downsampling block

Conv(3x3, C->C)

ReLU

Conv(1x1, C->4C)

ReLU

ReLU

Conv(1x1, 4C->C)

𝑓ℓ

⋅ 𝛼

/𝛽ℓ
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NFNets: Weight Standardization

Lecture 11 - 79

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

Rather than normalizing activations during training,
instead normalize weights!
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NFNets: Weight Standardization

Lecture 11 - 80

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

Rather than normalizing activations during training,
instead normalize weights!

Learn weights 𝑊 but convolve with weights 8𝑊 where

8𝑊&,( = 𝛾 ⋅
𝑊&,( −𝑚𝑒𝑎𝑛 𝑊&

𝑠𝑡𝑑 𝑊& 𝑁
𝑊& is a single conv filter, 𝑁 = 𝐾%𝐶&) is the “fan-in” of the kernel
𝛾 is a constant that depends on the nonlinearity
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NFNets: Weight Standardization

Lecture 11 - 81

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

Rather than normalizing activations during training,
instead normalize weights!

Learn weights 𝑊 but convolve with weights 8𝑊 where

8𝑊&,( = 𝛾 ⋅
𝑊&,( −𝑚𝑒𝑎𝑛 𝑊&

𝑠𝑡𝑑 𝑊& 𝑁
𝑊& is a single conv filter, 𝑁 = 𝐾%𝐶&) is the “fan-in” of the kernel
𝛾 is a constant that depends on the nonlinearity

For ReLU: 𝛾 = 2 / 1 − 1/𝜋

Compute 8𝑊 each iteration during training (and backprop through it); 
at inference use fixed 8𝑊 (zero-overhead like BN)
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NFNets: Other Tricks

Lecture 11 - 82

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

- Adaptive Gradient Clipping: Clip (raw) gradients 
during training if they get too large

- Tweak ResNet architecture:
- Start from SE-ResNeXt
- Tweak stem and downsampling blocks

(ResNet-D)
- Change ReLU to GeLU
- Group width = 128 at all layers
- Change stage widths: 

[256, 512, 1024, 1024] -> [256, 512, 1536, 1536]
- Change stage depths: [3, 4, 6, 3] -> [1, 2, 6, 3]

- Stronger regularization: MixUp, RandAugment, 
CutMix, DropOut, Stochastic Depth

Hu et al, “Bag of Tricks for Image Classification 
with Convolutional Neural Networks”, CVPR 2019
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NFNets: Other Tricks

Lecture 11 - 83

Brock et al, “Characterizing Signal Propagation to Close the Performance Gap in Unnormalized ResNets”, ICLR 2021
Brock et al, “High-Performance Large-Scale Image Recognition without Normalization”, ICML 2021

Always be careful with plots like this 
– different papers use different 
metric for x-axis:
- FLOPs
- Params
- Test-time runtime
- Training-time runtime
- Runtime on CPU / GPU / TPU / ?
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Revisiting ResNets

Lecture 11 - 84

Bello et al, “Revisiting ResNets: Improved Training and Scaling Strategies”, NeurIPS 2021

Starting from baseline ResNet-200 model,  improve performance with small tweaks:

Model IN Top1 ∆
Baseline ResNet-200: 79.0
+Cosine LR decay 79.3 +0.3
+Longer training (90->350 epochs) 78.8 -0.5
+EMA of weights 79.1 +0.3
+Label smoothing 80.4 +1.3
+Stochastic Depth 80.6 +0.2
+RandAugment 81.0 +0.4
+Dropout on FC 80.7 -0.3
+Less weight decay 82.2 +1.5
+Squeeze and Excite 82.9 +0.7
+ResNet-D 83.4 +0.5



Justin Johnson February 14, 2022

Revisiting ResNets

Lecture 11 - 85

Bello et al, “Revisiting ResNets: Improved Training and Scaling Strategies”, NeurIPS 2021

To get networks of different sizes, 
brute-force search over:
- Initial network width: 0.25x, 

0.5x, 1.0x, 1.5x, or 2.0x 
baseline model

- Overall network depth: 26, 50, 
101, 200, 300, 350, or 400 
layers

- Input image resolution: 128, 
160, 224, 320, or 448 pixels
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Revisiting ResNets

Lecture 11 - 86

Bello et al, “Revisiting ResNets: Improved Training and Scaling Strategies”, NeurIPS 2021

To get networks of different sizes, 
brute-force search over:
- Initial network width: 0.25x, 

0.5x, 1.0x, 1.5x, or 2.0x 
baseline model

- Overall network depth: 26, 50, 
101, 200, 300, 350, or 400 
layers

- Input image resolution: 128, 
160, 224, 320, or 448 pixels

Significantly faster than EfficientNets
at same accuracy (times on TPU)
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RegNets: Network Design Spaces

Lecture 11 - 87

Radosavovic et al, “Designing Network Design Spaces”, CVPR 2020
Dollar et al, “Fast and Accurate Model Scaling”, CVPR 2021

Network design is simple:  Stem of 3x3 convs, a body of 4 stages, and a head; Each stage 
has multiple blocks: First block downsamples by 2x, others keep resolution the same
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RegNets: Network Design Spaces

Lecture 11 - 88

Radosavovic et al, “Designing Network Design Spaces”, CVPR 2020
Dollar et al, “Fast and Accurate Model Scaling”, CVPR 2021

Block design is simple, 
generalizes ResNext
Each stage has 4 parameters:
- Number of blocks
- Number of input channels w
- Bottleneck ratio b
- Group width g

The design space for the network 
has just 16 parameters
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RegNets: Network Design Spaces

Lecture 11 - 89

Radosavovic et al, “Designing Network Design Spaces”, CVPR 2020
Dollar et al, “Fast and Accurate Model Scaling”, CVPR 2021

Randomly sample architectures from the design space, examine trends:
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RegNets: Network Design Spaces

Lecture 11 - 90

Radosavovic et al, “Designing Network Design Spaces”, CVPR 2020
Dollar et al, “Fast and Accurate Model Scaling”, CVPR 2021

Use results to refine the design space: Reduce degrees of freedom from 16 
to bias toward better-performing architectures:
- Share bottleneck ratio across all stages (16 -> 13 params)
- Share group width across all stages (13 -> 10 params)
- Force width, blocks per stage to increase linearly across stages

Final design space has 6 parameters:
- Overall depth d, bottleneck ratio b, group width g
- Initial width w0, width growth rate wa, blocks per stage wm
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RegNets: Network Design Spaces

Lecture 11 - 91

Radosavovic et al, “Designing Network Design Spaces”, CVPR 2020
Dollar et al, “Fast and Accurate Model Scaling”, CVPR 2021

Random search finds good-performing models at varying FLOP budgets

RegNetX is as described above, RegNetY also adds SE
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RegNets: Network Design Spaces

Lecture 11 - 92

Radosavovic et al, “Designing Network Design Spaces”, CVPR 2020
Dollar et al, “Fast and Accurate Model Scaling”, CVPR 2021
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At same FLOPs, RegNet models get similar accuracy as EfficientNets
but are up to 5x faster in training (each iteration is faster)
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Tesla Vision system 
uses RegNets to 
process inputs 
from each camera

Tesla AI Day 2021, 
https://www.youtube.com
/watch?v=j0z4FweCy4M
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CNN Architectures Summary

Lecture 11 - 94

• Early work (AlexNet -> VGG -> ResNet): bigger networks work better
• New focus on efficiency: Improve accuracy, control for network complexity
• Grouped and Depthwise Convolution appear in many modern architectures
• Squeeze-and-Excite adds accuracy boost to just about any architecture while 

only adding a tiny amount of FLOPs and runtime
• Tiny networks for mobile devices (MobileNet, ShuffleNet)
• Neural Architecture Search (NAS) promised to automate architecture design
• More recent work has moved towards careful improvements to ResNet-like 

architectures
• ResNet and ResNeXt are still surprisingly strong and popular architectures!
• RegNet seems like a promising and efficient architecture to use
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A Sneak Peek…

Lecture 11 - 95

A lot of recent work has started to move away from CNNs entirely!

New classes of models: Vision Transformers, MLP-like models

We will learn more after Spring Break (Lectures 17 and 18)
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Next Time: How do we implement all this?

Deep Learning Software

Lecture 11 - 96


