Lecture 5;
Neural Networks
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Assignment 2

* Use SGD to train linear classifiers and fully-connected networks
 After today, can do full assignment

* If you have a hard time computing derivatives, wait for next lecture
on backprop

* Due Friday January 28, 11:59pm ET
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Late Enrolls

Anyone who enrolled today can have until Friday 2/4 for
to turn in Al and A2 without using late days or penalties

(But please email us / post on Piazza to confirm if you are
using this extension)
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s = f(x; W) =Wz
sovmw = f L™

Where we are:

ccccccccccccc

1. Use Linear Models for image Eﬂ!ﬂ.
classification problems &

2. Use Loss Functions to express ™
preferences over different Li = —log(+ > & SVM
choices of weights Li =}, max(0,s; — sy, + 1)

3. Use Regularization to prevent T, % Zfi . Li + R(W)
overfitting to training data

4. Use Stochastic Gradient sy | 7
or t in range(num_steps):
Descent to minimize our loss v = compute_gradient(w)
functions and train the model W -= learning_rate x v A

) Softmax
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Problem: Linear Classifiers aren’t that powerful

Geometric Viewpoint Visual Viewpoint
Y One template per class:
O Can’t recognize different
® O
® modes of a class
O 0.0
O
o—90—0 ®
s e °° o0
O
| O® *9
1° HENDS
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One solution: Feature Transforms

Original space

Y
o r= (Xz ¥ y2)1/2
O © ° 0 = tan*(y/x)
@ ..Q °
X o 9@ °® Feature
@0 transform
e ©O
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One solution: Feature Transforms

Original space Feature space

@ @
Y 2 2\1/2 ° O.
o r=(x>+y?)¥ o >

@ — -1

O ° 0 = tan''(y/x) o®

o olo ® O
@ e

e %° .o Feature ®
@ @ @

® @ transform O
e O O ‘.

® O
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One solution: Feature Transforms

Original space Feature space
B @ @
Y 2 2\1/2 Q.
° r=(x*+y?) o o
o | © B = tan O
° = tan(y/x) o | @
® 0j0 ®
e %° .o Feature ®
® @ @ @
® transform O
e ©O O O
@
® O
Linear classifier
in feature space
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One solution: Feature Transforms

Original space Feature space
B @ @
Y 2 2\1/2 Q.
r=(x*+y?) o o
0 = tan*(y/x) O
() @ ®
X I © :
Feature O
@ @
transform O
@ @
@
® O
Nonlinear classifier —— Linear classifier
in original space! in feature space
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Image Features: Color Histogram

Ignores texture,
spatial positions

Frog image is in the public domain

Justin Johnson

+1

Lecture 5-10
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https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Image Features: Histogram of Oriented Gradients (HoG)

1. Compute edge direction /
strength at each pixel
2. Divide image into 8x8 regions
3. Within each region compute a
histogram of edge directions
WEi ghte d by e d ge stren gth Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
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Image Features: Histogram of Oriented Gradients (HoG)

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions

3. Within each region compute a
histogram of edge directions
weighted by edge strength

Justin Johnson

Lecture 5-12

Example: 320x240 image gets
divided into 40x30 bins; 8
directions per bin; feature vector
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
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Image Features: Histogram of Oriented Gradients (HoG)

- e——

Strong diagonal S Ea . .
edges o ot A &
Edges in all
directions
1. Compute edge direction / Example: 320x240 image gets
strength at each pixel divided into 40x30 bins; 8

2 D'\_”d_e Mage 'nt_o 8x8 regions directions per bin; feature vector
3. Within each region compute a

* *Q —
histogram of edge directions has 30740™9 = 10,800 numbers

We ig ht@d by e d ge St r.e n gt h Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
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Image Features: Histogram of Oriented Gradients (HoG)

- e——

Strong diagonal | s .
Edges in all

directions

g T

., e, "

‘_ SN Captures
1. Compute edge direction / texture and Example: 320x240 image gets

strength at each pixel position, divided into 40x30 bins; 8
2. Divide image into 8x8 regions robust to directions per bin; feature vector

3. Within each region compute a small image ANKA
histogram of edge directions changes ® has 30%40%9 = 10,800 numbers

We ig ht@d by e d ge St r.e n gt h Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005
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Image Features: Bag of Words (Data-Driven!)

—

Step 1: Build codebook

Extract random
patches

-
=<
N

Cluster patchesto ™ IF ™
form “codebook” ..n!.l
of “visual words” . l.=

a L |

Justin Johnson
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https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/

Image Features: Bag of Words (Data-Driven!)
Step 1: Build codebook

Cluster patchesto ™ IF ™
Extract random = form “codebook” !.“!.l

patches ‘ ’ of “visual words” . l.=
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Image Features

If

Hm\
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Example: Winner of 2011 ImageNet challenge

Low-level feature extraction = 10k patches per image
« SIFT:128-dim

. calor: 96-dim } reduced to 64-dim with PCA

FV extraction and compression:
- N=1,024 Gaussians, R=4 regions = 520K dim x 2
- compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

F. Perronnin, J. Sdnchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011.
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Image Features

Feature Extraction

. el e e

training

10 numbers giving
scores for classes

Justin Johnson
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Image Features vs Neural Networks

f

Feature Extraction 10 numbers giving

Nallial ] HH ml scores for classes

training

A 4

A 4

v

10 numbers giving
scores for classes

A

training
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Neural Networks

Input: x € R®  Output: f(x) € R*C

Before: Linear Classifier: f(x) =Wx + b
Learnable parameters: W € RP*¢ b € R¢
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Neural Networks

Input: x € R®  Output: f(x) € R*C

Before: Linear Classifier: f(x) =Wx + b
Learnable parameters: W € RP*¢ b € R¢

Now: Two-Layer Neural Network: f(x) = W, max(0, W;x + b;) + b2
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Neural Networks

Input: x € R®  Output: f(x) € R*C

Before: Linear Classifier: f(x) =Wx + b
Learnable parameters: W € RP*¢ b € R¢

Now: Two-Layer Neural Network: f(x) = W, max(0, W;x + b;) + b2
Learnable parameters: W, € R¥*P b, € RE, W, € R“*H b, € R
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Neural Networks

Input: x € R®  Output: f(x) € R*C

Before: Linear Classifier: f(x) =Wx + b

Feature Extraction
Learnable parameters: W € RP*¢ b € R¢

Now: Two-Layer Neural Network: f(x) = W, max(0, W;x + b,)
Learnable parameters: W, € R¥*P b, € RE, W, € R“*H b, € R
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Neural Networks

Input: x € R®  Output: f(x) € R*C

Before: Linear Classifier: f(x) =Wx + b
Learnable parameters: W € RP*¢ b € R¢

Now: Two-Layer Neural Network: f(x) = W, max(0, W;x + b;) + b2
Learnable parameters: W, € R¥*P b, € RE, W, € R“*H b, € R

Or Three-Layer Neural Network:
f(x) — W3 maX(O, Wz maX(O, Wlx + bl) + bz) + b3

Justin Johnson Lecture 5 - 25 January 24, 2022



Neural Networks
Before: Linear classifier f(x)=Wx+b

Now: 2-layer Neural Network f(x) = W, max(0, W;x + b;) + b,

Input:
X W W
3072 1 h 2 S
Output: 10
Hidden layer: P
100

x € RP, W, € RE*P, W, € RC*H
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Neural Networks
Before: Linear classifier f(x)=Wx+b
Now: 2-layer Neural Network f(x) = W, max(0, W;x + b;) + b,

Element (i, j) ™N Element (i, j)

of W, gives Input: \ of W, gives
X | W \h W, S the effect on

the effect on 3072
s; from h,

h. f |
Trom : Output: 10
Hidden layer:

100

x € RP, W, € RE*P, W, € RC*H

January 24, 2022
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Neural Networks
Before: Linear classifier f(x)=Wx+b

Now: 2-layer Neural Network f(x) = W, max(0, W;x + b;) + b,

Element (i, j) of W, ~ Element (i, j) of W,
gives the effect on \> gives the effect on
h; from x; Input: | = h | We— g s; from h,
3072 . |
All elements : Output: 10 All elements
of x affect all Hidden layer: of h affect all
elements of h 100 elements of s

Fully-connected neural network
Also “Multi-Layer Perceptron” (MLP)
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Neural Networks

(Before) Linear score function:

Linear classifier: One template per class (Now) 2-layer Neural Network

plane car

Input:
do fr horse ship truck X W W
‘-‘ 2 3072 11 h 2 =
b s . Output: 10
. l H - Hidden layer: P
100

x € RP, W, € RE*P, W, € RC*H
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Neural Networks

Neural net: first layer is bank of templates;
Second Iayer recombines templates

Input:
X W W
3072 ' h ’
Hidden layer:
100
D
x € RY, W, €

(Before) Linear score function:

(Now) 2-layer Neural Network

S

Output: 10

]RHXD,WZ = RCXH

Justin Johnson Lecture 5 - 30

January 24, 2022



Neural Networks

Can use different templates to
cover multiple modes of a cIassI

(Before) Linear score function:

™| ¥ -,_ ..;;...; (Now) 2-layer Neural Network
.u’ - | : ‘|
(o
‘ "i-ll' Z8
T Input:
| , X | W W
. 3072 | h 2 >
Output: 10
Hidden layer: HPu
100

x € RP, W, € RE*P, W, € RC*H
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Neural Networks

“Distributed representation”:
Most templates not interpretable!

vlLJ d 0l
(™ | Input:
j X W W
3072 ' h ?
Hidden layer:
100
RP W
x € R”, W, €
Justin Johnson Lecture 5 - 32

(Before) Linear score function:

(Now) 2-layer Neural Network

S

Output: 10

]RHXD,WZ = RCXH
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Deep Neural Networks

Depth = number of layers

A

/’
Width:
EZ:hQ X Wiihyw, hy wy hy w, hyl ws hsg We S
aver Output: 10
Input:
3072

s = Wg max(0, Ws max (0, W, max(0, W5 max(0, W, max(0, W;x)))))
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Activation Functions

2-layer Neural Network

The function ReLU(z) = max(0, z)
is called “Rectified Linear Unit”

101

~10 10

Justin Johnson

f(x) =W,

max(0,

Wyx + by) + b,

This is called the activation function of
the neural network

Lecture 5 - 34
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Activation Functions

2-layer Neural Network  f(x) = W,max(0,W;x + by) + b,

The function ReLU(z) = max(0, z) This is called the activation function of
is called “Rectified Linear Unit” the neural network

10,
Q: What happens if we build a neural
network with no activation function?

f(x) =W,(Wyx + by) + b,

~10 10
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Activation Functions

2-layer Neural Network  f(x) = W,max(0,W;x + by) + b,

The function ReLU(z) = max(0, z) This is called the activation function of
is called “Rectified Linear Unit” the neural network

10,
Q: What happens if we build a neural
network with no activation function?

f(x) =W,(Wyx + by) + b,
= (W, W5)x + (Wb, + by)

~10 10 A: We end up with a linear classifier!
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Activation Functions

Singid 1 Leaky RelU )
o(x) = 1 _ max(0.2x, x)
14+e™* - . ) _ To

tanh |
x_ 1 V , Softplus

tanh(x) = e - ’ i log(1 + exp(x))

RelU ELU
max(0, x)

x>0

X,
flx) = {a(exp(x) — 1), x<0
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ACtivatiOn FU nctions ReLU is a good default choice

for most problems

Sigmoid 1 Leaky RelLU )
) =- +1 _ max(0.2x, x)
e - . N Bre——t 10

tanh e V ] Softplus

tanh(x) = —5—— / ) log(1 + exp(x))

RelU ELU
X, x>0

maX(O, x) U f(X) = {a(exp(x) — 1), x <0
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import numpy as np

Neural Net in <20 |ineS! from numpy.random import randn

N, Din, H, Dout = 64, 1000, 100, 10
X, Y = randn(N, Din), randn(N, Dout)
wl, w2 = randn(Din, H), randn(H, Dout)
for t in range(10000):
h=1.0/ (1.0 + np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
dy _pred = 2.0 * (y_pred - y)

| output layer dw2 = h.T.dot(dy pred)
input layer | dh = dy_pred.dot(w2.T)
hidden layer dwl = x.T.dot(dh * h x (1 = h))

wl —= le-4 x dwl
w2 —= le-4 x dw2
January 24, 2022
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Neural Net in <20 lines!

Initialize weights <
and data

output layer
input layer
hidden layer

Justin Johnson Lecture 5 - 40

import numpy as np
from numpy.random import randn

N, Din, H, Dout = 64, 1000, 100, 10
X, Y = randn(N, Din), randn(N, Dout)
wl, w2 = randn(Din, H), randn(H, Dout)
for t in range(10000):
h=1.0/ (1.0 + np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
dy _pred = 2.0 * (y_pred - y)
dw2 = h.T.dot(dy_pred)
dh = dy_pred.dot(w2.T)
dwl = x.T.dot(dh x h x (1 - h))
wl —= le-4 x dwl
w2 —= le-4 x dw2
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Neural Net in <20 lines!

input layer
hidden layer

output layer

Initialize weights

and data

Compute loss

(sigmoid activation, <<

L2 loss)

<

import numpy as np
from numpy.random import randn

N, Din, H, Dout = 64, 1000, 100, 10
X, Y = randn(N, Din), randn(N, Dout)
wl, w2 = randn(Din, H), randn(H, Dout)
for t in range(10000):
h=1.0/ (1.0 + np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
dy _pred = 2.0 * (y_pred - y)
dw2 = h.T.dot(dy_pred)
dh = dy_pred.dot(w2.T)
dwl = x.T.dot(dh x h x (1 - h))
wl —= le-4 x dwl
w2 —= le-4 x dw2

Justin Johnson
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Neural Net in <20 lines!

output layer
input layer
hidden layer

Justin Johnson

Initialize weights
and data

Compute loss

(sigmoid activation, <<

L2 loss)

Compute
gradients

<

<

V4

Lecture 5 -42

import numpy as np
from numpy.random import randn

N, Din, H, Dout = 64, 1000, 100, 10
X, Y = randn(N, Din), randn(N, Dout)
wl, w2 = randn(Din, H), randn(H, Dout)
for t in range(10000):
h=1.0/ (1.0 + np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred - y).sum()
dy _pred = 2.0 * (y_pred - y)
dw2 = h.T.dot(dy_pred)
dh = dy_pred.dot(w2.T)
dwl = x.T.dot(dh x h x (1 - h))
wl —= le-4 x dwl
w2 —= le-4 x dw2
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import numpy as np

Neural Net in <20 |ineS! from numpy.random import randn

N, Din, H, Dout = 64, 1000, 100, 10

Initialize weights < x, y = randn(N, Din), randn(N, Dout)

and data
_ wl, w2 = randn(Din, H), randn(H, Dout)
for t in range(10000):
Compute loss 4 h=1.0/ (1.0 + np.exp(—-x.dot(wl)))
(sigmoid activation, << y_pred = h.dot(w2)
L2 loss) _ loss = np.square(y_pred - y).sum()
input layer SRS g dy_pred = 2.0 * (y_pred - y)
hidden layer Compute < dw2 = h.T.dot(dy_pred)
gradients dh = dy_pred.dot(w2.T)
_ dwl = x.T.dot(dh x h x (1 - h))
SGD { wl —= le-4 x dwl
step w2 —= le-4 * dw2
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This image by Fotis Bobolas is
licensed under CC-BY 2.0
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https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Our brains are made of Neurons

Presynaptic
terminal

SO Axon
v \ (b:ce>!|v

Dendrite
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https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Our brains are made of Neurons

-"'———‘éé} ‘ Axon

Synapse

Presynaptic
terminal

Dendrite
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Our brains are made of Neurons

Presynaptic
terminal

AXO N /

Impulses carried
Cell away from cell body

Synapse

Impulses
carried toward
cell body

Dendrite
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Our brains are made of Neurons

Synapse

Impulses
carried toward
cell body

Justin Johnson

Dendrite

Presynaptic
terminal

AXO N /

Impulses carried
Cell away from cell body

1.0
0.8

0.6

0.4

0.2

0015 -5 0 5

Lecture 5 - 48

Firing rate is a
nonlinear function

~of inputs

January 24, 2022




Biological Neuron presynaptic

dendrite terminal

Artificial Neuron

axon h //
~ ‘V V’

X

"
“'/A ‘ output layer

hidden layer 1 hidden layer 2

D

' cell
body

input layer

L0 ()

*@® synapse
axon from a neuron
w0

cell body

f (Zw,—xi +b)
Zwixi +b ,

output axon

activation
function

w1

f

WoT2

Neuron image by Felipe Perucho
is licensed under CC-BY 3.0
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https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Biological Neurons: Neurons in a neural network:
Complex connectivity patterns Organized into regular layers for
computational efficiency

input layer

hidden layer 1 hidden layer 2

This image is CCO Public Domain
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https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Biological Neurons:
Complex connectivity patterns

1
A

This image is CCO Public Domain

Justin Johnson

J

)
<
<

S\

|

R
%
\

oS
\
<
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But neural networks with random
connections can work too!

A
o { NS ‘
542}

g
T

)
| s

as

[classifier] [classifier|

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, ICCV 2019
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https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Be very careful with brain analogies!

Biological Neurons:

o Many different types
o Dendrites can perform complex non-linear computations

e Synapses are not a single weight but a complex non-

linear dynamical system
e Abstracting a neuron by “firing rate” isn’t enough;
temporal sequences of activations matter too

(spiking neural networks)

[Dendritic Computation. London and Hausser]
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Space Warplng Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

x1
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x1

Space Warping

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Feature transform:
h = Wx
—

Justin Johnson

h2

hl

Lecture 5 - 54
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x1

Space Warping

Consider a linear transform: h = Wx

Where x, h are both 2-dimensional

h = Wx
—

Justin Johnson Lecture 5 - 55

Feature transform:

B

h2

A

hl

C
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Space Warplng Consider a linear transform: h = Wx

Points not linearly Where x, h are both 2-dimensional

separable in original space

x1
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Space Warplng Consider a linear transform: h = Wx

Points not linearly Where x, h are both 2-dimensional

separable in original space Not linearly separable
in feature space
h2
) @
Feature transform: e © o °
h = Wx o @
— O
O © O © @ @
x1 hl
5 © °leo e
O
O
o O @ ©O
© © o ©
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Space W3 rping Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h2

Feature transform:
h = ReLU(WXx)
—

10

hl

x1

-10 v 10

Justin Johnson Lecture 5 - 58 January 24, 2022




Space W3 rping Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h2

Feature transform:
h = ReLU(WXx) A
—

10

x1 hl

-10 v 10

Justin Johnson Lecture 5 - 59 January 24, 2022



Space W3 rping Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h2

Feature transform: B fv A

h = RELU(WX) B is “collapsed”™=
o onto +h2 axis ™

10

x1 hl

-10 v 10
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Space W3 rping Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h2

Feature transform: B fv A

h = RELU(WX) B is “collapsed”™=
o onto +h2 axis ™

i hi "\ 77

D

-10 ” 10 D “collapsed”
onto +h1 axis

x1
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Space W3 rping Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

X2 | h2

A B .... Feature transform: B fv A
h = RELU(WX) B is “collapsed”™=
b onto +h2 axis ™\

’ hl ~ /
NN 77
C' D

D “collapsed”
onto +h1 axis

x1

C “collapsed”
onto origin

-10 v 10
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Space Warping Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)

Points not linearly Where x, h are both 2-dimensional
separable in original space

h2
) @
Feature transform: o © o °
h = WX o @
— @,
o © ol© @ e
1 hl
X © Olg, o
O
O
O
o O @ O
© © 0 ©
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Space Warping Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)

Points not linearly Where x, h are both 2-dimensional
separable in original space

Feature transform:
h = ReLU(WXx)
—

10

hl

x1

-10 v 10
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Space Warping Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)

Points not linearly Where x, h are both 2-dimensional
separable in original space

Feature transform:
h = ReLU(WXx)
—

10

hl

x1

Points are linearly
separable in features space!

-10 v 10
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Space Warping Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)

Points not linearly Where x, h are both 2-dimensional
separable in original space

Feature transform:
h = ReLU(WXx)
—

10

x1 hl

Points are linearly
separable in features space!

Linear classifier in feature
space gives nonlinear
classifier in original space

-10 v 10
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Setting the number of layers and their sizes

3 hidden units 6 hidden units 20 hidden units
o o ¥ o (@)
® &} © <
o ¢ ® © © (o) o © )
© O ® J @ & @
6] > @) D) &)
e © : p o © - o © o
© @ &)
+’ P o
o e} @ © ® ®
¢ o o © ) © @
© 2} &}

More hidden units = more capacity
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Don’t regularize with size; instead use stronger L2

A =0.001 A =0.01 A=0.1
@ © ©
X o &) o
4 @ > Q
© O ® © D)
© o ©
5 = - O
© o © ¢ © 4
® © ® o
© 1] ) ®
) o ) .
® o ° -~ o
1) @ @ © © @

(Web demo with ConvNetJS:
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)
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Universal Approximation

A neural network with one hidden layer can approximate
any function f: RN -> RM with arbitrary precision”

*Many technical conditions: Only holds on compact subsets of RN; function must be continuous; need to define “arbitrary precision”; etc
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

First layer weights: w (3,1) Second layer weights: u (1,3)
First layer bias: b (3,) First layer bias: p (1,)
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

First layer weights: w (3,1) Second layer weights: u (1,3)
First layer bias: b (3,) First layer bias: p (1,)

h1l =max(0, wl * x + b1)
h2 = max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

First layer weights: w (3,1) Second layer weights: u (1,3)

First layer bias: b (3,) First layer bias: p (1,)
h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1)
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

Second layer weights: u (1,3)
First layer bias: p (1,)

First layer weights: w (3,1)
First layer bias: b (3,)

h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1)
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)

y=ul*hl+u2*h2+u3*h3+p +p
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Output is a sum of shifted, scaled RelUs:
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

Second layer weights: u (1,3)
First layer bias: p (1,)

First layer weights: w (3,1)
First layer bias: b (3,)

h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1)
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)

y=ul*hl+u2*h2+u3*h3+p +p

Justin Johnson Lecture 5 - 74

Output is a sum of shifted, scaled RelUs:

Flip left / right based on sign of w;

Slope is given
by u; * w;

Position of
e “bend” given by b;
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

)

We can build a “bump function’

Y using four hidden units
Input: Output
x (1,) y(1,)
First layer weights: w (3,1) Second layer weights: u (1,3) S1 S22 S3 Sy
First layer bias: b (3,) First layer bias: p (1,)
h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1)
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

We can build a “bump function”

Y using four hidden units
Input: Output
x (1,) y(1,)
. . . — X
First layer weights: w (3,1) Second layer weights: u (1,3) S1 S2 S3 S4
First layer bias: b (3,) First layer bias: p (1,)
h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1)
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p

Justin Johnson Lecture 5-76 January 24, 2022



Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

We can build a “bump function”

Y using four hidden units
Output : m;=t/(s;—s4)
Input: (1) M m,=t/(s,—5s3)
x (1) v (L, :

S3

First layer weights: w (3,1) Second layer weights: u (1,3)

First layer bias: b (3,) First layer bias: p (1,)
h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1) m; * max(0, x — s,)
h2 = max(0, w2 * x + b2) + U2 * max(0, w2 * x + b2) ' S
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

We can build a “bump function”

Y using four hidden units
Input: Output
x (1,) y(1,)
. . . — — X

First layer weights: w (3,1) Second layer weights: u (1,3) S1 S2 S3 S4

First layer bias: b (3,) First layer bias: p (1,) I : ﬁ—#
h1l=max(0, wl * x + bl) y=ul * max(0, wl * x + bl) « N
h2 = max(0, w2 * x + b2) + U2 * max(0, w2 * x + b2) m4 * max(0, x — s;) -m; * max(0, x—s,)
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

We can build a “bump function”
Y using four hidden units

First layer weights: w (3,1) Second layer weights: u (1,3)

First layer bias: b (3,) First layer bias: p (1,)
h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1)
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p

-m, * max(0, x — s3)
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

We can build a “bump function”

Y using four hidden units
t

Input: Output

x (1,) y(1,)
First layer weights: w (3,1) Second layer weights: u (1,3) S1 Sz S3 S4

First layer bias: b (3,) First layer bias: p (1,) I : ﬁ—#
h1l =max(0, wl * x + b1) y=ul * max(0, wl * x + b1) N
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2) " max(0, x=sy) My ™ max(0, x = s7)
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p

* max(0, x — s3) m, * max(0, x — s,)
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

We can build a “bump function”

Y using four hidden units
P F—
Input: Output
X (1’) y (11)
. . . T ] ] X
First layer weights: w (3,1) Second layer weights: u (1,3) S1 S2 S3 S4
First layer bias: b (3,) First layer bias: p (1,) With 4K hidden units we can
build a sum of K bumps
h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1) 7
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p ’ \ |
X
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

We can build a “bump function”

Y using four hidden units
P F—
Input: Output
X (1’) y (11)
. . . o . . X
First layer weights: w (3,1) Second layer weights: u (1,3) S1 S2 S3 Sy
First layer bias: b (3,) First layer bias: p (1,) With 4K hidden units we can
build a sum of K bumps
h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1)
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2) .
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p \ |
X

Approximate functions with bumps!
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

First layer weights: w (3,1) Second layer weights: u (1,3)
First layer bias: b (3,) First layer bias: p (1,)

h1l =max(0, wl * x + b1)
h2 = max(0, w2 * x + b2)
h3 = max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p

Justin Johnson

y=ul * max(0, wl * x + b1)
+u2 * max(0, w2 * x + b2) y

+p

Lecture 5 - 83

+u3 * max(0, w3 * x + b3) /A
| | %

What about...

- Gaps between bumps?

- Other nonlinearities?

- Higher-dimensional functions?

See Nielsen, Chapter 4

" 4

Approximate functions with bumps!
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http://neuralnetworksanddeeplearning.com/chap4.html

Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

Reality check: Networks don’t really learn bumps!

First layer weights: w (3,1) Second layer weights: u (1,3)

First layer bias: b (3,) First layer bias: p (1,)
h1l = max(0, wl * x + b1) y=ul * max(0, wl * x + b1)
h2 = max(0, w2 * x + b2) +u2 * max(0, w2 * x + b2) e
h3 = max(0, w3 * x + b3) + u3 * max(0, w3 * x + b3)
y=ul*hl+u2*h2+u3*h3+p +p \ |
X

Approximate functions with bumps!
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Universal Approximation

Example: Approximating a function f: R -> R with a two-layer ReLU network

@ Reality check: Networks don’t really learn bumps!

Input:
x (1)

Universal approximation tells us:
- Neural nets can represent any function

Universal approximation DOES NOT tell us: —
. . .
- Whether we can actually learn any function with SGD 7
- How much data we need to learn a function Fﬁ
| By
Remember: kNN is also a universal approximator! Approximate functions with bumps!

Justin Johnson Lecture 5 - 85 January 24, 2022



Extra topic
(Won’t be on HW / Exam)
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Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
fltzy + (1 —t)zy) < tf(xy) + (1 —1)f(22)
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Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
fltzy + (1 —t)zy) < tf(xy) + (1 —1)f(22)

2

Example: f(x) = x* is convex:
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Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
[ty + (1 —t)xg)|< tf (1) + (1 — 1) f(22)

2

Example: f(x) = x* is convex:

Justin Johnson Lecture 4 - 89
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Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
fltzy + (1 —t)xy)|<[tf(21) + (1 — 1) f(22)

2

Example: f(x) = x* is convex:

Justin Johnson Lecture 4 - 90
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Convex Functions

A function f : X C RY — R is convex if for all z1,22 € X,t € [0,1],
fltey + (1 —t)ao)|<|tf(21) + (1 — 1) f(22)

Example: f(xz) = cos(x)
IS hot convex:

Justin Johnson Lecture 4 - 91
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Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
fltry + (1 —t)xy) < tf(zq) + (1 — 1) f(22)

Intuition: A convex function
is a (multidimensional) bowl

*Many technical details! See e.g. IOE 661 / MATH 663

Justin Johnson Lecture 4 - 92
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Convex Functions

A function f : X C RY — R is convex if for all z1,22 € X,t € [0,1],

fltey + (1 —t)xy) < tf(x1) + (1 —1)f(2)

Intuition: A convex function N
is a (multidimensional) bowl

e
~T"Th

Generally speaking, convex

s |
Out[M] ‘I:
functions are easy to optimize: can E
o . s [
derive theoretical guarantees about L |
3

converging to global minimum’® T— /

*Many technical details! See e.g. IOE 661 / MATH 663

Justin Johnson
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Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
ftoy + (1 —t)zy) < tf(x) + (1 —1)f(22)

Intuition: A convex function Linear classifiers optimize
is a (multidimensional) bowl a convex function!

s= fla;:W)=Wge

L; = —log(<&%-) Softmax

Generally speaking, convex

functions are easy to optimize: can > o

derive theoretical guarantees about Li =>;,, max(0,s; — sy, +1) SVM
° e o * 1 N

converging to global minimum L=+>" Li+RW)

. . . R(W) = L2 or L1 regularization
Many technical details! See e.g. IOE 661 / MATH 663
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Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
ftoy + (1 —t)zy) < tf(x) + (1 —1)f(22)

Neural net losses sometimes look
convex-ish:

Intuition: A convex function
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can
derive theoretical guarantees about
converging to global minimum”

loss

wl[O0, 0]

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units

*Many technical details! See e.g. IOE 661 / MATH 663 per hidden layer, 10 categories, with softmax loss
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Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
ftoy + (1 —t)zy) < tf(x) + (1 —1)f(22)

But often clearly nonconvex:

Intuition: A convex function
is a (multidimensional) bowl —o—

Generally speaking, convex
functions are easy to optimize: can
derive theoretical guarantees about
converging to global minimum”

loss

w1l[0, 0]

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units

*Many technical details! See e.g. IOE 661 / MATH 663 per hidden layer, 10 categories, with softmax loss
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Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
ftoy + (1 —t)zy) < tf(x) + (1 —1)f(22)

Intuition: A convex function With local minima:
is a (multidimensional) bowl

Generally speaking, convex
functions are easy to optimize: can
derive theoretical guarantees about
converging to global minimum”

loss

w1l[O0, 0]

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units

*Many technical details! See e.g. IOE 661 / MATH 663 per hidden layer, 10 categories, with softmax loss

Justin Johnson Lecture 4 - 97 January 24, 2022



Convex Functions

A function f : X C RY — R is convex if for all =1,z € X,t € [0,1],
ftoy + (1 —t)zy) < tf(x) + (1 —1)f(22)

Intuition: A convex function Can get very wild!
is a (multidimensional) bowl

Generally speaking, convex

functions are easy to optimize: can
derive theoretical guarantees about W
converging to global minimum”

wl[O0, 0]

1D slice of loss landscape for a 4-layer ReLU network with 10 input features, 32 units

*Many technical details! See e.g. IOE 661 / MATH 663 per hidden layer, 10 categories, with softmax loss

loss
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Convex Functions

A function f : X C RY — R is convex if for all =1, 22 € X,t € [0,1],
[ty + (1 —=t)ze) < tf(xy) + (1 —1)f(x2)

Most neural networks need
nonconvex optimization
- Few or no guarantees

Intuition: A convex function
is a (multidimensional) bowl

Generally speaking, convex about convergence
functions are easy to optimize: can - Empirically it seems to
derive theoretical guarantees about work anyway
converging to global minimum” . Active area of research

*Many technical details! See e.g. IOE 661 / MATH 663
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Ssummary

Feature transform + Linear classifier

allows nonlinear decision boundaries

Original space

Feature space

e @
y 0 @
o r=(x2+ y2)1/2 ° ..
(<) — -1
® 0 =tan X o
o (v/x) o | %
— ; @ ..—
Feature ()
@ @
transform %)
@ @
(<)
® e
Nonlinear classifier —— Linear classifier

in original space!

Justin Johnson

Neural Networks as learnable feature transforms

Feature Extraction 10 numbers giving

Lolzal 1 ||[| m scores for classes

—eee

training |

in feature space

Lecture 5 - 100

10 numbers giving

.. scores for classes
training
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Ssummary

From linear classifiers to
fully-connected networks

f(X) = W2 maX(O, Wlx + bl) + bz

Input:
X | W W
3072 1 h 2 S
Output: 10
Hidden layer: P
100

Justin Johnson

Lecture 5 -101

Linear classifier: One template per class
plane car bird cat deer
dog frog horse ship truck
EEES

Neural networks: Many reusable templates

S

,jk% "!L_.Jr ey

. i s 1Ew
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Summary

From linear classifiers to

fully-connected networks o o
Neural networks loosely inspired by biological

neurons but be careful with analogies

f(x) = W2 maX(O, Wlx + bl) + b2

Input:
X | W W
3072 1 h 2 S
Output: 10
Hidden layer: P
100
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Summary

Space Warping Universal Approximation
From linear classifiers to o ol o |
fully-connected networks B | ,o o
c o ol o "
f(X) = W2 maX(O, Wlx + bl) + b2 . ... B \
Input: Nonconvex
X W W
3072 1 h 2 S
Output: 10
Hidden layer: Hp )
100 3
w10, 0]
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Problem: How to compute gradients?

s = W, max(0, Wy x + by) + b, Nonlinear score function
L; = z maX(O, Sj — Sy, + 1) Per-element data loss
J#Yi
R(W) = z W, L2 Regularization
K

N
1
L(W;,W,,by,by) = Nz L; + AR(Wy) + AR(W,) Total loss
i=1

JdL 0L OL OL
ow,’ ow,’ db, b,

If we can compute then we can optimize with SGD
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Next time:
Backpropagation
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