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Lecture 4:
Regularization +

Optimization

Lecture 4 - 1
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Reminder: Assignment 1

Was due on Friday!

If you enrolled late, you can have an extension – but email me / 
post on Piazza so we can track these

Lecture 4 - 2
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Assignment 2

Lecture 4 - 3

• Released on Sunday
• Use SGD to train linear classifiers and fully-connected networks
• After today, can do linear classifiers section
• After Lecture 5, can do fully-connected networks
• If you have a hard time computing derivatives, wait for Lecture 6 on 

backprop
• Due Friday January 28, 11:59pm ET
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Last Time: Linear Classifiers

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Last Time: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: 

Linear classifier

Softmax: 𝐿! = − log
"#$ %!"
∑# "#$ %#

SVM: 𝐿! = ∑'()"max 0, 𝑠' − 𝑠)" + 1

𝑠 = 𝑓 𝑥;𝑊, 𝑏 = 𝑊𝑥 + 𝑏
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Last Time: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: 

Linear classifier

Softmax: 𝐿! = − log
"#$ %!"
∑# "#$ %#

SVM: 𝐿! = ∑'()"max 0, 𝑠' − 𝑠)" + 1

𝑠 = 𝑓 𝑥;𝑊, 𝑏 = 𝑊𝑥 + 𝑏

Problem: Loss functions encourage 
good performance on training data 
but we really care about test data



Justin Johnson January 19, 2022

Overfitting

Lecture 4 - 7

A model is overfit when it performs 
too well on the training data, and has 
poor performance for unseen data
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Overfitting

Lecture 4 - 8

A model is overfit when it performs 
too well on the training data, and has 
poor performance for unseen data

Example: Linear classifier with 1D 
inputs, 2 classes, softmax loss
𝑠$ = 𝑤$𝑥 + 𝑏$

𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝'
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Overfitting

Lecture 4 - 9

A model is overfit when it performs 
too well on the training data, and has 
poor performance for unseen data

Both models have perfect accuracy on train data!

Example: Linear classifier with 1D 
inputs, 2 classes, softmax loss
𝑠$ = 𝑤$𝑥 + 𝑏$

𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝'
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Overfitting

Lecture 4 - 10

A model is overfit when it performs 
too well on the training data, and has 
poor performance for unseen data

Example: Linear classifier with 1D 
inputs, 2 classes, softmax loss
𝑠$ = 𝑤$𝑥 + 𝑏$

𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝'

Low loss, but unnatural “cliff” 
between training points

Both models have perfect accuracy on train data!
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Overfitting

Lecture 4 - 11

A model is overfit when it performs 
too well on the training data, and has 
poor performance for unseen data

Example: Linear classifier with 1D 
inputs, 2 classes, softmax loss
𝑠$ = 𝑤$𝑥 + 𝑏$

𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝'

Overconfidence in regions with no training data could give poor generalization
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Regularization: Beyond Training Error

Data loss: Model predictions 
should match training data

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0
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Regularization: Beyond Training Error

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0 + 𝜆𝑅 𝑊 𝜆 is a hyperparameter 
giving regularization 
strength
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Regularization: Beyond Training Error

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

Simple examples
L2 regularization: 𝑅 𝑊 = ∑!,#𝑊!.#

%

L1 regularization: 𝑅 𝑊 = ∑!,# 𝑊!,#

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0 + 𝜆𝑅 𝑊 𝜆 is a hyperparameter 
giving regularization 
strength
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Regularization: Beyond Training Error

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

Simple examples
L2 regularization: 𝑅 𝑊 = ∑!,#𝑊!.#

%

L1 regularization: 𝑅 𝑊 = ∑!,# 𝑊!,#

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0 + 𝜆𝑅 𝑊 𝜆 is a hyperparameter 
giving regularization 
strength

More complex:
Dropout
Batch normalization
Cutout, Mixup, Stochastic depth, etc…
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Regularization: Prefer Simpler Models

Lecture 4 - 16

Example: Linear classifier with 1D inputs, 2 classes, softmax loss

𝑠$ = 𝑤$𝑥 + 𝑏$ 𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝' + 𝝀5

𝒊

𝒘𝒊
𝟐
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Regularization: Prefer Simpler Models

Lecture 4 - 17

Example: Linear classifier with 1D inputs, 2 classes, softmax loss

𝑠$ = 𝑤$𝑥 + 𝑏$ 𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝' + 𝝀5

𝒊

𝒘𝒊
𝟐

Regularization term 
causes loss to increase
for model with sharp cliff
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Regularization: Expressing Preferences

Lecture 4 - 18

L2 Regularization

𝑅 𝑊 =$
!,#

𝑊!,#
$

𝑤56𝑥 = 𝑤76𝑥 = 1

𝑥 = 1, 1, 1, 1
𝑤5 = 1, 0, 0, 0
𝑤7 = 0.25, 0.25, 0.25, 0.25

Same predictions, so data 
loss will always be the same
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Regularization: Expressing Preferences

Lecture 4 - 19

L2 Regularization

L2 regularization prefers 
weights to be “spread out”

𝑅 𝑊 =$
!,#

𝑊!,#
$

𝑤56𝑥 = 𝑤76𝑥 = 1

𝑥 = 1, 1, 1, 1
𝑤5 = 1, 0, 0, 0
𝑤7 = 0.25, 0.25, 0.25, 0.25

Same predictions, so data 
loss will always be the same
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Finding a good W

Lecture 4 - 20

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0 + 𝜆𝑅 𝑊

Loss function consists of data loss to fit the training 
data and regularization to prevent overfitting



Justin Johnson January 19, 2022

Optimization

Lecture 4 - 21

𝑤∗ = argmin
+
𝐿 𝑤
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Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Idea #1: Random Search (bad idea!)

Lecture 4 - 24
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Idea #1: Random Search (bad idea!)

Lecture 4 - 25

15.5% accuracy! not bad!
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Idea #1: Random Search (bad idea!)

Lecture 4 - 26

15.5% accuracy! not bad!
(SOTA is ~95%)
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Idea #2: Follow the slope

Lecture 4 - 27
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Idea #2: Follow the slope

Lecture 4 - 28

In 1-dimension, the derivative of a function gives the slope:

𝑑𝑓
𝑑𝑥

= lim
7→9

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ
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Idea #2: Follow the slope

Lecture 4 - 29

In 1-dimension, the derivative of a function gives the slope:

In multiple dimensions, the gradient is the vector
of (partial derivatives) along each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

𝑑𝑓
𝑑𝑥

= lim
7→9

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dL/dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dL/dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dL/dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322
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gradient dL/dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353
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gradient dL/dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

Lecture 4 - 34

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6
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gradient dL/dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347
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gradient dL/dW:

[-2.5,
0.6,
0.0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0.0
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gradient dL/dW:

[-2.5,
0.6,
0.0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Numeric Gradient:
- Slow: O(#dimensions)
- Approximate
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Loss is a function of W

Lecture 4 - 38

𝐿 =
1
2%!"#

$
𝐿! +%

%
𝑊%

&

𝐿! =%
'()!

max 0, 𝑠' − 𝑠)! + 1

𝑠 = 𝑓 𝑥,𝑊 = 𝑊𝑥
Want ∇*𝐿
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Loss is a function of W: Analytic Gradient

Lecture 4 - 39

𝐿 =
1
2%!"#

$
𝐿! +%

%
𝑊%

&

𝐿! =%
'()!

max 0, 𝑠' − 𝑠)! + 1

𝑠 = 𝑓 𝑥,𝑊 = 𝑊𝑥
Want ∇*𝐿

Use calculus to compute an analytic gradient

This image is in the public domain This image is in the public domain

https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
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gradient dL/dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

dL/dW = ...
(some function 
data and W)
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gradient dL/dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

dL/dW = ...
(some function 
data and W)

(In practice we will 
compute dL/dW using 
backpropagation; see 
Lecture 6)
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Computing Gradients

Lecture 4 - 42

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone
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Computing Gradients

Lecture 4 - 43

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.
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Computing Gradients

Lecture 4 - 44

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.
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Computing Gradients

Lecture 4 - 45

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.
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- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation 
with numerical gradient. This is called a gradient check.

Computing Gradients

Lecture 4 - 46
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Gradient Descent
Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate
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negative 
gradient 
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate
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Gradient Descent
Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate
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Batch Gradient Descent

Lecture 4 - 50

Full sum expensive 
when N is large!𝐿 𝑊 =

1
𝑁
&
"#$

%

𝐿" 𝑥" , 𝑦" ,𝑊 + 𝜆𝑅 𝑊

∇&𝐿 𝑊 =
1
𝑁
&
"#$

%

∇&𝐿" 𝑥" , 𝑦" ,𝑊 + 𝜆∇&𝑅 𝑊
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Stochastic Gradient Descent (SGD)

Lecture 4 - 51

Full sum expensive 
when N is large!

Approximate sum using 
a minibatch of examples
32 / 64 / 128 common

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

𝐿 𝑊 =
1
𝑁
&
"#$

%

𝐿" 𝑥" , 𝑦" ,𝑊 + 𝜆𝑅 𝑊

∇&𝐿 𝑊 =
1
𝑁
&
"#$

%

∇&𝐿" 𝑥" , 𝑦" ,𝑊 + 𝜆∇&𝑅 𝑊
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Stochastic Gradient Descent (SGD)

Lecture 4 - 52

Think of loss as an 
expectation over the full 
data distribution pdata

Approximate 
expectation via sampling

𝐿 𝑊 = 𝔼 :,< ~>!"#" 𝐿 𝑥, 𝑦,𝑊 + 𝜆𝑅 𝑊

≈
1
𝑁&012

3
𝐿 𝑥0 , 𝑦0 ,𝑊 + 𝜆𝑅 𝑊
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Stochastic Gradient Descent (SGD)

Lecture 4 - 53

Think of loss as an 
expectation over the full 
data distribution pdata

Approximate 
expectation via sampling

𝐿 𝑊 = 𝔼 :,< ~>!"#" 𝐿 𝑥, 𝑦,𝑊 + 𝜆𝑅 𝑊

≈
1
𝑁&012

3
𝐿 𝑥0 , 𝑦0 ,𝑊 + 𝜆𝑅 𝑊

∇%𝐿 𝑊 = ∇%𝔼 &,' ∼)&'(' 𝐿 𝑥, 𝑦,𝑊 + 𝜆∇%𝑅 𝑊

≈$
*+,

-
∇.𝐿% 𝑥* , 𝑦* ,𝑊 + ∇.𝑅 𝑊
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Interactive Web Demo

Lecture 4 - 54

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
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Problems with SGD

Lecture 4 - 55

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value 
of the Hessian matrix is large
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Problems with SGD

Lecture 4 - 56

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value 
of the Hessian matrix is large
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Problems with SGD

Lecture 4 - 57

What if the loss function 
has a local minimum or 
saddle point?

Local 
Minimum

Saddle 
point
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Problems with SGD

Lecture 4 - 58

What if the loss function 
has a local minimum or 
saddle point?

Zero gradient, gradient 
descent gets stuck

Local 
Minimum

Saddle 
point
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Problems with SGD

Lecture 4 - 59

Our gradients come from minibatches 
so they can be noisy!

𝐿 𝑊 =
1
𝑁
,
&'(

)

𝐿& 𝑥&, 𝑦&,𝑊 + 𝜆𝑅 𝑊

∇*𝐿 𝑊 =
1
𝑁
,
&'(

)

∇*𝐿& 𝑥&, 𝑦&,𝑊 + 𝜆∇*𝑅 𝑊
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SGD

Lecture 4 - 60

SGD

𝑥*+, = 𝑥* − 𝛼∇𝑓 𝑥*
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SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

𝑥*+, = 𝑥* − 𝛼∇𝑓 𝑥*
𝑣*+, = 𝜌𝑣* + ∇𝑓 𝑥*
𝑥*+, = 𝑥* − 𝛼𝑣*+,
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SGD + Momentum

Lecture 4 - 62

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

Gradient

Velocity

actual step

Momentum update:

Combine gradient at current 
point with velocity to get step 
used to update weights

𝑣*+, = 𝜌𝑣* + ∇𝑓 𝑥*
𝑥*+, = 𝑥* − 𝛼𝑣*+,
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SGD + Momentum

Lecture 4 - 63

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

You may see SGD+Momentum formulated different ways, but 
they are equivalent - give same sequence of x

SGD+Momentum
𝑣*+, = 𝜌𝑣* + ∇𝑓 𝑥*
𝑥*+, = 𝑥* − 𝛼𝑣*+,

𝑣*+, = 𝜌𝑣* − 𝛼∇𝑓 𝑥*
𝑥*+, = 𝑥* + 𝑣*+,
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SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning
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SGD + Momentum

Lecture 4 - 65

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point 
with velocity to get step used to 
update weights
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Nesterov Momentum

Lecture 4 - 66

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point 
with velocity to get step used to 
update weights

Gradient
Velocity

actual step

Nesterov Momentum

“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to 
get actual update direction
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Nesterov Momentum

Lecture 4 - 67

Gradient
Velocity

actual step

“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to 
get actual update direction
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Nesterov Momentum

Lecture 4 - 68

Gradient
Velocity

actual step

“Look ahead” to the point where updating 
using velocity would take us; compute 
gradient there and mix it with velocity to 
get actual update direction

Annoying, usually we want 
update in terms of
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Nesterov Momentum

Lecture 4 - 69

Change of variables                                   
and rearrange: 

Annoying, usually we want 
update in terms of
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Nesterov Momentum

SGD

SGD+Momentum

Nesterov
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AdaGrad

Added element-wise scaling of the gradient based 
on the historical sum of squares in each dimension

“Per-parameter learning rates” 
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011
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AdaGrad

Q: What happens with AdaGrad?
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AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped; 
progress along “flat” directions is accelerated
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RMSProp: “Leaky Adagrad”

AdaGrad

Tieleman and Hinton, 2012

RMSProp
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RMSProp

Lecture 4 - 76

SGD

SGD+Momentum

RMSProp
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Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam (almost): RMSProp + Momentum

Lecture 4 - 78

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

SGD+Momentum
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Adam (almost): RMSProp + Momentum

Lecture 4 - 79

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

RMSProp

Adam

Momentum
AdaGrad / RMSProp
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Adam (almost): RMSProp + Momentum

Lecture 4 - 80

Q: What happens at t=1? 
(Assume beta2 = 0.999)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Bias correction

Momentum
AdaGrad / RMSProp
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Adam (almost): RMSProp + Momentum

Lecture 4 - 81

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction

Bias correction for the fact 
that first and second moment 
estimates start at zero

Momentum
AdaGrad / RMSProp
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Adam (almost): RMSProp + Momentum

Lecture 4 - 82

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction for the fact 
that first and second moment 
estimates start at zero

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 
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Adam: Very Common in Practice!

Lecture 4 - 83

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

Johnson, Gupta, and Fei-Fei, CVPR 2018

Gupta, Johnson, et al, CVPR 2018

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019
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Adam

Lecture 4 - 84

SGD

SGD+Momentum

RMSProp

Adam
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Optimization Algorithm Comparison

Lecture 4 - 85

Algorithm
Tracks first 
moments 

(Momentum)

Tracks second 
moments 
(Adaptive

learning rates)

Leaky 
second 

moments

Bias correction for 
moment estimates

SGD 𝙭 𝙭 𝙭 𝙭
SGD+Momentum ✓ 𝙭 𝙭 𝙭
Nesterov ✓ 𝙭 𝙭 𝙭
AdaGrad 𝙭 ✓ 𝙭 𝙭
RMSProp 𝙭 ✓ ✓ 𝙭
Adam ✓ ✓ ✓ ✓
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L2 Regularization vs Weight Decay

Lecture 4 - 86

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&
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L2 Regularization vs Weight Decay

Lecture 4 - 87

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝝀 𝒘 𝟐

𝑔& = ∇𝐿 𝑤& = ∇𝐿$%&% 𝑤& + 𝟐𝝀𝒘𝒕
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019
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L2 Regularization vs Weight Decay

Lecture 4 - 88

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

Weight Decay
𝐿 𝑤 = 𝐿$%&% 𝑤
𝑔& = ∇𝐿$%&% 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔& + 𝟐𝝀𝒘𝒕
𝑤&*+ = 𝑤& − 𝛼𝑠&

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

L2 Regularization
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝝀 𝒘 𝟐

𝑔& = ∇𝐿 𝑤& = ∇𝐿$%&% 𝑤& + 𝟐𝝀𝒘𝒕
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&
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L2 Regularization vs Weight Decay

Lecture 4 - 89

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization and Weight Decay are 
equivalent for SGD, SGD+Momentum so 
people often use the terms interchangeably!

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

Weight Decay
𝐿 𝑤 = 𝐿$%&% 𝑤
𝑔& = ∇𝐿$%&% 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔& + 𝟐𝝀𝒘𝒕
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝝀 𝒘 𝟐

𝑔& = ∇𝐿 𝑤& = ∇𝐿$%&% 𝑤& + 𝟐𝝀𝒘𝒕
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&
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L2 Regularization vs Weight Decay

Lecture 4 - 90

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization and Weight Decay are 
equivalent for SGD, SGD+Momentum so 
people often use the terms interchangeably!

But they are not the same for adaptive 
methods (AdaGrad, RMSProp, Adam, etc)

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

Weight Decay
𝐿 𝑤 = 𝐿$%&% 𝑤
𝑔& = ∇𝐿$%&% 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔& + 𝟐𝝀𝒘𝒕
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝝀 𝒘 𝟐

𝑔& = ∇𝐿 𝑤& = ∇𝐿$%&% 𝑤& + 𝟐𝝀𝒘𝒕
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&
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AdamW: Decoupled Weight Decay

Lecture 4 - 91

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019
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AdamW: Decoupled Weight Decay

Lecture 4 - 92

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

AdamW should probably be your 
“default” optimizer for new problems
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So far: First-Order Optimization

Lecture 4 - 93

Loss

w1
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So far: First-Order Optimization

Lecture 4 - 94

Loss

w1

1. Use gradient to make linear approximation
2. Step to minimize the approximation
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Second-Order Optimization

Lecture 4 - 95

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation
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Second-Order Optimization

Lecture 4 - 96

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas 
of low curvature
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Second-Order Optimization

Lecture 4 - 97

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:
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Second-Order Optimization

Lecture 4 - 98

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: Why is this impractical?
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Second-Order Optimization

Lecture 4 - 99

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: Why is this impractical?
Hessian has O(N^2) elements
Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions
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Second-Order Optimization

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate inverse 
Hessian with rank 1 updates over time (O(n^2) each).

- L-BFGS (Limited memory BFGS): 
Does not form/store the full inverse Hessian.
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Second-Order Optimization: L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives bad 
results. Adapting second-order methods to large-scale, 
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017
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In practice:

Lecture 4 - 102

- Adam is a good default choice in many cases 
SGD+Momentum can outperform Adam but may 
require more tuning

- If you can afford to do full batch updates then try out 
L-BFGS (and don’t forget to disable all sources of noise)
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Summary

Lecture 4 - 103

1. Use Linear Models for image 
classification problems

2. Use Loss Functions to express 
preferences over different 
choices of weights

3. Use Regularization to prevent 
overfitting to training data

4. Use Stochastic Gradient 
Descent to minimize our loss 
functions and train the model

Softmax SVM
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Next time:
Neural Networks

Lecture 4 - 104


