Lecture 7: Convolutional Networks

Justin Johnson

Lecture 7 - 1

Lecture Format

What is your preferred lecture format?

134 responses

- Strongly prefer remote lectures
- Slightly prefer remote lectures
- Indifferent between in-person and remote lecture
- Slightly prefer in-person lectures
- Strongly prefer in-person lectures

Justin Johnson

Lecture 7 - 2

Lecture Format

If we were to return to in-person lectures, how would you plan to watch lectures?

134 responses

Watch recorded lecture videos

Justin Johnson

Lecture 7 - 3

Lecture Format

- We will remain remote for at least another 2-3 weeks
- Idea: book a conference room for "watch parties?"
 Or just use lecture hall
- COVID in MI have (hopefully!) peaked? If they continue to drop we will consider in-person OH in the next 1-2 weeks
- May revisit after Spring Break
- Feel free to raise hand to ask questions in Zoom!
- Midterm will be remote (but still working on exact format)

Reminder: A2

Due last Friday

Justin Johnson

Lecture 7 - 5

Will be released tonight, covering:

- Backpropagation with modular API
- Different update rules (Momentum, RMSProp, Adam, etc)
- Batch Normalization
- Dropout
- Convolutional Networks

Last Time: Backpropagation

Represent complex expressions as **computational graphs**

Forward pass computes outputs

Backward pass computes gradients

During the backward pass, each node in the graph receives **upstream gradients** and multiplies them by **local gradients** to compute **downstream gradients**

January 31, 2022

Justin Johnson

Lecture 7 - 7

f(x,W) = Wx

Problem: So far our classifiers don't respect the spatial structure of images!

Stretch pixels into column

(4,)

56

24

2

Justin Johnson

Lecture 7 - 8

f(x,W) = Wx

Problem: So far our classifiers don't respect the spatial structure of images!

Solution: Define new computational nodes that operate on images!

Stretch pixels into column

January 31, 2022

Lecture 7 - 9

 $f=W_2\max(0,W_1x)$

Justin Johnson

Components of a Fully-Connected Network

Fully-Connected Layers

Activation Function

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson

Lecture 7 - 11

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson

Lecture 7 - 12

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

Justin Johnson

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

Justin Johnson

Lecture 7 - 14

Convolution Layer

3x32x32 image: preserve spatial structure

Justin Johnson

Lecture 7 - 15

Convolution Layer

3x32x32 image

3x5x5 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Justin Johnson

Lecture 7 - 16

January 31, 2022

Justin Johnson

Lecture 7 - 17

Convolution Layer

3x32x32 image

Lecture 7 - 18

Lecture 7 - 19

Lecture 7 - 20

Lecture 7 - 22

Lecture 7 - 23

Lecture 7 - 24

Lecture 7 - 25

Stacking Convolutions

Justin Johnson

Lecture 7 - 26

Q: What happens if we stack two convolution layers?

Justin Johnson

Lecture 7 - 27

Lecture 7 - 29

Justin Johnson

Lecture 7 - 30

N x 3 x 32 x 32

First hidden layer: N x 6 x 28 x 28

Linear classifier: One template per class

Justin Johnson

Lecture 7 - 31

MLP: Bank of whole-image templates

Justin Johnson

Lecture 7 - 32

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

Justin Johnson

Lecture 7 - 33

A closer look at spatial dimensions

Justin Johnson

Lecture 7 - 34

A closer look at spatial dimensions

7

Justin Johnson

Lecture 7 - 35

A closer look at spatial dimensions

7

Justin Johnson

Lecture 7 - 36

7

Justin Johnson

Lecture 7 - 37

7

Justin Johnson

Lecture 7 - 38

Input: 7x7 Filter: 3x3 Output: 5x5

7

Justin Johnson

Lecture 7 - 39

Input: 7x7 Filter: 3x3 Output: 5x5 **Problem: Feature** In general: maps "shrink" Input: W with each layer! Filter: K Output: W - K + 1

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

- Input: 7x7 Filter: 3x3 Output: 5x5
- In general:Problem: FeatureInput: Wmaps "shrink"Filter: Kwith each layer!

Output: W - K + 1

Solution: **padding** Add zeros around the input

Justin Johnson

Lecture 7 - 41

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7 Filter: 3x3 Output: 5x5

In general:Very common:Input: WSet P = (K - 1) / 2 toFilter: Kmake output havePadding: Psame size as input!

Output: W – K + 1 + 2P

Justin Johnson

For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input

	ust	in J	0	hn	SO	n
2	ast				50	

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Output

January 31, 2022

Be careful – "receptive field in the input" vs "receptive field in the previous layer" Hopefully clear from context!

lustin	lohnson
Justin	

Lecture 7 - 44

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Problem: For large images we need many layers for each output to "see" the whole image image

Output

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Problem: For large images we need many layers for each output to "see" the whole image image

Output

Solution: Downsample inside the network

Justin Johnson

Lecture 7 - 46

<u>Strided</u> Convolution

Input: 7x7 Filter: 3x3 Stride: 2

Justin Johnson

Lecture 7 - 47

<u>Strided</u> Convolution

Input: 7x7 Filter: 3x3 Stride: 2

Justin Johnson

Lecture 7 - 48

<u>Strided</u> Convolution

Input: 7x7 Filter: 3x3 Output: 3x3 Stride: 2

Justin Johnson

Lecture 7 - 49

Strided Convolution

Input: 7x7 Filter: 3x3 Output: 3x3 Stride: 2

In general: Input: W Filter: K Padding: P Stride: S Output: (W – K + 2P) / S + 1

Justin Johnson

Lecture 7 - 50

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Justin Johnson

Lecture 7 - 51

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

```
Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
10 x 32 x 32
```


Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: ?

Justin Johnson

Lecture 7 - 53

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: **760** Parameters per filter: **3*5*5** + 1 (for bias) = **76 10** filters, so total is **10 * 76 = 760**

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: ?

Input volume: **3** x 32 x 32 10 **5x5** filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: 768,000 10*32*32 = 10,240 outputs; each output is the inner product of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Example: 1x1 Convolution

Justin Johnson

Lecture 7 - 57

Example: 1x1 Convolution

Convolution Summary

Input: C_{in} x H x W **Hyperparameters**:

- **Kernel size**: $K_H \times K_W$
- Number filters: C_{out}
- Padding: P
- Stride: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$ giving C_{out} filters of size $C_{in} \times K_H \times K_W$ Bias vector: C_{out} Output size: $C_{out} \times H' \times W'$ where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Convolution Summary

Input: C_{in} x H x W **Hyperparameters**:

- Kernel size: $K_H \times K_W$
- Number filters: C_{out}
- Padding: P
- Stride: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$ giving C_{out} filters of size $C_{in} \times K_H \times K_W$ Bias vector: C_{out} Output size: $C_{out} \times H' \times W'$ where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Common settings: $K_H = K_W$ (Small square filters) P = (K - 1) / 2 ("Same" padding) $C_{in}, C_{out} = 32, 64, 128, 256$ (powers of 2) K = 3, P = 1, S = 1 (3x3 conv) K = 5, P = 2, S = 1 (5x5 conv) K = 1, P = 0, S = 1 (1x1 conv) K = 3, P = 1, S = 2 (Downsample by 2)

Other types of convolution

So far: 2D Convolution

Justin Johnson

Lecture 7 - 61

Other types of convolution

So far: 2D Convolution

1D Convolution

Input: C_{in} x W Weights: C_{out} x C_{in} x K

Justin Johnson

Lecture 7 - 62

Other types of convolution

So far: 2D Convolution

3D Convolution

Input: C_{in} x H x W x D Weights: C_{out} x C_{in} x K x K x K

Justin Johnson

Lecture 7 - 63

PyTorch Convolution Layer

Conv2d

CLASS torch.nn.Conv2d(*in_channels*, *out_channels*, *kernel_size*, *stride=1*, *padding=0*, *dilation=1*, *groups=1*, *bias=True*, *padding_mode='zeros'*)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

Justin Johnson

Lecture 7 - 64

January 31, 2022

[SOURCE]

PyTorch Convolution Layers

Conv2d

Conv1d

[SOURCE]

[SOURCE]

Conv3d

[SOURCE]

January 31, 2022

Justin Johnson

Lecture 7 - 65

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson

Lecture 7 - 66

Pooling Layers: Another way to downsample

Justin Johnson

Lecture 7 - 67

Max Pooling

Single depth slice

Y

64 x 224 x 224

Max pooling with 2x2 kernel size and stride 2

Introduces **invariance** to small spatial shifts No learnable parameters!

Justin Johnson

Χ

Lecture 7 - 68

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

- H' = (H K) / S + 1
- W' = (W K) / S + 1

Learnable parameters: None!

Common settings: max, K = 2, S = 2 max, K = 3, S = 2 (AlexNet)

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson

Lecture 7 - 70

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Lecture 7 - 71

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Lecture 7 - 72

Layer	Output Size	Weight Size	
Input	1 x 28 x 28		
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5	
ReLU	20 x 28 x 28		

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Lecture 7 - 73

Layer	Output Size	Weight Size	
Input	1 x 28 x 28		
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5	
ReLU	20 x 28 x 28		
MaxPool(K=2, S=2)	20 x 14 x 14		

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Lecture 7 - 74

Layer	Output Size	Weight Size	
Input	1 x 28 x 28		
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5	
ReLU	20 x 28 x 28		
MaxPool(K=2, S=2)	20 x 14 x 14		
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5	
ReLU	50 x 14 x 14		

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Lecture 7 - 75

Layer	Output Size	Weight Size		
Input	1 x 28 x 28			
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5		
ReLU	20 x 28 x 28			
MaxPool(K=2, S=2)	20 x 14 x 14			
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5		
ReLU	50 x 14 x 14			
MaxPool(K=2, S=2)	50 x 7 x 7			

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Lecture 7 - 76

Layer	Output Size	Weight Size		
Input	1 x 28 x 28			
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5		
ReLU	20 x 28 x 28			
MaxPool(K=2, S=2)	20 x 14 x 14			
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5		
ReLU	50 x 14 x 14			
MaxPool(K=2, S=2)	50 x 7 x 7			
Flatten	2450			

January 31, 2022

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Layer	Output Size	Weight Size		
Input	1 x 28 x 28			
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5		
ReLU	20 x 28 x 28			
MaxPool(K=2, S=2)	20 x 14 x 14			
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5		
ReLU	50 x 14 x 14			
MaxPool(K=2, S=2)	50 x 7 x 7			
Flatten	2450			
Linear (2450 -> 500)	500	2450 x 500		
ReLU	500			

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Lecture 7 - 78

Layer	Output Size	Weight Size		
Input	1 x 28 x 28			
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5		
ReLU	20 x 28 x 28			
MaxPool(K=2, S=2)	20 x 14 x 14			
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5		
ReLU	50 x 14 x 14			
MaxPool(K=2, S=2)	50 x 7 x 7			
Flatten	2450			
Linear (2450 -> 500)	500	2450 x 500		
ReLU	500			
Linear (500 -> 10)	10	500 x 10		

Justin Johnson

Layer	Output Size	Weight Size	
Input	1 x 28 x 28		
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5	
ReLU	20 x 28 x 28		
MaxPool(K=2, S=2)	20 x 14 x 14		
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5	
ReLU	50 x 14 x 14		
MaxPool(K=2, S=2)	50 x 7 x 7		
Flatten	2450		
Linear (2450 -> 500)	500	2450 x 500	
ReLU	500		
Linear (500 -> 10)	10	500 x 10	

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson

Layer	Output Size	Weight Size	
Input	1 x 28 x 28		
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5	
ReLU	20 x 28 x 28		
MaxPool(K=2, S=2)	20 x 14 x 14		
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5	
ReLU	50 x 14 x 14		
MaxPool(K=2, S=2)	50 x 7 x 7		
Flatten	2450		
Linear (2450 -> 500)	500	2450 x 500	
ReLU	500		
Linear (500 -> 10)	10	500 x 10	

Lecun et al, "Gradient-based learning applied to document recognition", 1998

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

Some modern architectures break this trend -- stay tuned!

Justin Johnson

Problem: Deep Networks very hard to train!

Justin Johnson

Lecture 7 - 82

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Justin Johnson

Pooling Layers

Normalization

Lecture 7 - 83

Idea: "Normalize" the outputs of a layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization

We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

This is a **differentiable function**, so we can use it as an operator in our networks and backprop through it!

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Justin Johnson

Batch Normalization

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Justin Johnson

Lecture 7 - 85

Batch Normalization

variance is too hard of a constraint?

January 31, 2022

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Justin Johnson

Input:
$$x \in \mathbb{R}^{N \times D}$$

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-channel mean, shape is D

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$

Per-channel std, shape is D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Normalized x, Shape is N x D

Output, Shape is N x D

Justin Johnson

Lecture 7 - 87

Problem: Estimates depend on minibatch; can't do this at test-time!

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^{D}$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
Per-channel
mean, shape is D
$$\sigma_{j}^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_{j})^{2}$$
Per-channel
std, shape is D
$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_{j}}{\sqrt{\sigma_{j}^{2} + \varepsilon}}$$
Normalized x,
Shape is N x D
$$y_{i,j} = \gamma_{j} \hat{x}_{i,j} + \beta_{j}$$
Output,
Shape is N x D

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation) (Running) average of μ_j = values seen during training traini

 $\sigma_j^2 = \frac{(\text{Running}) \text{ average of }}{\text{values seen during training}}$ Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$

Normalized x, Shape is N x D

Output, Shape is N x D

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

(Running) average of
$$\mu_j =$$
 values seen during training

Per-channel mean, shape is D

$$\mu_{j}^{test} = 0$$

For each training iteration:
$$\mu_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{i,j}$$
$$\mu_{j}^{test} = 0.99 \ \mu_{j}^{test} + 0.01 \ \mu_{j}$$

(Similar for σ)

Justin Johnson

Lecture 7 - 90

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation) (Running) average of μ_j = values seen during training traini

 $\sigma_j^2 = \frac{(\text{Running}) \text{ average of }}{\text{values seen during training}}$ Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$

Normalized x, Shape is N x D

Output, Shape is N x D

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

 $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$ During testing batchnorm becomes a linear operator! $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_i$ Can be fused with the previous fully-connected or conv layer

(Running) average of μ_i = values seen during training

Per-channel mean, shape is D

 $\sigma_j^2 = \frac{(\text{Running}) \text{ average of}}{\text{values seen during training}}$ **Per-channel** std, shape is D

> Normalized x, Shape is N x D

Output, Shape is N x D

Justin Johnson

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

 $x: N \times D$ Normalize $\mu, \sigma : 1 \times D$ $\gamma, \beta : 1 \times D$ $\frac{(x-\mu)}{\gamma} + \beta$

Batch Normalization for convolutional networks (Spatial Batchnorm, BatchNorm2D) $x: N \times C \times H \times W$ Normalize $\mu, \sigma : 1 \times C \times 1 \times 1$ γ,β : 1 × *C* × 1 × 1 $\frac{(x-\mu)}{\gamma} + \beta$

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Justin Johnson

Lecture 7 - 94

- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Justin Johnson

Lecture 7 - 95

-

_

-

- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Zero overhead at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is a very common source of bugs!

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Layer Normalization

Batch Normalization for **fully-connected** networks

Layer Normalization for fullyconnected networks Same behavior at train and test! Used in RNNs, Transformers

Justin Johnson

Lecture 7 - 97

Instance Normalization

Batch Normalization for convolutional networks

Instance Normalization for convolutional networks

$$x : N \times C \times H \times W$$
Normalize
$$\mu, \sigma : 1 \times C \times 1 \times 1$$

$$\gamma, \beta : 1 \times C \times 1 \times 1$$

$$y = \frac{(x - \mu)}{\sigma} \gamma + \beta$$

$$x : N \times C \times H \times W$$
Normalize
$$\mu, \sigma : N \times C \times 1 \times 1$$

$$\gamma, \beta : 1 \times C \times 1 \times 1$$

$$\gamma, \beta : 1 \times C \times 1 \times 1$$

$$\gamma, \beta : 1 \times C \times 1 \times 1$$

January 31, 2022

 $C \times H \times W$

 $C \times 1 \times 1$

Justin Johnson

Comparison of Normalization Layers

Wu and He, "Group Normalization", ECCV 2018

Justin Johnson

Lecture 7 - 99

Group Normalization

Wu and He, "Group Normalization", ECCV 2018

Justin Johnson

Lecture 7 - 100

Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

January 31, 2022

Justin Johnson

Components of a Convolutional Network

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

January 31, 2022

Justin Johnson

Summary: Components of a Convolutional Network

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

January 31, 2022

Justin Johnson

Summary: Components of a Convolutional Network

Problem: What is the right way to combine all these components?

J	us	tiı	n J	0	hn	SO	n

Next time: CNN Architectures

Justin Johnson

Lecture 7 - 105