Lecture /;
Convolutional Networks

Justin Johnson Lecture 7 -1 January 31, 2022

Lecture Format

What is your preferred lecture format?

134 responses

@ Strongly prefer remote lectures
@ Slightly prefer remote lectures

Indifferent between in-person and
remote lecture

@ Slightly prefer in-person lectures
@ Strongly prefer in-person lectures

Justin Johnson Lecture 7 - 2 January 31, 2022

Lecture Format
If we were to return to in-person lectures, how would you plan to watch lectures?

134 responses

@ Attend in-person

@ Attend synchronously via zoom (if
possible)

Watch recorded lecture videos

Justin Johnson Lecture 7 -3 January 31, 2022

Lecture Format

- We will remain remote for at least another 2-3 weeks

- ldea: book a conference room for “watch parties?”
Or just use lecture hall

- COVID in MI have (hopefully!) peaked? If they continue to
drop we will consider in-person OH in the next 1-2 weeks

- May revisit after Spring Break

- Feel free to raise hand to ask questions in Zoom!

- Midterm will be remote (but still working on exact format)

Justin Johnson Lecture 7 -4 January 31, 2022

Reminder: A2

Due last Friday

Justin Johnson Lecture 7 -5 January 31, 2022

A3

Will be released tonight, covering:

Backpropagation with modular API

Different update rules (Momentum, RMSProp, Adam, etc)
Batch Normalization

Dropout

Convolutional Networks

Justin Johnson Lecture 7 -6 January 31, 2022

Last Time: Backpropagation

During the backward pass, each node in
the graph receives upstream gradients
and multiplies them by local gradients to
compute downstream gradients

\@M% — 1 @
w | 0 ? %‘94 -

Represent complex expressions
as computational graphs

f=Wgz| [Li=>;, max(0,s; — sy +1)

O~
7NN <
R(W) Downstream$ 073 0F f

radients 0z
& — Local OL

Forward pass computes outputs @/ab 9y | gradients 0z
0% —— Upstream

< . = /_J 0% gradient
Backward pass computes gradients

Justin Johnson Lecture 7 -7 January 31, 2022

Problem: So far our classifiers don’t
respect the spatial structure of images!

Stretch pixels into column

56
f = Wamax(0, Wix) N
17231
i (1< 231
sl =
. 24 iz j
Input: / £ v/ 24
X | W W [& "
3072 v h W s e
Input image
Output: 10
Hidden layer: P (2,2) 2
100

(4,)

Justin Johnson Lecture 7 - 8

January 31, 2022

Problem: So far our classifiers don’t
respect the spatial structure of images!

g
e o a ® . .
£ \ Solution: Define new computational

nodes that operate on images!

Stretch pixels into column

56
f = Wy max(O, W1:B) m \?'
b6 23@- 231
e

. / Z4 2
Input: W W i / 24

3072 | | h ? > ET

Input image
Output: 10
Hidden layer: Htp (2,2) 2
100

(4,)

Justin Johnson Lecture 7 -9 January 31, 2022

Components of a Fully-Connected Network

Fully-Connected Layers Activation Function

10,

-10 v 10

Justin Johnson Lecture 7 - 10 January 31, 2022

Components of a Convolutional Network

Fully-Connected Layers Activation Function
X h S
Convolution Layers Pooling Layers Normalization

/ ﬂ 11?(112x64 i,j - l,lj
@>@ Xij =
‘ 2
\/ 0; + £

Justin Johnson Lecture 7 - 11 January 31, 2022

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers

[im=

Justin Johnson Lecture 7 - 12 January 31, 2022

Fully-Connected Layer
32x32x3 image -> stretch to 3072 x 1

Input Output
Wx
1 10 x 3072 1 ﬁ)
3072 X 10
weights

Justin Johnson Lecture 7 - 13 January 31, 2022

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

Input Output
Wx
1 10 x 3072 1 ﬁ)
3072 X / 10
weights

1 number:

the result of taking a dot
product between a row of W
and the input (a 3072-
dimensional dot product)

Justin Johnson Lecture 7 - 14 January 31, 2022

Convolution Layer

3x32x32 image: preserve spatial structure

32 height

32 width

3 depth/
channels

Justin Johnson Lecture 7 - 15 January 31, 2022

Convolution Layer

3X32%x32 image

3x5x5 filter

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32 width

3 depth/
channels

Justin Johnson Lecture 7 - 16 January 31, 2022

Convolution Layer

Filters always extend the full
depth of the input volume

3x32x32 image

3x5x5 filter

Convolve the filter with the image
32 height — i.e. “slide over the image spatially,
computing dot products”

32 width

3 depth/
channels

Justin Johnson Lecture 7 - 17 January 31, 2022

Convolution Layer

3x32x32 image

3x5x5 filter
>® ~—
— 1 number:
32 the result of taking a dot product between the filter
and a small 3x5x5 chunk of the image
39 (i.e. 3*5*5 = 75-dimensional dot product + bias)
3 wlix +b

Justin Johnson Lecture 7 - 18 January 31, 2022

Convolution Layer 1x28x28

3x32x32 image activation map

3x5x5 filter /
ZT>©)

convolve (slide) over

32 all spatial locations
28
32 U

Justin Johnson Lecture 7 - 19 January 31, 2022

Convolution Layer two 1x28x28
activation map

V.

convolve (slide) over

32 all spatial locations /
28
32 /_

3x32x32 image

—
[N

Justin Johnson Lecture 7 - 20 January 31, 2022

Convolution Layer 6 activation maps,

each 1x28x28

3x32x32 image Consider 6 filters,

each 3x5x5

| Convolution
Layer

32 ‘ /
32 6x3x5x5 ANHNN

3 filters Stack activations to get a
6x28x28 output image!

Justin Johnson Lecture 7 - 21 January 31, 2022

Convolution Layer 6 activation maps,
each 1x28x28

3x32x32 image Also 6-dim bias vector:
| Convolution
Layer
32 ‘ /
32 6X3x5x5 ainiatetete
3 filters Stack activations to get a
NN NN WMV

6x28x28 output image!

Justin Johnson Lecture 7 - 22 January 31, 2022

Convolution Layer 28x28 grid, at each
point a 6-dim vector

3x32x32 image Also 6-dim bias vector:
| Convolution
Layer
32 ‘ /
32 6X3x5x5 ainiatetete
3 filters Stack activations to get a
NN NN WMV

6x28x28 output image!

Justin Johnson Lecture 7 - 23 January 31, 2022

Convolution Layer 2x6x28x28
2x3x32x32 Batch of outputs

Batch of images Also 6-dim bias vector:
/ //

| Convolution
Layer
32 ‘
32 6X3X5X5 —’—’—’—’—’—/_/_/_/_/_/_/
3 filters
N NN MMV

Justin Johnson Lecture 7 - 24 January 31, 2022

Convolution Layer N X Coue X H' X W
NxC,xHxW Batch of outputs

Also C_ .-dim bias vector:
Y //

Batch of images out

| Convolution
Layer

” |

W CueXx Cox K, X K,
C, filters

Justin Johnson Lecture 7 - 25 January 31, 2022

Stacking Convolutions

32 28 26
1 Conv > —{ Conv [— — Conv [—
W : 6x3x5x5 W3 12x10x3x3
32 bll 6 28 26 b31 12
3 6 10
Input: First hidden layer: Second hidden layer:
Nx3x32x32 NXx6x28x28 N x10x26x26

Justin Johnson Lecture 7 - 26 January 31, 2022

. . Q: What happens if we stack
Stack| Nng Co ﬂVO|UtIOﬂS two convolution layers?

32 28 26
1 Conv > —{ Conv [— — Conv [—
W : 6x3x5x5 W3 12x10x3x3
32 bll 6 28 26 b31 12
3 6 10
Input: First hidden layer: Second hidden layer:
Nx3x32x32 NXx6x28x28 N x10x26x26

Justin Johnson Lecture 7 - 27 January 31, 2022

. . Q: What happens if we stack (Recall y=W, W x is
Stacki Ng Convolutions two convolution layers? a linear classifier)

A: We get another convolution!

32 28 26
1 Conv > —{ Conv [— — Conv [—
W : 6x3x5x5 W3 12x10x3x3
32 bll 6 28 26 b32 12
3 6 10
Input: First hidden layer: Second hidden layer:
Nx3x32x32 NXx6x28x28 N x10x26x26

Justin Johnson Lecture 7 - 28 January 31, 2022

. . Q: What happens if we stack (Recall y=W, W x is
Stacki Ng Convolutions two convolution layers? a linear classifier)

A: We get another convolution!

32 28 96 Solution: Add
activation function
between conv layers

»| Conv p{ RelLU p —{ Conv p{ RelLU ~ — Conv p{ ReLU [~ =-:--

W : 6x3x5x5 W3 12x10x3x3

32 bll 6 28 26 b31 12
3 6 10
Input: First hidden layer: Second hidden layer:
Nx3x32x32 Nx6x28x28 Nx10x26x 26

Justin Johnson Lecture 7 - 29 January 31, 2022

What do convolutional filters learn?

32 28 26
~1 Conv p{ ReLU —| Conv p{ ReLU I~ — Conv p{ReLU = -
| W,: 6x3x5x5 | W;: 12x10x3x3
32 bll 6 28 26 b31 12
3 6 10
Input: First hidden layer: Second hidden layer:
Nx3x32x32 NXx6x28x28 Nx10x26x26

Justin Johnson Lecture 7 - 30 January 31, 2022

What do convolutional filters learn?

32 28

Linear classifier: One template per class
plane car

bird cat deer
I LR
dog frog horse ship truck
‘le 6x3X5%5 ‘ -
: 'S
32 bi:6 28

3 6
Input: First hidden layer:
Nx3x32x32 NXx6x28x28

Justin Johnson Lecture 7 - 31 January 31, 2022

What do convolutional filters learn?

MLP: Bank of whole-image templates

32 28

~1 Conv P{ ReLU p

|

‘le 6x3X5%5 ‘
32 D116 28
3 6
Input: First hidden layer:
Nx3x32x32 NXx6x28x28

Justin Johnson Lecture 7 - January 31, 2022

What do convolutional filters learn?

First-layer conv filters: local image templates
(Often learns oriented edges, opposing colors)

= il"

lulli N =08
»{ Conv P ReLU p

| ill; - ﬁg F
| W, : 6x3x5x5 | A NE N

32 28

32 D116 28
3 6
Input: First hidden layer: ‘
Nx3x32x32 Nx6x28 x 28 AIexNet 64 filters, each 3x11x11

Justin Johnson Lecture 7 - 33 January 31, 2022

A closer look at spatial dimensions

32 28

~1 Conv P ReLU p

|

W;: 6x3x5x5
32 P16 28
3 6
Input: First hidden layer:
Nx3x32x32 NXx6x28x28

Justin Johnson Lecture 7 - 34 January 31, 2022

A closer look at spatial dimensions

Input: /7x7/
Filter: 3x3

Justin Johnson Lecture 7 - 35 January 31, 2022

A closer look at spatial dimensions

Input: /7x7/
Filter: 3x3

Justin Johnson Lecture 7 - 36 January 31, 2022

A closer look at spatial dimensions

Input: /7x7/
Filter: 3x3

Justin Johnson Lecture 7 - 37 January 31, 2022

A closer look at spatial dimensions

Input: /7x7/
Filter: 3x3

Justin Johnson Lecture 7 - 38 January 31, 2022

A closer look at spatial dimensions

Input: /7x7/
Filter: 3x3
Output: 5x5

Justin Johnson Lecture 7 - 39 January 31, 2022

A closer look at spatial dimensions

Input: /7x7/
Filter: 3x3
Output: 5x5
n general: Problem: Feature
/ nput: W maps “shrink”
Cilter: K with each layer!
Output: W—-K+1

Justin Johnson Lecture 7 - 40 January 31, 2022

A closer look at spatial dimensions

o|o|o0|lO0O|O|O|O|O]|oO
Input: /7x7/
: : Filter: 3x3
° ° Output: 5x5
: : n general: Problem: Feature
° 0 nput: W maps “shrink”
0 0 Silter: K with each layer!
L 0 Output: W—-K+ 1
0 0
o|o|o0|lO0O|O|O|O|O]|oO

Justin Johnson Lecture 7 - 41 January 31, 2022

A closer look at spatial dimensions

olo|lo|lo|o|o|lOoO|O]|oO
Input: 7x7/
0 0 |
Filter: 3x3
0 0
Output: 5x5
0 0
0 0 n general: Very common:
nput: W SetP=(K-1)/2to
° L Cilter: K make output have
0 0 Daddi.ng' p same size as input!
L 0 Output: W—-K+1 + 2P
olo|o|lo|o|o|lO|O]|oO

Justin Johnson Lecture 7 - 42 January 31, 2022

Receptive Fields

For convolution with kernel size K, each element in the
output depends on a K x K receptive field in the input

1

Input Output

Justin Johnson Lecture 7 - 43 January 31, 2022

Receptive Fields

Each successive convolution adds K—1 to the receptive field size
With L layers the receptive field sizeis1+ L * (K—1)

—
. 1 TIH
Input Output

Be careful — “receptive field in the input” vs “receptive field in the previous layer”
Hopefully clear from context!

Justin Johnson Lecture 7 - 44 January 31, 2022

Receptive Fields

Each successive convolution adds K—1 to the receptive field size
With L layers the receptive field sizeis1+ L * (K—1)

e | — -
— — T — -] l~_~
i~ s
- = 7] T
_—
S
Input Problem: For large images we need many layers Output

for each output to “see” the whole image image

Justin Johnson Lecture 7 - 45 January 31, 2022

Receptive Fields

Each successive convolution adds K—1 to the receptive field size
With L layers the receptive field sizeis1+ L * (K—1)

e | — -
— — w— - _—y — l~_~
- -]
- = 7] T
_—
i
Input Problem: For large images we need many layers Output

for each output to “see” the whole image image

Solution: Downsample inside the network

Justin Johnson Lecture 7 - 46 January 31, 2022

Strided Convolution

Input: /7x7/
Filter: 3x3
Stride: 2

Justin Johnson Lecture 7 - 47 January 31, 2022

Strided Convolution

Input: /7x7/
Filter: 3x3
Stride: 2

Justin Johnson Lecture 7 - 48 January 31, 2022

Strided Convolution

Input: /7x7/
Filter: 3x3 Output: 3x3

Stride: 2

Justin Johnson Lecture 7 - 49 January 31, 2022

Strided Convolution

Input: /7x7/
Filter: 3x3 Output: 3x3

Stride: 2

n general:

nput: W

~ilter: K

Padding: P

Stride: S

Output: (W—-K+2P)/S+1

Justin Johnson Lecture 7 - 50 January 31, 2022

Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Justin Johnson Lecture 7 - 51 January 31, 2022

Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
10x 32 x 32

Justin Johnson Lecture 7 - 52

January 31, 2022

Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: ?

Justin Johnson Lecture 7 - 53 January 31, 2022

Convolution Example

Input volume: = x 32 x 32
5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Parameters per filter: =*5*5 + 1 (for bias) =76
filters, so total is 10 * 76 = 760

Justin Johnson Lecture 7 - 54 January 31, 2022

Convolution Example

Input volume: 3 x 32 x 32
10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32
Number of learnable parameters: 760
Number of multiply-add operations: ?

Justin Johnson Lecture 7 - 55

January 31, 2022

Convolution Example

Input volume: 3 x 32 x 32
10 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32

Number of learnable parameters: 760

Number of multiply-add operations: 768,000

10*32%32 = 10,240 outputs; each output is the inner product
of two 3x tensors (75 elems); total = 75%10240 = 768K

Justin Johnson Lecture 7 - 56 January 31, 2022

Example: 1x1 Convolution

64

Justin Johnson

56

56

1x1 CONV
with 32 filters

»
»

(each filter has size 1x1x64,
and performs a 64-
dimensional dot product)

Lecture 7 - 57

32

56

56

January 31, 2022

Example: 1x1 Convolution

1x1 CONV
56 with 32 filters

»
»

(each filter has size 1x1x64,
and performs a 64-
dimensional dot product)

56
Stacking 1x1 conv layers 26
32

gives MLP operating on
each input position

56

64

Lin et al, “Network in Network”, ICLR 2014

Justin Johnson Lecture 7 - 58 January 31, 2022

Convolution Summary

Input: C,, x Hx W
Hyperparameters:

- Kernel size: K, x Ky

- Number filters: C_,

- Padding: P

- Stride: S

Weight matrix: C_ . x C;,, x K x Ky,
giving C_, filters of size C;, x K, x Ky
Bias vector: C_ .

Output size: C_, x H' x W where:
- H=H-K+2P)/S+1

- W=(W-K+2P)/S+1

Justin Johnson Lecture 7 - 59

January 31, 2022

Convolution Summary

Input: C,, x Hx W
Hyperparameters:

- Kernel size: K, x Ky

- Number filters: C_,

- Padding: P

- Stride: S

Weight matrix: C_ . x C;,, x K x Ky,
giving C_, filters of size C;, x K, x Ky
Bias vector: C_ .

Output size: C_, x H' x W where:
- H=H-K+2P)/S+1

- W=(W-K+2P)/S+1

Justin Johnson

Lecture 7 - 60

Common settings:

Ky = Ky (Small square filters)
P=(K-1)/2 ("Same” padding)

Ci,, Cout =32, 64, 128, 256 (powers of 2)
K=3,P=1,S=1(3x3 conv)
K=5P=2,S=1(5x5 conv)
K=1,P=0,S=1(1x1 conv)
K=3,P=1,S=2(Downsample by 2)

January 31, 2022

Other types of convolution

So far: 2D Convolution

Input: C;, x Hx W
Weights: C_,, x C;,, x Kx K

=

H

Justin Johnson Lecture 7 - 61 January 31, 2022

Other types of convolution

So far: 2D Convolution 1D Convolution
Input: C;, x Hx W Input: G, x W
Weights: C_,, x C;,, x Kx K Weights: C_,, x C;,, x K
| H
Cin

Justin Johnson Lecture 7 - 62 January 31, 2022

Other types of convolution

So far: 2D Convolution 3D Convolution
Input: C;, x Hx W Input: C;, x HxW x D
Weights: C_,, x C;,, x Kx K Weights: C_, X C;,, x Kx K x K
——0 . H
T |y C..-dim vector
at each point

in the volume

Justin Johnson Lecture 7 - 63 January 31, 2022

PyTorch Convolution Layer
Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, SoURGE]
SOURCE
dilation=1, groups=1, bias=True, padding_mode='zeros") [

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, G H W) and output
(N, Couty Hout , Wout) can be precisely described as:

Cn—1
out(NV;, Cout;) = bias(Cout;) + Z weight(Cout, , k) * input(N;, k)
k=0

Justin Johnson Lecture 7 - 64 January 31, 2022

PyTorch Convolution Layers
Conv2d

CLASS torxch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, 'SOURCE
dilation=1, groups=1, bias=True, padding_mode="'zeros") =

Conv1ld

CLASS toxch.nn.Convld(in_channels, out_channels, kexrnel_size, stride=1, padding=0, [SOURCE] &
dilation=1, groups=1, bias=True, padding_mode="'zeros") &

Conv3d

CLASS torxch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, 'SOURCE]
dilation=1, groups=1, bias=True, padding_mode="'zeros") -

Justin Johnson Lecture 7 - 65 January 31, 2022

Components of a Convolutional Network

Pooling Layers

224x224x64

112x112x64

Justin Johnson Lecture 7 - 66 January 31, 2022

Pooling Layers: Another way to downsample

64 x 224 x 224
64x112x112
pool
Hyperparameters:
Kernel Size
l T Stride
Pooling function

S 112
downsampling
112

—

224

Justin Johnson Lecture 7 - 67 January 31, 2022

Max Pooling

Single depth slice
1|12 | 4
56 |7 |8
32 (1,0
1|12 3| 4

y

Justin Johnson

64 x 224 x 224
A £
Max pooling with 2x2
kernel size and stride 2 6 | 8
3 | 4

Introduces invariance to
small spatial shifts
No learnable parameters!

Lecture 7 - 68

January 31, 2022

Pooling Summary

Input: CxHXx W
Hyperparameters:

- Kernel size: K

- Stride: S

- Pooling function (max, avg)
Output: C x H x W’ where

- H=(H-K)/S+1

- W=(W-=-K)/S+1
Learnable parameters: None!

Justin Johnson Lecture 7 - 69

Common settings:
max, K=2,5S=2
max, K=3, S =2 (AlexNet)

January 31, 2022

Components of a Convolutional Network

Fully-Connected Layers Activation Function
X h S
Convolution Layers Pooling Layers

224x224x64
112x112x64
pool 7

Justin Johnson Lecture 7 - 70 January 31, 2022

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5
Image Maps

Input

Convolutions Fully Connected

Subsampling

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Justin Johnson Lecture 7-71 January 31, 2022

Image Maps
Input

Example: LeNet-5
layer | Outputsize | Weight Size _ kgi Dxu X\\

Convo utlons FuIIy Connected
InpUt 1x28x28 Subsampllng

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Justin Johnson Lecture 7 - 72 January 31, 2022

Input

Example: LeNet-5
Lover __Loutputsize weght s kixi\u A\y

FuIIy Connected

|nput 1x28x28 Convolutions S ampllng
Conv (C,,=20, K=5,P=2,S5=1) 20x28x28 20x1x5x5
RelLU 20 x 28 x 28

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Justin Johnson Lecture 7-73 January 31, 2022

Input

Example: LeNet-5
layer | OutputSize | Weight Size _ &i

—lmage Maps

O\

utions
e arnling
1 ~

Fully Connected

Input 1x28x28 Convo
Conv (C,,=20, K=5,P=2,S5=1) 20x28x28 20x1x5x5

RelLU 20 x 28 x 28

MaxPool(K=2, S=2) 20x 14 x 14

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Justin Johnson Lecture 7 - 74

January 31, 2022

Image Maps

Input

Example: LeNet-5 X
Layer " Oupur iz | Weight e &/x&\%ﬁf\\ww

%
- 1 x 28 x 28 Comvahtions sabe:\mp“ng Fully Connected
Conv (C,,=20, K=5,P=2,S5=1) 20x28x28 20x1x5x5
RelLU 20 x 28 x 28
MaxPool(K=2, S=2) 20x 14 x 14
Conv (C,,=50, K=5, P=2,S=1) 50x14x14 50x20x5x5
RelLU 50x14x 14

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Justin Johnson Lecture 7 - 75 January 31, 2022

Image Maps

Input

Example: LeNet-5 N
rr—r K O

%
Fully Connected

Input 1x28x28 Convolutions Subsampling
Conv (C,,=20, K=5,P=2,S5=1) 20x28x28 20x1x5x5

RelLU 20 x 28 x 28

MaxPool(K=2, S=2) 20x 14 x 14

Conv (C, =50, K=5,P=2,S=1) 50x14x14 50x20x5x5

RelLU 50x14x14

MaxPool(K=2, S=2) 50x7x7

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Justin Johnson Lecture 7 - 76 January 31, 2022

Image Maps
Input

Example: LeNet-5 -
lover [Oupuesie Weigh s _ 7@/&@\%’7\&“ p“

Hully Connected

Input 1x28x28 Convolutions Subsampling
Conv (C,,=20, K=5,P=2,S5=1) 20x28x28 20x1x5x5

RelLU 20 x 28 x 28

MaxPool(K=2, S=2) 20x14x 14

Conv (C, =50, K=5,P=2,S=1) 50x14x14 50x20x5x5

RelU 50x14x 14

MaxPool(K=2, S=2) 50x7x7

Flatten 2450

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Justin Johnson Lecture 7 - 77 January 31, 2022

Image Maps
Input

Example: LeNet-5 N
rr—r e K e

Fully Cénnected

Input 1x28x28 Convolutions Subsampling
Conv (C,,=20, K=5,P=2,S5=1) 20x28x28 20x1x5x5

RelLU 20 x 28 x 28

MaxPool(K=2, S=2) 20x14x 14

Conv (C, =50, K=5,P=2,S=1) 50x14x14 50x20x5x5

RelU 50x14x 14

MaxPool(K=2, S=2) 50x7x7

Flatten 2450

Linear (2450 -> 500) 500 2450 x 500

RelLU 500

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Justin Johnson Lecture 7 - 78 January 31, 2022

Example: LeNet-5
layer | OutputSize | Weight Size _

Input

Conv (C, =20, K=5, P=2, S=1)
RelU

MaxPool(K=2, S=2)

Conv (C,,=50, K=5, P=2, S=1)
RelU

MaxPool(K=2, S=2)

Flatten

Linear (2450 -> 500)

RelU

Linear (500 -> 10)

1x28x28
20x28x28 20x1x5x5
20x 28 x 28

20x14x 14

50x14x14 50x20x5x5
50x14x 14
50x7x7
2450

500

500

10

2450 x 500

500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Image Maps
Input

\Nulput
AN

X

Convolutions \
Subsampling

Fully Connected

Justin Johnson

Lecture 7 -79

January 31, 2022

Image Maps
Input

Example: LeNet-5

FuIIy Connected

Input 1x28x28 Conlons SUbsampl.ng
Conv (C,,=20, K=5, P=2,5=1) 20x28x28 20x1x5x5 As we go th rough the network:
RelU 20 x 28 x 28
MERFRE[ES, 557 AVRER I Spatial size decreases
Conv (C,,=50, K=5, P=2,S=1) 50x14x14 50x20x5x5 . . .

(using pooling or strided conv)
RelLU 50x14 x 14
MaxPool(K=2, S=2) 50x7x7
Elatten T Number of channels increases
Linear (2450 -> 500) 500 2450 x 500 (total “volume” is preserved!)
RelU 500
Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Justin Johnson Lecture 7 - 80 January 31, 2022

Example: LeNet-5
layer | OutputSize | Weight Size _

Input 1x28x28

Conv (C,,=20, K=5,P=2,S5=1) 20x28x28 20x1x5x5
RelLU 20 x 28 x 28

MaxPool(K=2, S=2) 20x14x 14

Conv (C, =50, K=5,P=2,S=1) 50x14x14 50x20x5x5
RelU 50x14x 14

MaxPool(K=2, S=2) 50x7x7

Flatten 2450

Linear (2450 -> 500) 500 2450 x 500
RelLU 500

Linear (500 -> 10) 10 500 x 10

Lecun et al, “Gradient-based learning applied to document recognition”, 1998

Image Maps
Input

KoL a e \\

FuIIy Connected

Convolutions
Subsamplmg

As we go through the network:

Spatial size decreases
(using pooling or strided conv)

Number of channels increases
(total “volume” is preserved!)

Some modern architectures
break this trend -- stay tuned!

Justin Johnson Lecture 7 - 81

January 31, 2022

Problem: Deep Networks very hard to train!

Justin Johnson Lecture 7 - 82 January 31, 2022

Components of a Convolutional Network

Normalization

Justin Johnson Lecture 7 - 83 January 31, 2022

Batch Normalization

ldea: “Normalize” the outputs of a layer so they have zero mean
and unit variance

Why? Helps reduce “internal covariate shift”, improves optimization

We can normalize a batch of activations like this:

~ x—E [.X'] This is a differentiable function, so
X = we can use it as an operator in our
\/VClT' [X] networks and backprop through it!

loffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

January 31, 2022

Justin Johnson Lecture 7 - 84

Batch Normalization

N XD . 1 N Per-channel
Input: X € R Hj =% X; j
=1

mean, shapeis D

A A A 1 N)
2 Per-channel
7 =23 (- uy
J N i=1(o]) std, shape is D
N X Xij ~ K .
Xl,] Normalized x,
\/0'1,2-|—g ShapeisN xD
v v Y

D

loffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

Justin Johnson Lecture 7 - 85 January 31, 2022

Batch Normalization

N XD . 1 N Per-channel
Input: X € R Hj =% X; j
=1

mean, shapeis D

A A A 1 N
— — (x R M)Z Per-channel
N . L,J J :
i=1 std, shape is D
N X Xij — Hj |
Xij= Normalized x,
\/0'].2-|—g Shape is N x D
\4 \4 \4
D Problem: What if zero-mean, unit

variance is too hard of a constraint?

loffe and Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift”, ICML 2015

Justin Johnson Lecture 7 - 86 January 31, 2022

Batch Normalization

Input: X €]RNXD u; = l N Yo . Per-channel
put: J i W mean, shape is D
Learnable scale and 2 lz:N (x, - M_)z Per-channel
shift parameters: J NZLu-_v" J std, shape is D
D R xl’ . — H .
y:ﬁ € R Xij = . - Normalized x,
, .
Learningy = o, = u \/Jj TE >hape is N x D
will recover the identity o+ Output
. — x . .)
function (in expectation) Yij = ¥ji%ij J Shape is N x D

Justin Johnson Lecture 7 - 87 January 31, 2022

Problem: Estimates depend on

Batch Norma |izati0n minibatch; can’t do this at test-time!
1 N
NXD Per-channel
: . X ;

Input: x € R K N2i=1 bJ mean, shape is D
Learnable scale and 2 12’\’ (x; ; — M_)z bar-channel
shift parameters: J NZLu-_v" J std, shape is D

D Xii— U
|£ ﬁ € R l ! Normalized x,
))
Learningy = 0o, 8 = \/Uj T >ape s N x D

will recover the identity 2+ B Output
]] . yl, . ’}/xl, . . ’
function (in expectation) Jo e R Shape is N x D

Justin Johnson Lecture 7 - 88 January 31, 2022

Batch Normalization: Test-Time

(Running) average of

Input: X € RNXD MU = values seen during Per-channel ,
training mean, shapeis D
Learnable scale and 52 — (Running) average of N Per-channel
shift parameters: J values seen during training std, shape is D
;] J :
14 B € R xl,] Normalized x,
Learningy =0, = u \/01'2-|"€ >nape is N x D

will recover the identity S Output
function (in expectation) Yij = Vi%ij+ b Shape i’s N x D

Justin Johnson Lecture 7 - 89 January 31, 2022

Batch Normalization: Test-Time

(Running) average of
Input: X € RNXD MU = values seen during

training

Per-channel
mean, shapeis D

Learnable scale and

shift parameters: For each training iteration:
D
)/)B E]:R Zl 1Xl,]
Learningy =0, 8 = u ,u]teSt 0.99 /,LteSt + 0.01 y;

will recover the identity
function (in expectation) (Similar for o)

Justin Johnson Lecture 7 - 90 January 31, 2022

Batch Normalization: Test-Time

(Running) average of

Input: X € RNXD MU = values seen during Per-channel ,
training mean, shapeis D
Learnable scale and 52 — (Running) average of N Per-channel
shift parameters: J values seen during training std, shape is D
;] J :
14 B € R xl,] Normalized x,
Learningy =0, = u \/01'2-|"€ >nape is N x D

will recover the identity S Output
function (in expectation) Yij = Vi%ij+ b Shape i’s N x D

Justin Johnson Lecture 7 - 91 January 31, 2022

Batch Normalization: Test-Time

(Running) average of

Per-channel
Input: X €]RNXD MU = values seen during ,
training mean, shape is D
Learnable SCale and 0_2 — (Running) average of Per-channel
shift parameters: J values seen during training std, shape is D
;] J :
Y ﬁ € R Xl,] Normalized x,
' ' 2 Shape is N x D
During testing batchnorm \/O'] + & P
becomes a linear operator!
Can be fused with the previous y; ; = iji,j + ,Bj OUtIOUt.,
fully-connected or conv layer Shapeis NxD

Justin Johnson Lecture 7 - 92 January 31, 2022

Batch Normalization for ConvNets

Batch Normalization for
convolutional networks
(Spatial Batchnorm, BatchNorm2D)

Batch Normalization for
fully-connected networks

x:NXD X NXCXHXW
Normalize \ Normalize \ j \
u,o : 1 xXD u,o : 1 xXCxXx1x1
v,B :1xD v,B :1XCx1x1
(x —) (x —)
y=— Yy +56 y=— Yy +56

Justin Johnson Lecture 7 - 93 January 31, 2022

Batch Normalization

|

FC Usually inserted after Fully Connected
BlN . orConvolutional layers, and before
nonlinearity.

tanh

l
FC

i _ x—E|x]
BN ¥ =
ant \/ Var|x]

loffe and Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”, ICML 2015

Justin Johnson Lecture 7 - 94 January 31, 2022

Batch Normalization

l - Makes deep networks much easier to train!
FC - Allows higher learning rates, faster convergence
. - Networks become more robust to initialization
BN - Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
tanh
l 0.8
FC IS A e e e S = = g
BN ImageNet g
aCcuracy - = = Inception
----- BN-Baseline
tanh | % e
~ 4+ BN-x5-Sigmoid
l 4 Steps to match Inception
10M 15M 20M 25M 30M
loffe and Szegedy, “Batch normalization: Accelerating deep Tra | n | ng |te ratIO ns

network training by reducing internal covariate shift”, ICML 2015

Justin Johnson Lecture 7 - 95 January 31, 2022

Batch Normalization

l - Makes deep networks much easier to train!
FC - Allows higher learning rates, faster convergence
! - Networks become more robust to initialization
BN

- Acts as regularization during training

- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)

l - Behaves differently during training and testing: this
FC is a very common source of bugs!

.
BN

tanh

tanh

l

loffe and Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”, ICML 2015

Justin Johnson Lecture 7 - 96 January 31, 2022

Layer Norma lization Layer Normalization for fully-

connected networks

Batch Normalization for Same behavior at train and test!
fully-connected networks Used in RNNs, Transformers
x:NXD x:NXD
Normalize \ Normalize J
u,o 1 XD u,o : N x1
v, : 1 XD v,B +1XD
(x —) (x —)
y=—/——Vr+ B y=—]——v+t B

Justin Johnson

Lecture 7 - 97 January 31, 2022

Instance Normalization

Batch Normalization for Instance Normalization for
convolutional networks convolutional networks
X NXCXHXW X NXCXHXW
Normalize] J \ Normalize \ j \
u,o : 1 xXCxXx1x1 u,o :NxXCXxX1x1
v,B :1XCXx1x1 v, :1XCx1x1
(x —) (x —)
y=———"Vv+Fh y=———Vv+h

Justin Johnson Lecture 7 - 98 January 31, 2022

Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm

H, W

NAVAVAVAVAN

NAVAVAVAVAN

[S S LSS

NS T T 77
A

Wu and He, “Group Normalization”, ECCV 2018

Justin Johnson Lecture 7 - 99 January 31, 2022

Group Normalization

AV

AN
A
NAVAVAVAVA

Group Norm

[S S S S S
[S S S

M H
NAVAVAVAVAN

[S L LSS
VAVAVAV AV

Instance Norm

ARV
NAVAVAVAWA
A AN N NN\Z
ANV

Layer Norm

Batch Norm

[S L LSS
VAVAVAVAVAVES

Wu and He, “Group Normalization”, ECCV 2018

N
o
o
(@
i
o™
>
| -
(O
>
C
(O
-

Lecture 7 - 100

Justin Johnson

Components of a Convolutional Network

Convolution Layers Pooling Layers Fully-Connected Layers

224x224x64

112x112x64
pool 4

>Q o X h S
l l

> SR 112
/ 224 downsampling 1

224

Activation Function Normalization
| Xi,j — Hj
xl,]
2
\/aj + £

Justin Johnson Lecture 7 - 101 January 31, 2022

Components of a Convolutional Network

Convolution Layers Pooling Layers Fully-Connected Layers

224x224x64

112x112x64

pool

@>@ —’l X h S

|

Most
/ computationally 224 sommeanping” B "
112

224

|| expensive!
Activation Function Normalization
| Xij — Hj
:x:l,‘]
2
\/ 0; + £

Justin Johnson Lecture 7 - 102 January 31, 2022

Summary: Components of a Convolutional Network

Convolution Layers Pooling Layers Fully-Connected Layers

224x224x64

112x112x64
pool 4

>Q o X h S
l l

> SR 112
/ 224 downsampling 1

224

Activation Function Normalization
| Xi,j — Hj
xl,]
2
\/aj + £

Justin Johnson Lecture 7 - 103 January 31, 2022

Summary: Components of a Convolutional Network

Problem: What is the right way to combine all these components?

Image Maps

el

Convolutions

Input

Fully Connected

Subsampling

Justin Johnson Lecture 7 - 104 January 31, 2022

Next time:
CNN Architectures

Justin Johnson Lecture 7 - 105 January 31, 2022

