Lecture 4: Regularization + Optimization

Justin Johnson

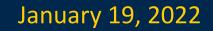
Lecture 4 - 1

Reminder: Assignment 1

Was due on Friday!

If you enrolled late, you can have an extension – but email me / post on Piazza so we can track these

Lecture 4 - 2



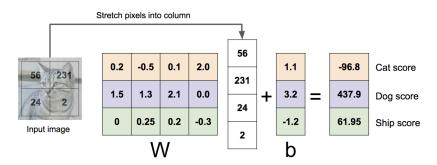
Assignment 2

- Released on Sunday
- Use SGD to train linear classifiers and fully-connected networks
- After today, can do linear classifiers section
- After Lecture 5, can do fully-connected networks
- If you have a hard time computing derivatives, wait for Lecture 6 on backprop
- Due Friday January 28, 11:59pm ET

Last Time: Linear Classifiers

Algebraic Viewpoint

f(x,W) = Wx

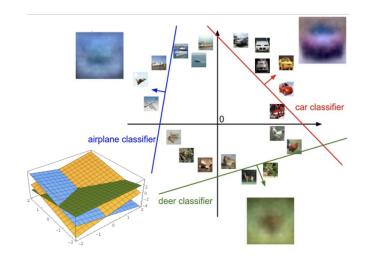


Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space



Justin Johnson

Lecture 4 - 4

Last Time: Loss Functions quantify preferences

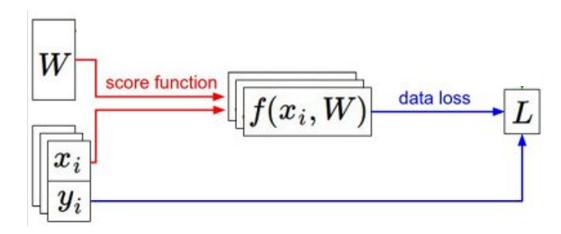
- We have some dataset of (x, y)
- We have a **score function**:
- We have a **loss function**:

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

$$s = f(x; W, b) = Wx + b$$

Linear classifier



Justin Johnson

Lecture 4 - 5

Last Time: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a **score function**:
- We have a **loss function**:

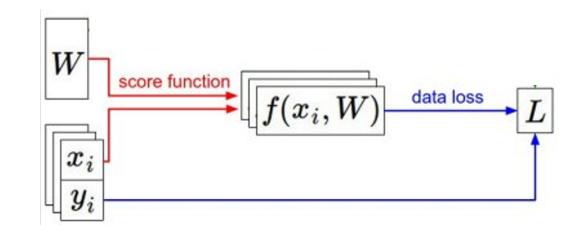
Problem: Loss functions encourage good performance on <u>training</u> data but we really care about <u>test</u> data

$$s = f(x; W, b) = Wx + b$$

Linear classifier

Softmax:
$$L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right)$$

SVM: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$



Justin Johnson

Lecture 4 - 6

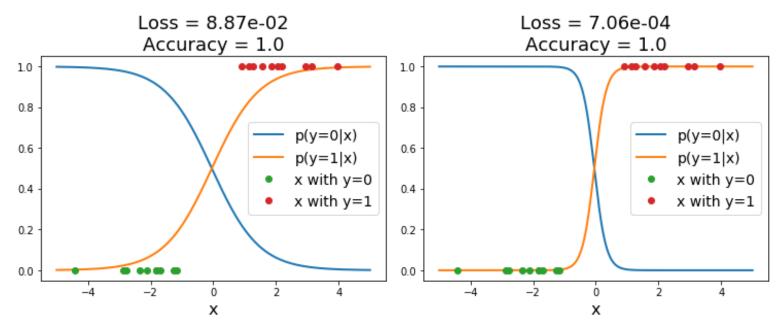
A model is **overfit** when it performs too well on the training data, and has poor performance for unseen data

A model is **overfit** when it performs too well on the training data, and has poor performance for unseen data Example: Linear classifier with 1D inputs, 2 classes, softmax loss

$$s_{i} = w_{i}x + b_{i}$$
$$exp(s_{i})$$
$$p_{i} = \frac{exp(s_{i})}{exp(s_{1}) + exp(s_{2})}$$
$$L = -\log(p_{y})$$

Justin Johnson

A model is **overfit** when it performs too well on the training data, and has poor performance for unseen data



Both models have perfect accuracy on train data!

<u>Example</u>: Linear classifier with 1D inputs, 2 classes, softmax loss

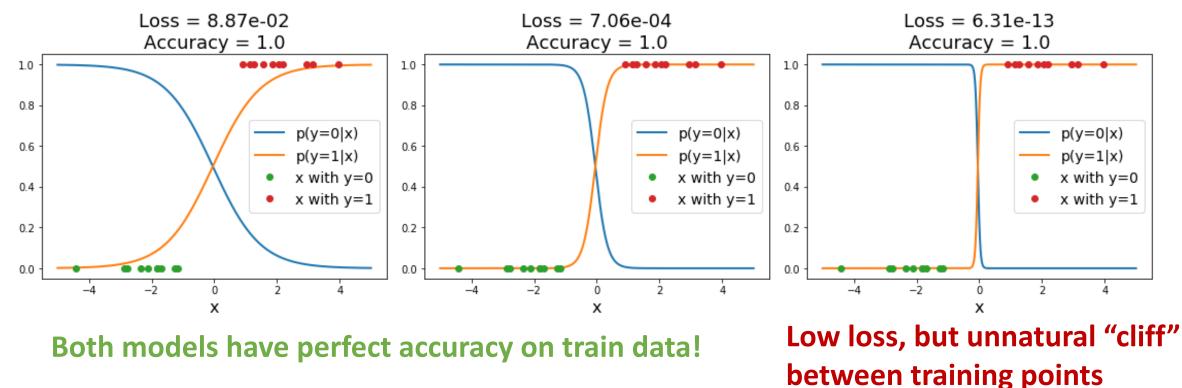
$$s_{i} = w_{i}x + b_{i}$$
$$exp(s_{i})$$
$$p_{i} = \frac{exp(s_{i})}{exp(s_{1}) + exp(s_{2})}$$
$$L = -\log(p_{y})$$

Justin Johnson

Lecture 4 - 9

A model is **overfit** when it performs too well on the training data, and has poor performance for unseen data Example: Linear classifier with 1D inputs, 2 classes, softmax loss

$$s_{i} = w_{i}x + b_{i}$$
$$exp(s_{i})$$
$$p_{i} = \frac{exp(s_{i})}{exp(s_{1}) + exp(s_{2})}$$
$$L = -\log(p_{y})$$

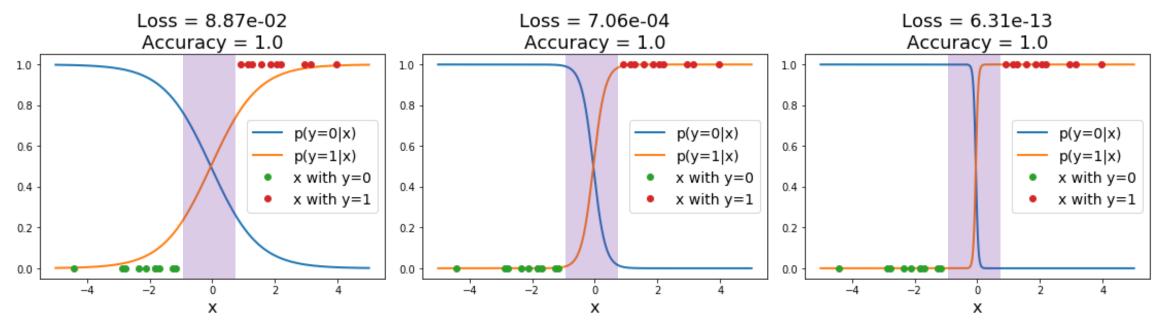


Justin Johnson

Lecture 4 - 10

A model is **overfit** when it performs too well on the training data, and has poor performance for unseen data Example: Linear classifier with 1D inputs, 2 classes, softmax loss

$$s_{i} = w_{i}x + b_{i}$$
$$exp(s_{i})$$
$$p_{i} = \frac{exp(s_{i})}{exp(s_{1}) + exp(s_{2})}$$
$$L = -\log(p_{y})$$



Overconfidence in regions with no training data could give poor generalization

Justin Johnson

Lecture 4 - 11

 $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$ i=1

Data loss: Model predictions should match training data

Justin Johnson

Lecture 4 - 12

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

 λ is a hyperparameter giving regularization strength

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Justin Johnson

Lecture 4 - 13

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

 λ is a hyperparameter giving regularization strength

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examples

<u>L2 regularization</u>: $R(W) = \sum_{k,l} W_{k,l}^2$ L1 regularization: $R(W) = \sum_{k,l} |W_{k,l}|$

Justin Johnson

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

 λ is a hyperparameter giving regularization strength

Data loss: Model predictions should match training data

Simple examples

L2 regularization:
$$R(W) = \sum_{k,l} W_{k,l}^2$$

L1 regularization: $R(W) = \sum_{k,l} |W_{k,l}|$

Regularization: Prevent the model from doing *too* well on training data

More complex:

Dropout

Batch normalization

Cutout, Mixup, Stochastic depth, etc...

Justin Johnson

Lecture 4 - 15

Regularization: Prefer Simpler Models

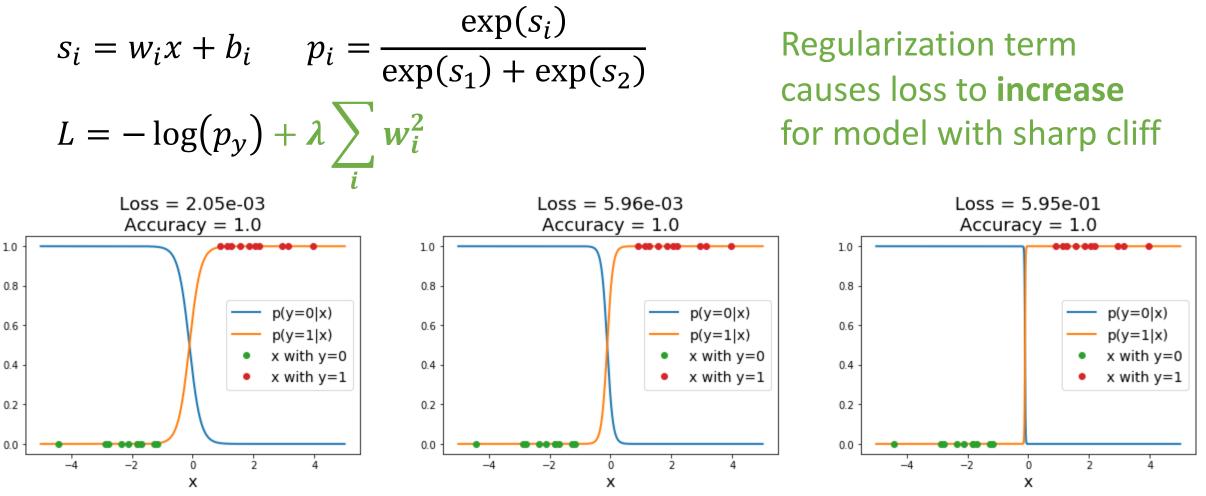
Example: Linear classifier with 1D inputs, 2 classes, softmax loss

$$s_{i} = w_{i}x + b_{i} \qquad p_{i} = \frac{\exp(s_{i})}{\exp(s_{1}) + \exp(s_{2})}$$
$$L = -\log(p_{y}) + \lambda \sum_{i} w_{i}^{2}$$

Justin Johnson

Regularization: Prefer Simpler Models

Example: Linear classifier with 1D inputs, 2 classes, softmax loss



Justin Johnson

Lecture 4 - 17

Regularization: Expressing Preferences

L2 Regularization

$$x = [1, 1, 1, 1]$$

$$w_1 = [1, 0, 0, 0]$$

$$w_2 = [0.25, 0.25, 0.25, 0.25]$$

$$R(W) = \sum_{k,l} W_{k,l}^2$$

$$w_1^T x = w_2^T x = 1$$

Same predictions, so data loss will always be the same

Justin Johnson

Lecture 4 - 18

Regularization: Expressing Preferences

L2 Regularization

$$x = [1, 1, 1, 1] \qquad R(W) = \sum_{k,l} W_k^2$$

$$w_1 = [1, 0, 0, 0] \qquad \text{L2 regularization prefers}$$

$$w_2 = [0.25, 0.25, 0.25, 0.25] \qquad \text{L2 regularization prefers}$$

weights to be "spread out"

$$w_1^T x = w_2^T x = 1$$

Same predictions, so data loss will always be the same

Justin Johnson

Lecture 4 - 19

Finding a good W

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Loss function consists of **data loss** to fit the training data and **regularization** to prevent overfitting

Justin Johnson

Lecture 4 - 20

Optimization

$w^* = \arg\min_w L(w)$

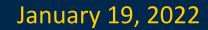
Justin Johnson

Lecture 4 - 21

This image is CC0 1.0 public domain

Walking man image is CC0 1.0 public domain

Lecture 4 - 22



This image is CC0 1.0 public domain

Walking man image is CC0 1.0 public domain

Lecture 4 - 23

Idea #1: Random Search (bad idea!)

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
  W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
    bestloss = loss
    bestW = W
  print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Justin Johnson

Lecture 4 - 24

Idea #1: Random Search (bad idea!)

Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
returns 0.1555

15.5% accuracy! not bad!

Idea #1: Random Search (bad idea!)

Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
returns 0.1555

15.5% accuracy! not bad! (SOTA is ~95%)

· · · · · · · · · · · · · · · · · · ·	•	1 I I		
Just	in I	Inr	ns	n
J G J C			115	

Lecture 4 - 26

Idea #2: Follow the slope

Justin Johnson

Lecture 4 - 27

Idea #2: Follow the slope

In 1-dimension, the **derivative** of a function gives the slope:

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Idea #2: Follow the slope

In 1-dimension, the **derivative** of a function gives the slope:

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

Justin Johnson

Lecture 4 - 29

current W:	
[0.34,	
-1.11, 0.78,	
0.12 <i>,</i> 0.55 <i>,</i>	
2.81,	
-3.1, -1.5,	
0.33,] loss 1.25347	

gradient dL/dW:

Justin Johnson

Lecture 4 - 30

current W:	W + h
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34 + -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,
loss 1.25347	loss 1.2

W + h (first dim):
[0.34 + 0.0001 , -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]

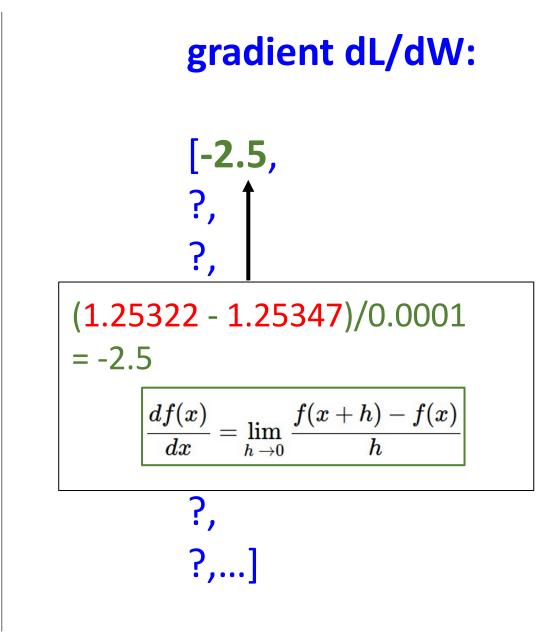
gradient dL/dW:

Justin Johnson

Lecture 4 - 31

current W:
[0.34 <i>,</i> -1.11,
0.78,
0.12 <i>,</i> 0.55 <i>,</i>
2.81,
-3.1, -1.5,
0.33,] loss 1.25347

W + h (first dim): [0.34 + **0.0001**, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25322



January 19, 2022

Justin Johnson

Lecture 4 - 32

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11,	-1.11 + 0.0001 ,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

gradient dL/dW:

Justin Johnson

Lecture 4 - 33

current W:	W + h (second dim):	gradient dL/dW:
[0.34, -1.11, 0.78, 0.12,	[0.34, -1.11 + 0.0001 , 0.78, 0.12,	[-2.5, 0.6 , ?, † ?, † ?, †
0.55, 2.81, -3.1, -1.5,	0.55, 2.81, -3.1, -1.5,	$(1.25353 - 1.25347)/0.0001$ $= 0.6$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
0.33,] loss 1.25347	0.33,] loss 1.25353	?,]

Justin Johnson

Lecture 4 - 34

January 19, 2022

current W:	W + ł
[0.34,	[0.34
-1.11,	-1.11
0.78,	0.78 -
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,

h (third dim): • • 1 +0.0001,... 1.25347

gradient dL/dW:

Justin Johnson

Lecture 4 - 35

current W:	W + h (third dim):	gradient dL/dW:
[0.34, -1.11, 0.78, 0.12, 0.55,	[0.34, -1.11, 0.78 + 0.0001 , 0.12, 0.55,	[-2.5, 0.6, 0.0 , ?,↑ ?,
2.81, -3.1, -1.5, 0.33,] loss 1.25347	2.81, -3.1, -1.5, 0.33,] loss 1.25347	$(1.25347 - 1.25347)/0.0001$ $= 0.0$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Justin Johnson

Lecture 4 - 36

current W:	
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5,	
0.33,] loss 1.25347	

W + h (third dim): [0.34, -1.11, 0.78 + 0.0001, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...]

loss 1.25347

gradient dL/dW:

[-2.5, 0.6, **0.0**, ?, ?,

Numeric Gradient:

- Slow: O(#dimensions)
- Approximate

Justin Johnson

Loss is a function of W

$$L = \frac{1}{2} \sum_{i=1}^{N} L_i + \sum_k W_k^2$$
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
$$s = f(x, W) = Wx$$
$$Want \nabla_W L$$

Justin Johnson

Lecture 4 - 38

Loss is a function of W: Analytic Gradient

$$L = \frac{1}{2} \sum_{i=1}^{N} L_i + \sum_k W_k^2$$
$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
$$s = f(x, W) = Wx$$
Want $\nabla_W L$

This image is in the public domain

This image is in the public domain

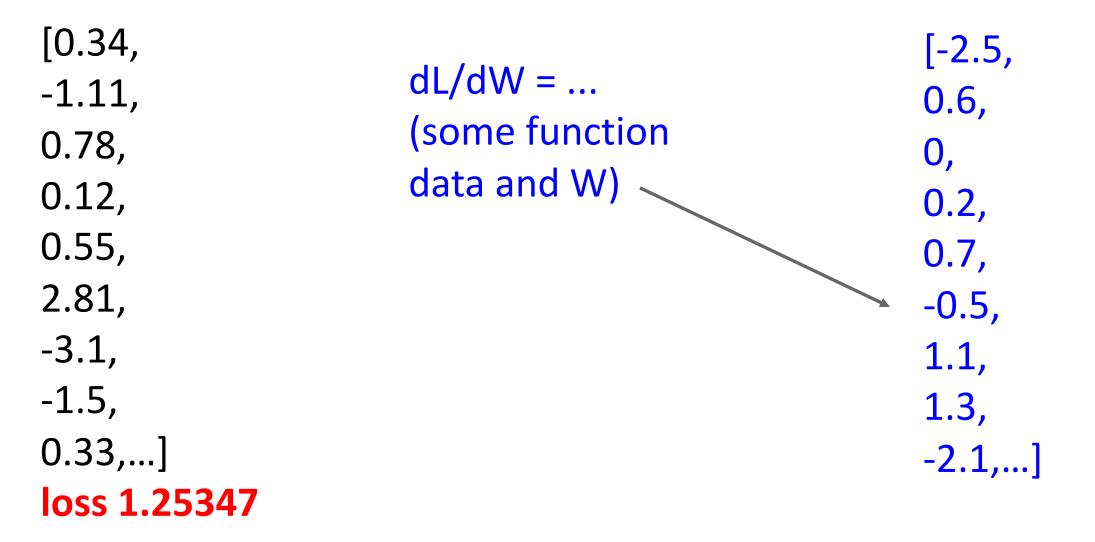
Use calculus to compute an **analytic gradient**

Justin Johnson

Lecture 4 - 39

current W:

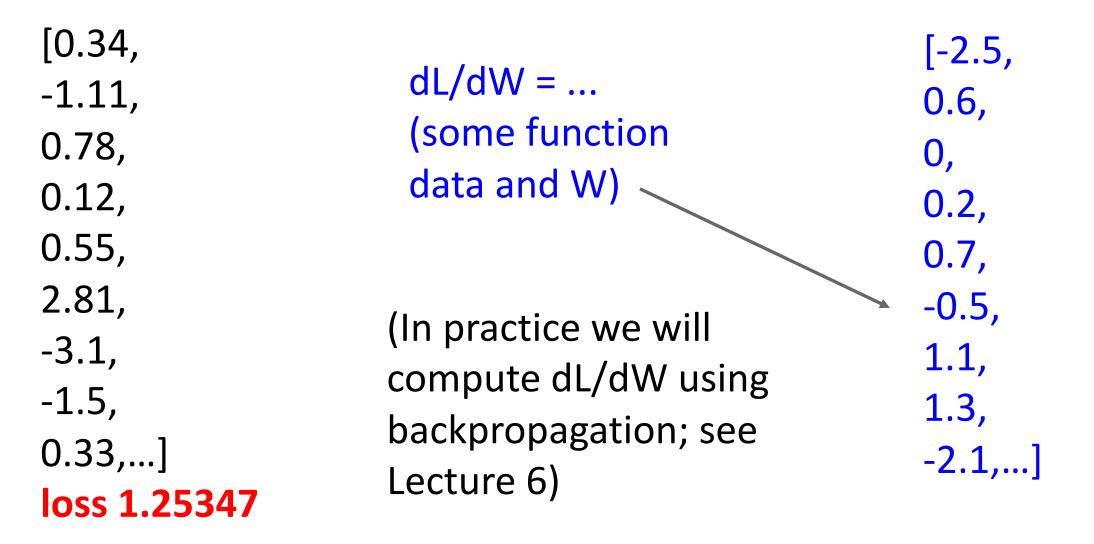
gradient dL/dW:



Lecture 4 - 40

current W:

gradient dL/dW:



Justin Johnson

Lecture 4 - 41

Numeric gradient: approximate, slow, easy to write Analytic gradient: exact, fast, error-prone

-

-

Numeric gradient: approximate, slow, easy to write Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

-

-

Numeric gradient: approximate, slow, easy to write Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation with numerical gradient. This is called a gradient check.

```
def grad_check_sparse(f, x, analytic_grad, num_checks=10, h=1e-7):
    """
    sample a few random elements and only return numerical
    in this dimensions.
    """
```

Justin Johnson

-

-

Numeric gradient: approximate, slow, easy to write Analytic gradient: exact, fast, error-prone

torch.autograd.gradcheck(func, inputs, eps=1e-06, atol=1e-05, rtol=0.001, raise_exception=True, check_sparse_nnz=False, nondet_tol=0.0)

[SOURCE] S

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs that are of floating point type and with requires_grad=True.

The check between numerical and analytical gradients uses allclose().

-

Numeric gradient: approximate, slow, easy to write Analytic gradient: exact, fast, error-prone

torch.autograd.gradgradcheck(func, inputs, grad_outputs=None, eps=1e-06, atol=1e-05, rtol=0.001, gen_non_contig_grad_outputs=False, raise_exception=True, [SOURCE] nondet_tol=0.0)

Check gradients of gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs and grad_outputs that are of floating point type and with requires_grad=True.

This function checks that backpropagating through the gradients computed to the given grad_outputs are correct.

Justin Johnson

-

Lecture 4 - 46

Gradient Descent

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
 dw = compute_gradient(loss_fn, data, w)
 w -= learning_rate * dw

Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate

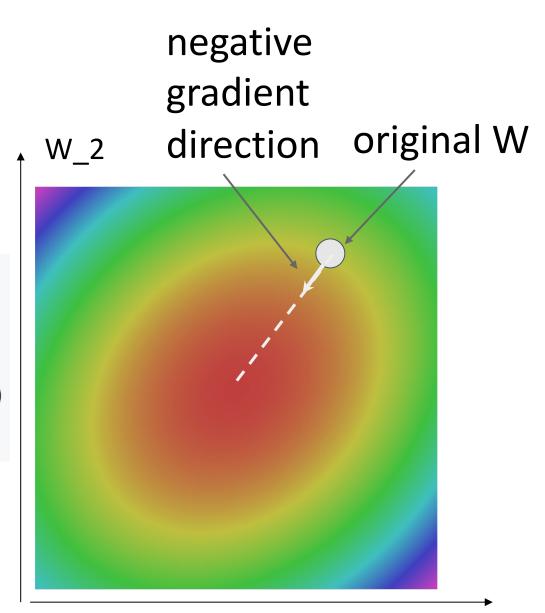
Gradient Descent

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
 dw = compute_gradient(loss_fn, data, w)
 w -= learning_rate * dw

Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate



W_1

Justin Johnson

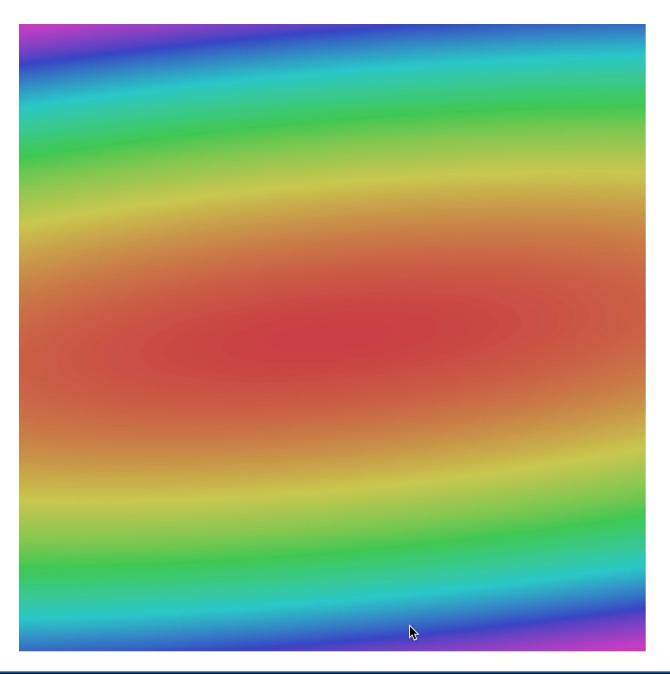
Gradient Descent

Iteratively step in the direction of the negative gradient (direction of local steepest descent)

```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
   dw = compute_gradient(loss_fn, data, w)
   w -= learning_rate * dw
```

Hyperparameters:

- Weight initialization method
- Number of steps
- Learning rate



Justin Johnson

Lecture 4 - 49

Batch Gradient Descent

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

Full sum expensive when N is large!

January 19, 2022

Justin Johnson

Stochastic Gradient Descent (SGD)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$V_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$

- # Stochastic gradient descent
- w = initialize_weights()
- for t in range(num_steps):

minibatch = sample_data(data, batch_size)

- dw = compute_gradient(loss_fn, minibatch, w)
- w -= learning_rate * dw

Full sum expensive when N is large!

Approximate sum using a **minibatch** of examples 32 / 64 / 128 common

Hyperparameters:

- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

Justin Johnson

Lecture 4 - 51

Stochastic Gradient Descent (SGD) $L(W) = \mathbb{E}_{(x,y)\sim p_{data}} [L(x,y,W)] + \lambda R(W) \xrightarrow{\text{Thingsolution}}_{\text{dat}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}_{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W) \xrightarrow{\text{App}_{opp}}_{\text{opp}} \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W)$

Think of loss as an expectation over the full data distribution p_{data}

Approximate expectation via sampling

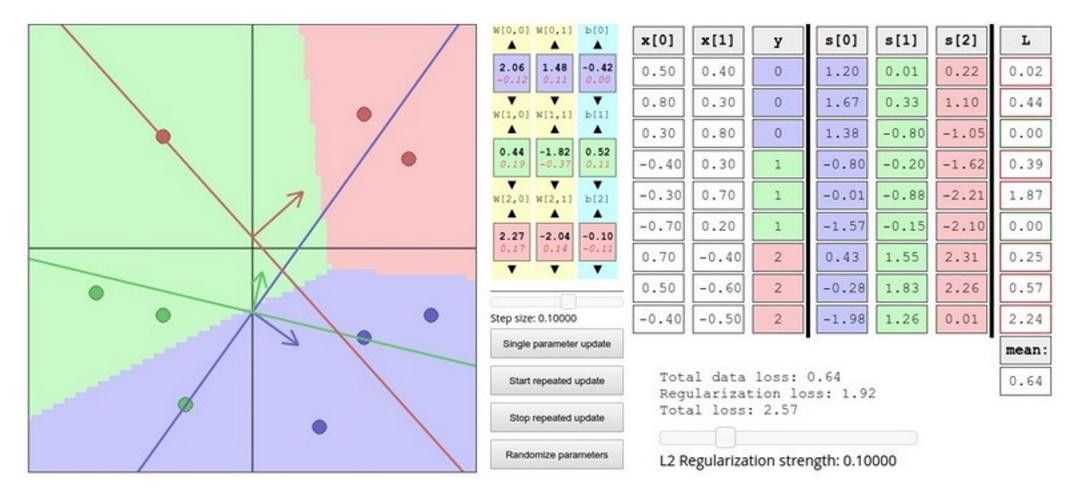
Stochastic Gradient Descent (SGD)Think of loss as an
expectation over the full
data distribution
$$p_{data}$$
 $L(W) = \mathbb{E}_{(x,y) \sim p_{data}}[L(x,y,W)] + \lambda R(W)$ Think of loss as an
expectation over the full
data distribution p_{data} $\approx \frac{1}{N} \sum_{i=1}^{N} L(x_i, y_i, W) + \lambda R(W)$ Approximate
expectation via sampling

$$\nabla_{W}L(W) = \nabla_{W}\mathbb{E}_{(x,y)\sim p_{data}}[L(x,y,W)] + \lambda\nabla_{W}R(W)$$
$$\approx \sum_{i=1}^{N} \nabla_{w}L_{W}(x_{i},y_{i},W) + \nabla_{w}R(W)$$

Justin Johnson

Lecture 4 - 53

Interactive Web Demo

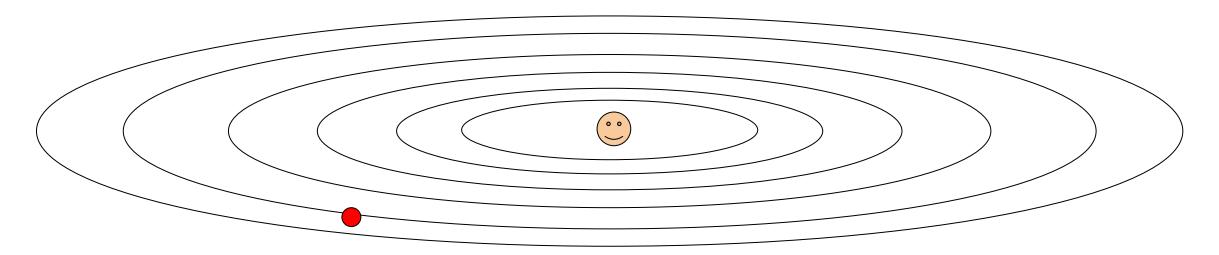


http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Justin Johnson

Lecture 4 - 54

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?



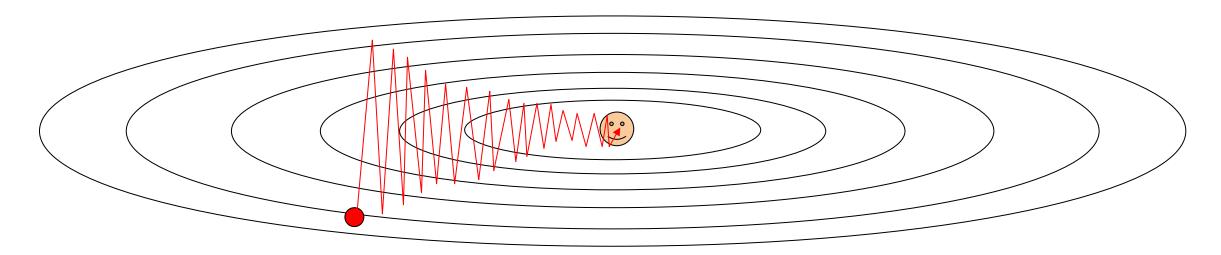
Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

Justin Johnson

Lecture 4 - 55

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

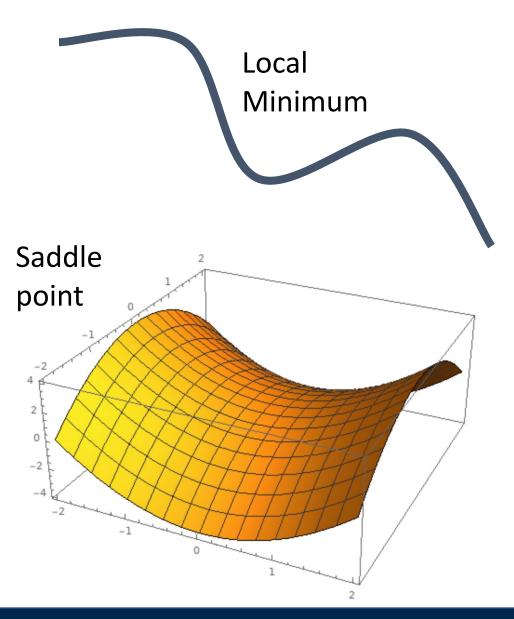


Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

Justin Johnson

Lecture 4 - 56

What if the loss function has a **local minimum** or **saddle point**?

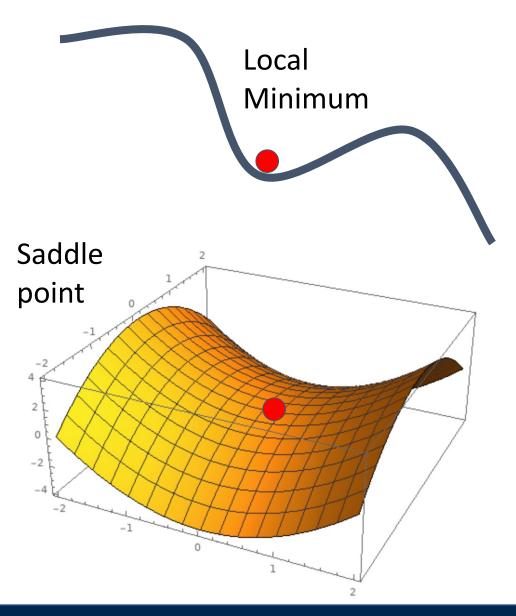


Justin Johnson

Lecture 4 - 57

What if the loss function has a **local minimum** or **saddle point**?

Zero gradient, gradient descent gets stuck



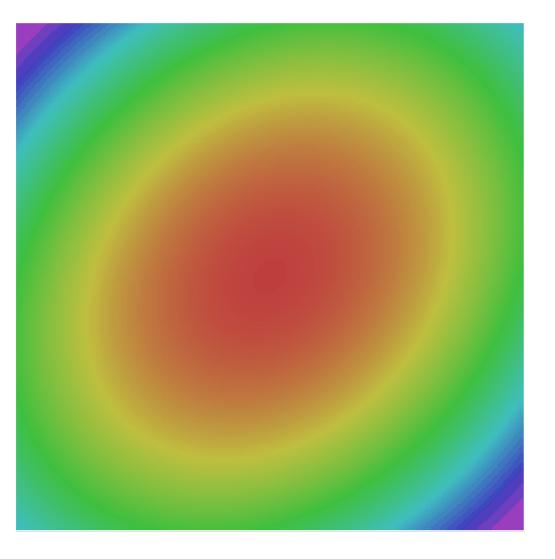
Justin Johnson

Lecture 4 - 58

Our gradients come from minibatches so they can be noisy!

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$

$$V_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$



Justin Johnson

Lecture 4 - 59

SGD

SGD
$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

 $\sim \sim \sim$

for t in range(num_steps):
 dw = compute_gradient(w)
 w -= learning_rate * dw

Lecture 4 - 60

SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

for t in range(num_steps):
 dw = compute_gradient(w)
 w -= learning_rate * dw

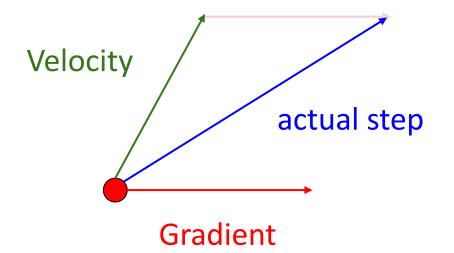
SGD+Momentum $v_{t+1} = \rho v_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha v_{t+1}$ v = 0for t in range(num_steps): dw = compute_gradient(w) v = rho * v + dw $w -= learning_rate * v$

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

Justin Johnson

Momentum update:



Combine gradient at current point with velocity to get step used to update weights SGD+Momentum $v_{t+1} = \rho v_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha v_{t+1}$ v = 0for t in range(num_steps): dw = compute_gradient(w) v = rho * v + dw $w -= learning_rate * v$

Build up "velocity" as a running mean of gradients Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

Justin Johnson

SGD+Momentum $v_{t+1} = \rho v_t - \alpha \nabla f(x_t)$ $x_{t+1} = x_t + v_{t+1}$

v = 0
for t in range(num_steps):
 dw = compute_gradient(w)
 v = rho * v - learning_rate * dw
 w += v

SGD+Momentum $v_{t+1} = \rho v_t + \nabla f(x_t)$ $x_{t+1} = x_t - \alpha v_{t+1}$ v = 0for t in range(num_steps): dw = compute_gradient(w) v = rho * v + dw $w -= learning_rate * v$

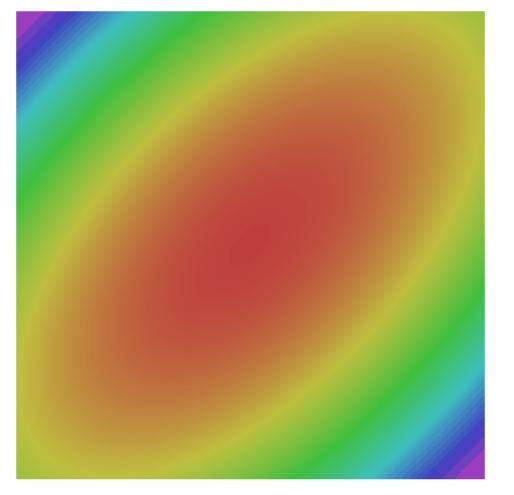
You may see SGD+Momentum formulated different ways, but they are equivalent - give same sequence of x

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

Justin Johnson

Local Minima Saddle points **Poor Conditioning**

Gradient Noise



SGD

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

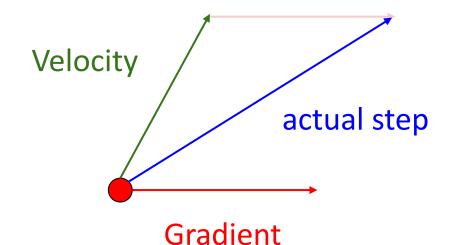
Justin Johnson

Lecture 4 - 64

January 19, 2022

SGD+Momentum

Momentum update:



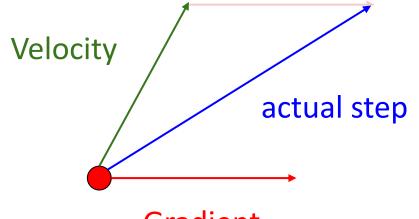
Combine gradient at current point with velocity to get step used to update weights

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

Justin Johnson

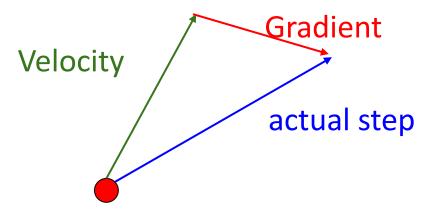
Lecture 4 - 65

Momentum update:



Gradient

Nesterov Momentum



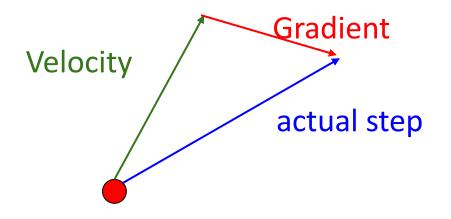
Combine gradient at current point with velocity to get step used to update weights

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013 "Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Justin Johnson

Lecture 4 - 66

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$



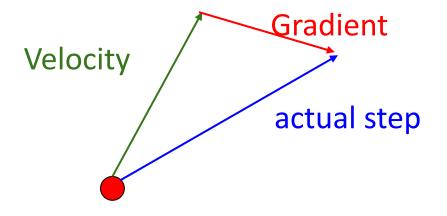
"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Justin Johnson

Lecture 4 - 67

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Annoying, usually we want update in terms of $x_t,
abla f(x_t)$



"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

Justin Johnson

Lecture 4 - 68

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Annoying, usually we want update in terms of $x_t,
abla f(x_t)$

Change of variables $\tilde{x}_t = x_t + \rho v_t$ and rearrange:

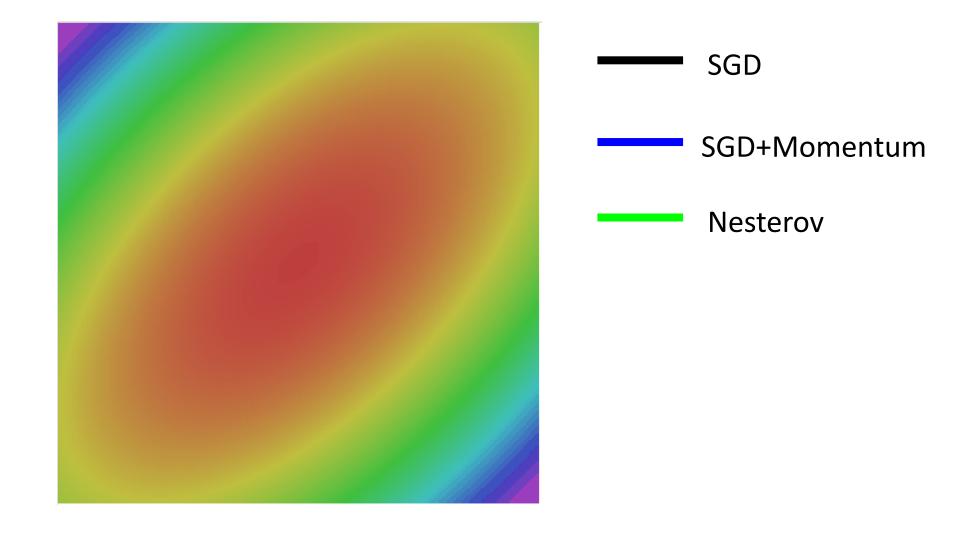
$$v_{t+1} = \rho v_t - \alpha \nabla f(\tilde{x}_t)$$

$$\tilde{x}_{t+1} = \tilde{x}_t - \rho v_t + (1+\rho)v_{t+1}$$

$$= \tilde{x}_t + v_{t+1} + \rho(v_{t+1} - v_t)$$

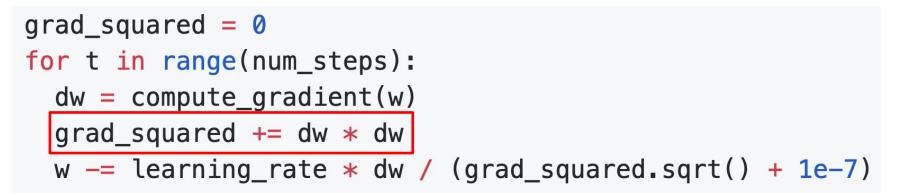
v = 0
for t in range(num_steps):
 dw = compute_gradient(w)
 old_v = v
 v = rho * v - learning_rate * dw
 w -= rho * old_v - (1 + rho) * v

Justin Johnson



Justin Johnson

AdaGrad



Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

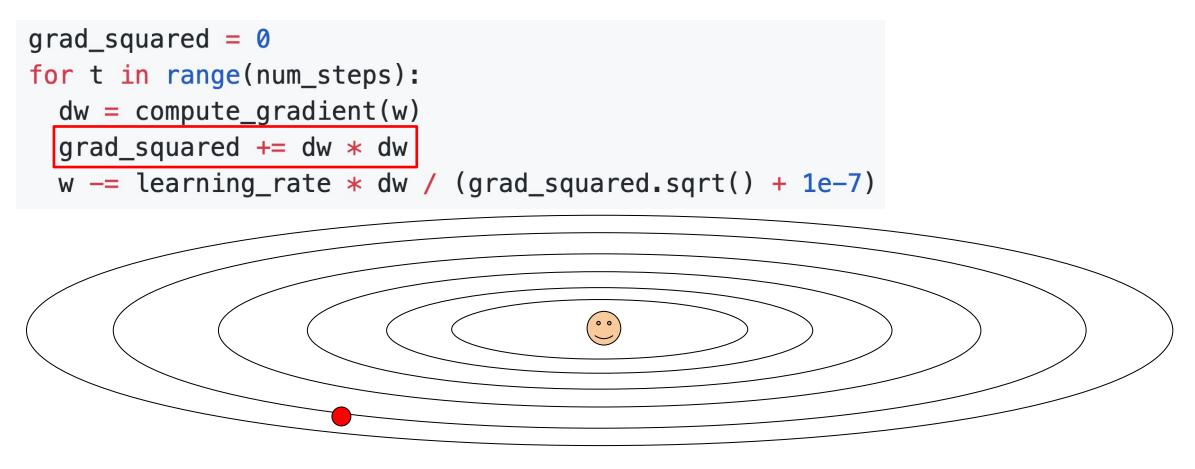
"Per-parameter learning rates" or "adaptive learning rates"

Duchi et al, "Adaptive subgradient methods for online learning and stochastic optimization", JMLR 2011

Justin Johnson



AdaGrad

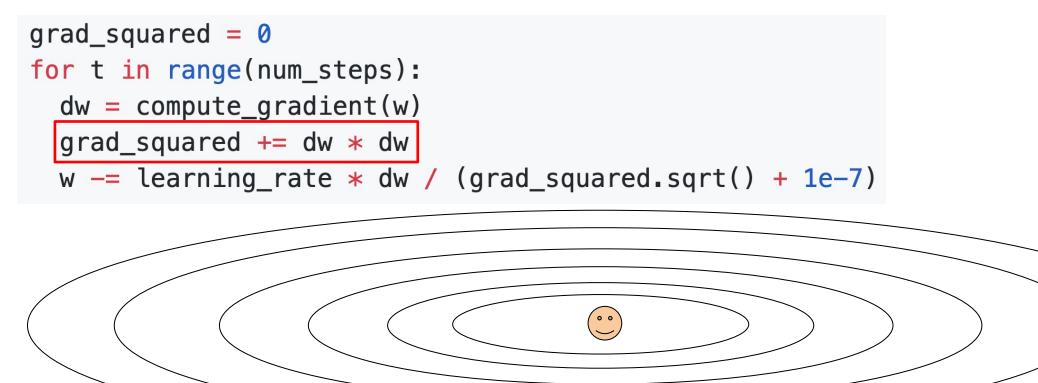


Duchi et al, "Adaptive subgradient methods for online learning and stochastic optimization", JMLR 2011

Justin Johnson

Lecture 4 - 72

AdaGrad

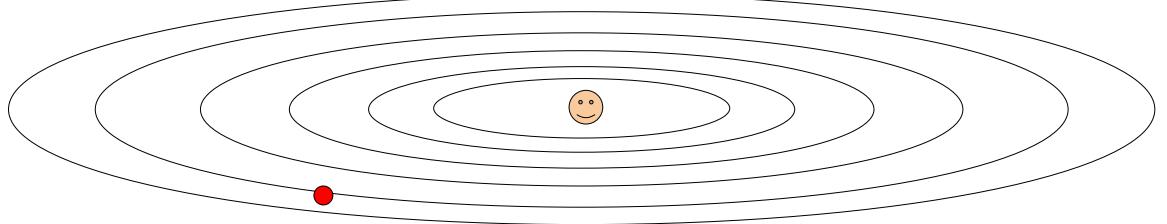


Q: What happens with AdaGrad?

Justin Johnson

Lecture 4 - 73

AdaGrad



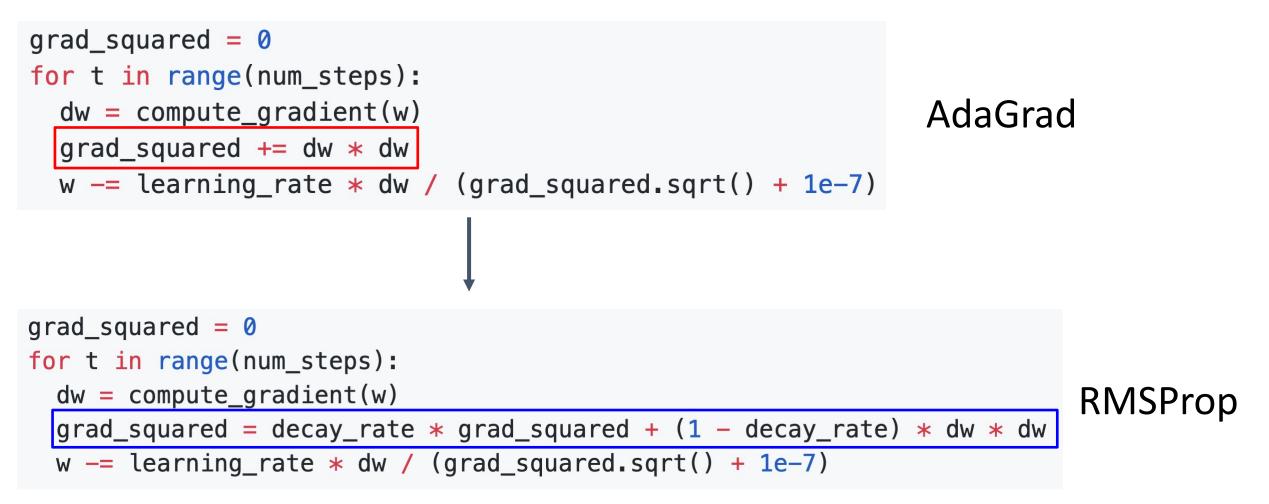
Q: What happens with AdaGrad?

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

Justin Johnson

Lecture 4 - 74

RMSProp: "Leaky Adagrad"

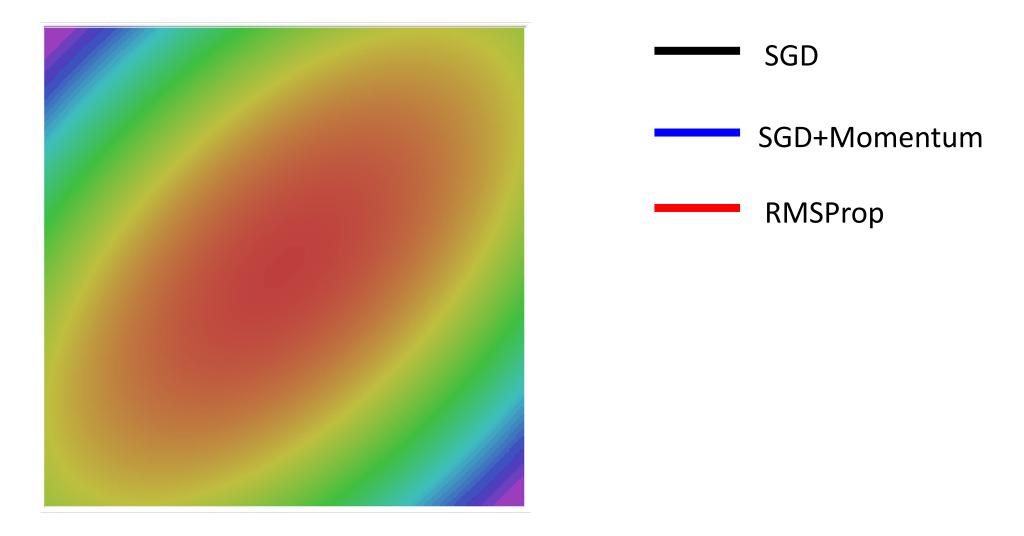


Tieleman and Hinton, 2012

Justin Johnson

Lecture 4 - 75

RMSProp



Justin Johnson

Lecture 4 - 76

```
moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
  dw = compute_gradient(w)
  moment1 = beta1 * moment1 + (1 - beta1) * dw
  moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
  w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
```

Justin Johnson

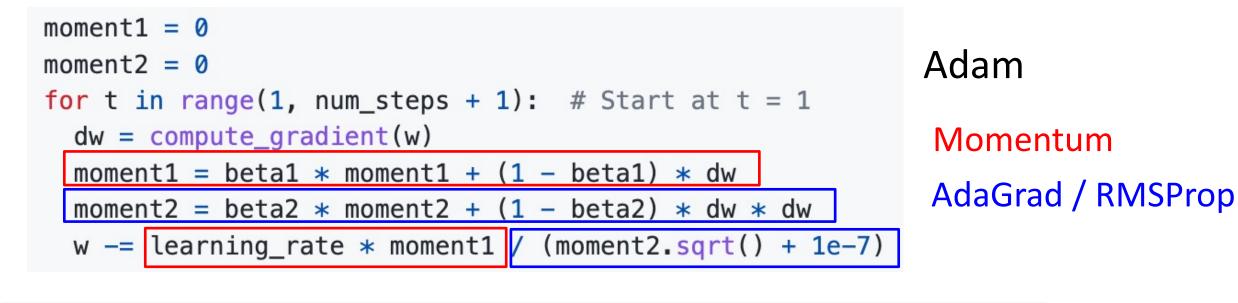
Lecture 4 - 77

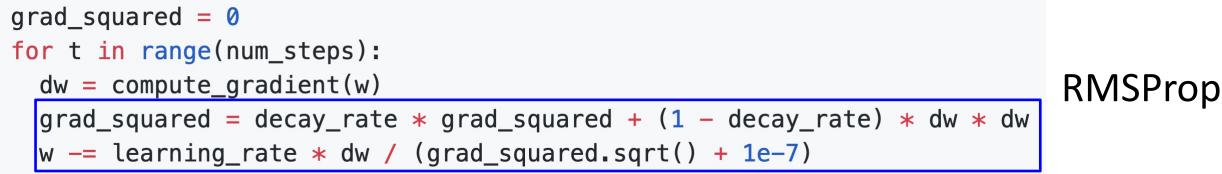
SGD+Momentum

January 19, 2022

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Justin Johnson





Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Justin Johnson

Lecture 4 - 79

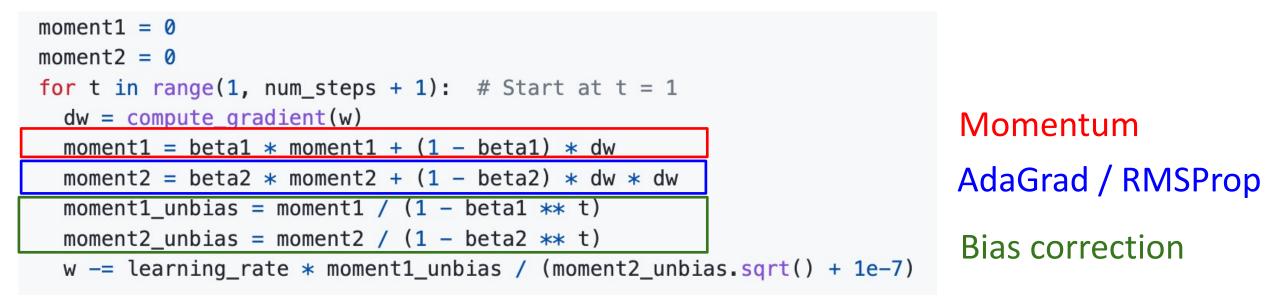
```
moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
dw = compute_gradient(w)
moment1 = beta1 * moment1 + (1 - beta1) * dw
moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
w -= learning_rate * moment1 / (moment2.sqrt() + 1e-7)
Piece core
```

Momentum AdaGrad / RMSProp Bias correction

January 19, 2022

Q: What happens at t=1? (Assume beta2 = 0.999)

Justin Johnson



```
Bias correction for the fact
that first and second moment
estimates start at zero
```

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Justin Johnson

Lecture 4 - 81

```
moment1 = 0
moment2 = 0
for t in range(1, num_steps + 1): # Start at t = 1
    dw = compute_gradient(w)
    moment1 = beta1 * moment1 + (1 - beta1) * dw
    moment2 = beta2 * moment2 + (1 - beta2) * dw * dw
    moment1_unbias = moment1 / (1 - beta1 ** t)
    moment2_unbias = moment2 / (1 - beta2 ** t)
    w -= learning_rate * moment1_unbias / (moment2_unbias.sqrt() + 1e-7)
```

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 = 0.9, beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4 is a great starting point for many models!

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Justin Johnson

Lecture 4 - 82

Adam: Very Common in Practice!

for input to the CNN; each colored pixel in the image yields a 7D one-hot vector. Following common practice, the network is trained end-to-end using stochastic gradient descent with the Adam optimizer [22]. We anneal the learning rate to 0 using a half cosine schedule without restarts [28].

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019

We train all models using Adam [23] with learning rate 10^{-4} and batch size 32 for 1 million iterations; training takes about 3 days on a single Tesla P100. For each minibatch we first update f, then update D_{img} and D_{obj} .

Johnson, Gupta, and Fei-Fei, CVPR 2018

ganized into three residual blocks. We train for 25 epochs using Adam [27] with learning rate 10^{-4} and 32 images per batch on 8 Tesla V100 GPUs. We set the cubify thresh-

Gkioxari, Malik, and Johnson, ICCV 2019

sampled with each bit drawn uniformly at random. For gradient descent, we use Adam [29] with a learning rate of 10^{-3} and default hyperparameters. All models are trained with batch size 12. Models are trained for 200 epochs, or 400 epochs if being trained on multiple noise layers.

Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

16 dimensional vectors. We iteratively train the Generator and Discriminator with a batch size of 64 for 200 epochs using Adam [22] with an initial learning rate of 0.001.

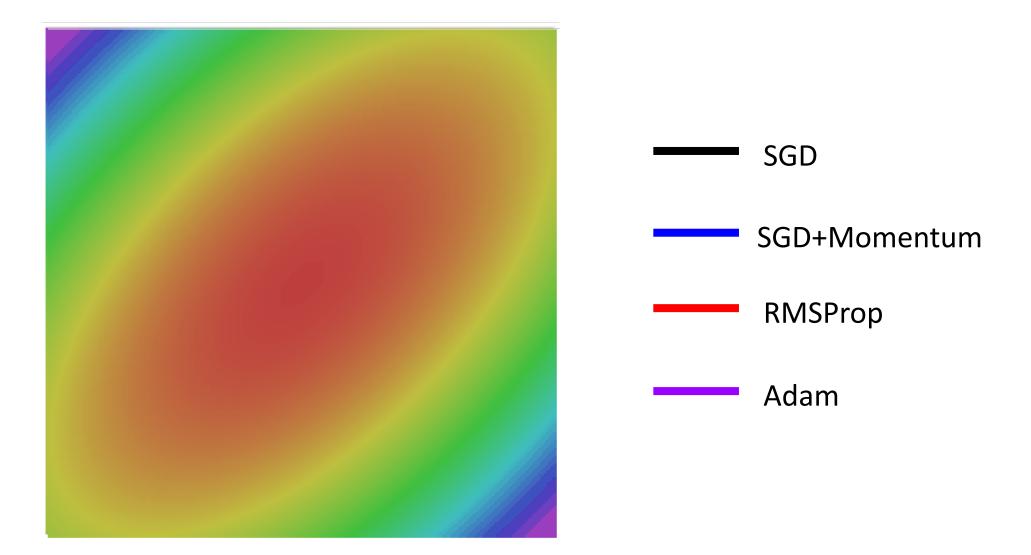
Gupta, Johnson, et al, CVPR 2018

Adam with beta1 = 0.9, beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4 is a great starting point for many models!

Justin Johnson

Lecture 4 - 83

Adam



Justin Johnson

Lecture 4 - 84

Optimization Algorithm Comparison

Algorithm	Tracks first moments (Momentum)	Tracks second moments (Adaptive learning rates)	Leaky second moments	Bias correction for moment estimates
SGD	X	X	X	X
SGD+Momentum	\checkmark	X	X	X
Nesterov	\checkmark	X	X	X
AdaGrad	X	\checkmark	X	X
RMSProp	X	\checkmark	\checkmark	X
Adam	\checkmark	\checkmark	\checkmark	\checkmark

Optimization Algorithm

$$L(w) = L_{data}(w) + L_{reg}(w)$$

$$g_t = \nabla L(w_t)$$

$$s_t = optimizer(g_t)$$

$$w_{t+1} = w_t - \alpha s_t$$

Optimization Algorithm $L(w) = L_{data}(w) + L_{reg}(w)$ $g_t = \nabla L(w_t)$ $s_t = optimizer(g_t)$ $w_{t+1} = w_t - \alpha s_t$

L2 Regularization $L(w) = L_{data}(w) + \lambda |w|^{2}$ $g_{t} = \nabla L(w_{t}) = \nabla L_{data}(w_{t}) + 2\lambda w_{t}$ $s_{t} = optimizer(g_{t})$ $w_{t+1} = w_{t} - \alpha s_{t}$

Loshchilov and Hutter, "Decoupled Weight Decay Regularization", ICLR 2019

Justin Johnson

Lecture 4 - 87

Optimization Algorithm $L(w) = L_{data}(w) + L_{reg}(w)$ $g_t = \nabla L(w_t)$ $s_t = optimizer(g_t)$ $w_{t+1} = w_t - \alpha s_t$

L2 Regularization $L(w) = L_{data}(w) + \lambda |w|^{2}$ $g_{t} = \nabla L(w_{t}) = \nabla L_{data}(w_{t}) + 2\lambda w_{t}$ $s_{t} = optimizer(g_{t})$ $w_{t+1} = w_{t} - \alpha s_{t}$

Weight Decay $L(w) = L_{data}(w)$ $g_t = \nabla L_{data}(w_t)$ $s_t = optimizer(g_t) + 2\lambda w_t$ $w_{t+1} = w_t - \alpha s_t$

Loshchilov and Hutter, "Decoupled Weight Decay Regularization", ICLR 2019

Justin Johnson

Optimization Algorithm $L(w) = L_{data}(w) + L_{reg}(w)$ $g_t = \nabla L(w_t)$ $s_t = optimizer(g_t)$ $w_{t+1} = w_t - \alpha s_t$

L2 Regularization and Weight Decay are equivalent for SGD, SGD+Momentum so people often use the terms interchangeably!

L2 Regularization $L(w) = L_{data}(w) + \lambda |w|^{2}$ $g_{t} = \nabla L(w_{t}) = \nabla L_{data}(w_{t}) + 2\lambda w_{t}$ $s_{t} = optimizer(g_{t})$ $w_{t+1} = w_{t} - \alpha s_{t}$

Weight Decay $L(w) = L_{data}(w)$ $g_t = \nabla L_{data}(w_t)$ $s_t = optimizer(g_t) + 2\lambda w_t$ $w_{t+1} = w_t - \alpha s_t$

Loshchilov and Hutter, "Decoupled Weight Decay Regularization", ICLR 2019

Justin Johnson

Optimization Algorithm $L(w) = L_{data}(w) + L_{reg}(w)$ $g_t = \nabla L(w_t)$ $s_t = optimizer(g_t)$ $w_{t+1} = w_t - \alpha s_t$

L2 Regularization and Weight Decay are equivalent for SGD, SGD+Momentum so people often use the terms interchangeably!

But they are not the same for adaptive methods (AdaGrad, RMSProp, Adam, etc)

Loshchilov and Hutter, "Decoupled Weight Decay Regularization", ICLR 2019

L2 Regularization $L(w) = L_{data}(w) + \lambda |w|^{2}$ $g_{t} = \nabla L(w_{t}) = \nabla L_{data}(w_{t}) + 2\lambda w_{t}$ $s_{t} = optimizer(g_{t})$ $w_{t+1} = w_{t} - \alpha s_{t}$

Weight Decay $L(w) = L_{data}(w)$ $g_t = \nabla L_{data}(w_t)$ $s_t = optimizer(g_t) + 2\lambda w_t$ $w_{t+1} = w_t - \alpha s_t$

AdamW: Decoupled Weight Decay

Algorithm 2 Adam with L₂ regularization and Adam with decoupled weight decay (AdamW)

- 1: given $\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, \lambda \in \mathbb{R}$
- 2: initialize time step $t \leftarrow 0$, parameter vector $\boldsymbol{\theta}_{t=0} \in \mathbb{R}^n$, first moment vector $\boldsymbol{m}_{t=0} \leftarrow \boldsymbol{\theta}$, second moment vector $\boldsymbol{v}_{t=0} \leftarrow \boldsymbol{\theta}$, schedule multiplier $\eta_{t=0} \in \mathbb{R}$

3: repeat

- 4: $t \leftarrow t + 1$ 5: $\nabla f_t(\boldsymbol{\theta}_{t-1}) \leftarrow \text{SelectBatch}(\boldsymbol{\theta}_{t-1})$
- 5. $\nabla f_t(\boldsymbol{v}_{t-1}) \leftarrow \text{SelectBatch}(\boldsymbol{v}_{t-1})$
- 6: $\boldsymbol{g}_t \leftarrow \nabla f_t(\boldsymbol{\theta}_{t-1}) + \lambda \boldsymbol{\theta}_{t-1}$
- 7: $\boldsymbol{m}_t \leftarrow \beta_1 \boldsymbol{m}_{t-1} + \overline{(1-\beta_1)\boldsymbol{g}}_t$
- 8: $\boldsymbol{v}_t \leftarrow \beta_2 \boldsymbol{v}_{t-1} + (1 \beta_2) \boldsymbol{g}_t^2$
- 9: $\hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t / (1 \beta_1^t)$
- 10: $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t/(1-\beta_2^t)$ 11: $\eta_t \leftarrow \text{SetScheduleMultiplier}(t)$
- 12: $\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} \eta_t \left(\alpha \hat{\boldsymbol{m}}_t / (\sqrt{\hat{\boldsymbol{v}}_t} + \epsilon) + \lambda \boldsymbol{\theta}_{t-1} \right)$

13: **until** stopping criterion is met 14: **return** optimized parameters θ_t

- ▷ select batch and return the corresponding gradient
 - ▷ here and below all operations are element-wise

 $\triangleright \beta_1$ is taken to the power of t

 $\triangleright \beta_2$ is taken to the power of t

 \triangleright can be fixed, decay, or also be used for warm restarts

Loshchilov and Hutter, "Decoupled Weight Decay Regularization", ICLR 2019

Justin Johnson

Lecture 4 - 91

AdamW: Decoupled Weight Decay

Algorithm 2 Adam with L₂ regularization and Adam with decoupled weight decay (AdamW)

1: given $\alpha = 0.001, \beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}, \lambda \in \mathbb{R}$

2: initialize time step $t \leftarrow 0$, parameter vector $\boldsymbol{\theta}_{t=0} \in \mathbb{R}^n$, first moment vector $\boldsymbol{m}_{t=0} \leftarrow \boldsymbol{\theta}$, second moment vector $\boldsymbol{v}_{t=0} \leftarrow \boldsymbol{\theta}$, schedule multiplier $n_{t=0} \in \mathbb{R}$.

AdamW should probably be your "default" optimizer for new problems

11: $\eta_t \leftarrow \text{SetScheduleMultiplier}(t)$

$$\triangleright$$
 can be fixed, decay, or also be used for warm restarts

January 19, 2022

12:
$$\boldsymbol{\theta}_t \leftarrow \boldsymbol{\theta}_{t-1} - \eta_t \left(\alpha \hat{\boldsymbol{m}}_t / (\sqrt{\hat{\boldsymbol{v}}_t} + \epsilon) + \lambda \boldsymbol{\theta}_{t-1} \right)$$

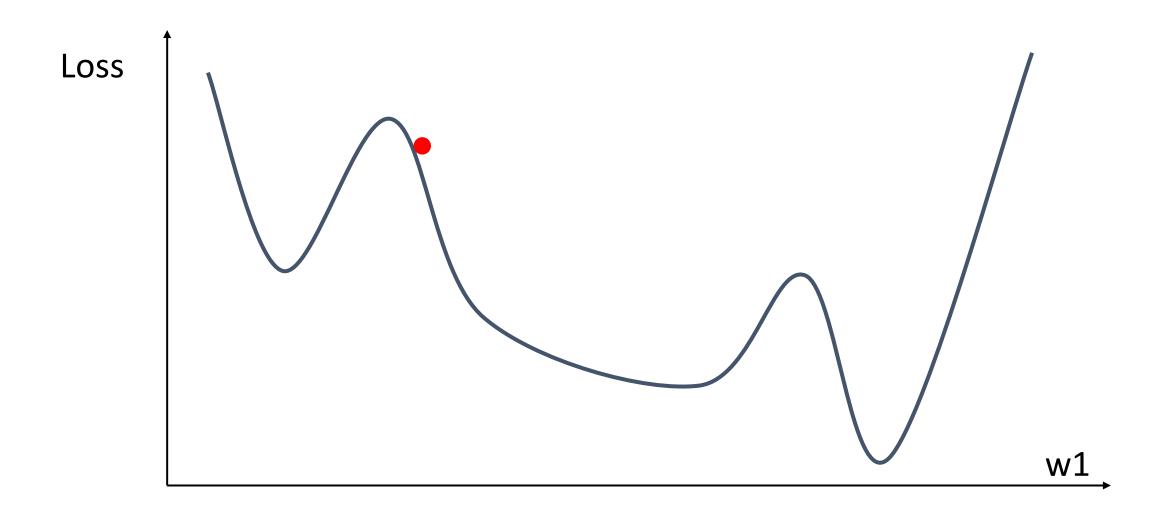
13: **until** stopping criterion is met

14: **return** optimized parameters $\boldsymbol{\theta}_t$

Loshchilov and Hutter, "Decoupled Weight Decay Regularization", ICLR 2019

Justin Johnson

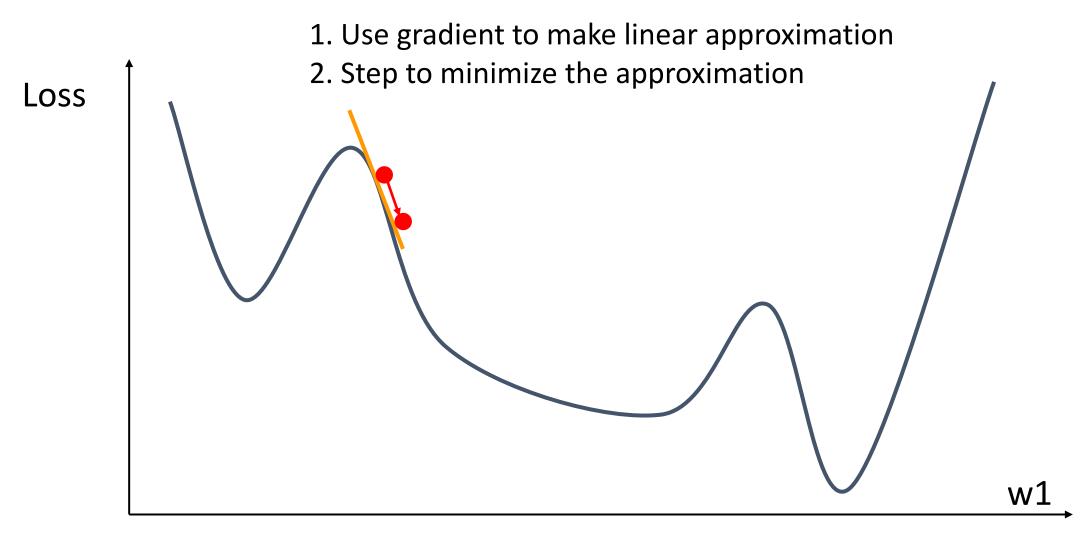
So far: First-Order Optimization



Justin Johnson

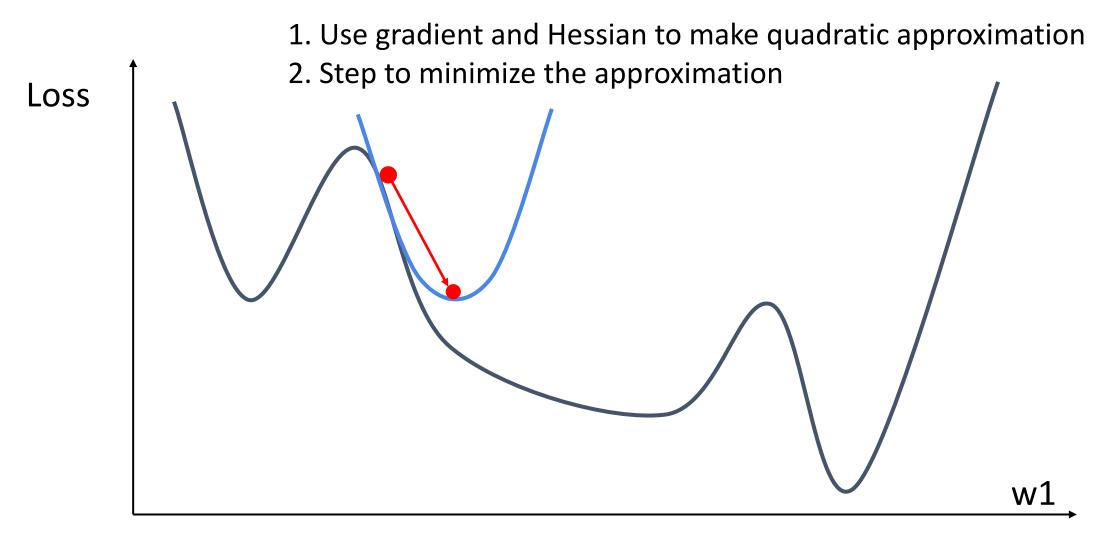
Lecture 4 - 93

So far: First-Order Optimization



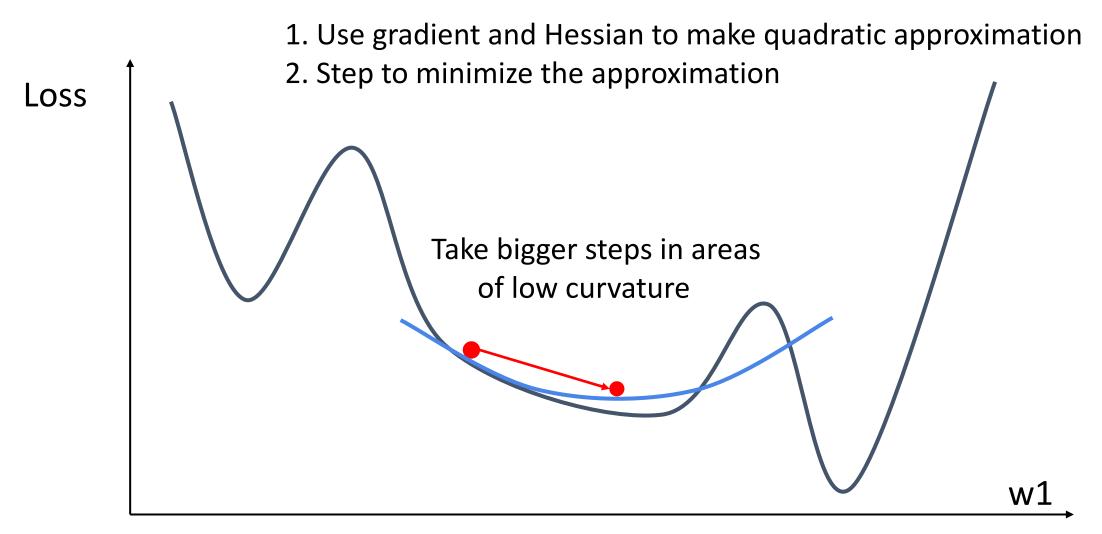
Justin Johnson

Lecture 4 - 94



Justin Johnson

Lecture 4 - 95



Justin Johnson

Lecture 4 - 96

Second-Order Taylor Expansion:

$$L(w) \approx L(w_0) + (w - w_0)^{\mathsf{T}} \nabla_w L(w_0) + \frac{1}{2} (w - w_0)^{\mathsf{T}} \mathbf{H}_w L(w_0) (w - w$$

Solving for the critical point we obtain the Newton parameter update:

$$w^* = w_0 - \mathbf{H}_w L(w_0)^{-1} \nabla_w L(w_0)$$

Justin Johnson

Lecture 4 - 97

Second-Order Taylor Expansion:

$$L(w) \approx L(w_0) + (w - w_0)^{\mathsf{T}} \nabla_w L(w_0) + \frac{1}{2} (w - w_0)^{\mathsf{T}} \mathbf{H}_w L(w_0) (w - w$$

Solving for the critical point we obtain the Newton parameter update:

$$w^* = w_0 - \mathbf{H}_w L(w_0)^{-1} \nabla_w L(w_0)$$

Q: Why is this impractical?

Justin Johnson

Lecture 4 - 98

Second-Order Taylor Expansion:

$$L(w) \approx L(w_0) + (w - w_0)^{\mathsf{T}} \nabla_w L(w_0) + \frac{1}{2} (w - w_0)^{\mathsf{T}} \mathbf{H}_w L(w_0) (w - w$$

Solving for the critical point we obtain the Newton parameter update:

$$w^* = w_0 - \mathbf{H}_w L(w_0)^{-1} \nabla_w L(w_0)$$

Q: Why is this impractical?

Hessian has O(N^2) elements Inverting takes O(N^3) N = (Tens or Hundreds of) Millions

Justin Johnson

Lecture 4 - 99

$$w^* = w_0 - \mathbf{H}_w L(w_0)^{-1} \nabla_w L(w_0)$$

Quasi-Newton methods (**BGFS** most popular): instead of inverting the Hessian ($O(n^3)$), approximate inverse Hessian with rank 1 updates over time ($O(n^2)$ each).

- **L-BFGS** (Limited memory BFGS): *Does not form/store the full inverse Hessian.*

_

Second-Order Optimization: L-BFGS

- Usually works very well in full batch, deterministic mode
 i.e. if you have a single, deterministic f(x) then L-BFGS will
 probably work very nicely
- Does not transfer very well to mini-batch setting. Gives bad results. Adapting second-order methods to large-scale, stochastic setting is an active area of research.

Le et al, "On optimization methods for deep learning, ICML 2011"

Ba et al, "Distributed second-order optimization using Kronecker-factored approximations", ICLR 2017

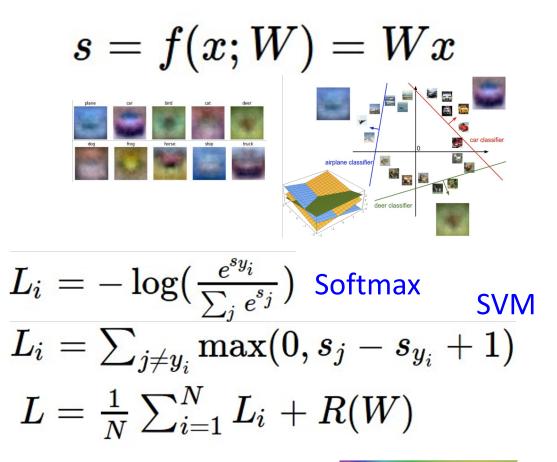
Justin Johnson

_

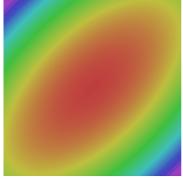
- Adam is a good default choice in many cases SGD+Momentum can outperform Adam but may require more tuning
- If you can afford to do full batch updates then try out
 L-BFGS (and don't forget to disable all sources of noise)

Summary

- 1. Use Linear Models for image classification problems
- 2. Use Loss Functions to express preferences over different choices of weights
- 3. Use **Regularization** to prevent overfitting to training data
- Use Stochastic Gradient
 Descent to minimize our loss functions and train the model



v = 0
for t in range(num_steps):
 dw = compute_gradient(w)
 v = rho * v + dw
 w -= learning_rate * v



Justin Johnson

Lecture 4 - 103

Next time: Neural Networks

Justin Johnson

Lecture 4 - 104