
Justin Johnson January 19, 2022

Lecture 4:
Regularization +

Optimization

Lecture 4 - 1

Justin Johnson January 19, 2022

Reminder: Assignment 1

Was due on Friday!

If you enrolled late, you can have an extension – but email me /
post on Piazza so we can track these

Lecture 4 - 2

Justin Johnson January 19, 2022

Assignment 2

Lecture 4 - 3

• Released on Sunday
• Use SGD to train linear classifiers and fully-connected networks
• After today, can do linear classifiers section
• After Lecture 5, can do fully-connected networks
• If you have a hard time computing derivatives, wait for Lecture 6 on

backprop
• Due Friday January 28, 11:59pm ET

Justin Johnson January 19, 2022Lecture 4 - 4

Last Time: Linear Classifiers

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template
per class

Hyperplanes
cutting up space

Justin Johnson January 19, 2022Lecture 4 - 5

Last Time: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Linear classifier

Softmax: 𝐿! = − log
"#$ %!"
∑# "#$ %#

SVM: 𝐿! = ∑'()"max 0, 𝑠' − 𝑠)" + 1

𝑠 = 𝑓 𝑥;𝑊, 𝑏 = 𝑊𝑥 + 𝑏

Justin Johnson January 19, 2022Lecture 4 - 6

Last Time: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a score function:
- We have a loss function:

Linear classifier

Softmax: 𝐿! = − log
"#$ %!"
∑# "#$ %#

SVM: 𝐿! = ∑'()"max 0, 𝑠' − 𝑠)" + 1

𝑠 = 𝑓 𝑥;𝑊, 𝑏 = 𝑊𝑥 + 𝑏

Problem: Loss functions encourage
good performance on training data
but we really care about test data

Justin Johnson January 19, 2022

Overfitting

Lecture 4 - 7

A model is overfit when it performs
too well on the training data, and has
poor performance for unseen data

Justin Johnson January 19, 2022

Overfitting

Lecture 4 - 8

A model is overfit when it performs
too well on the training data, and has
poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, softmax loss
𝑠$ = 𝑤$𝑥 + 𝑏$

𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝'

Justin Johnson January 19, 2022

Overfitting

Lecture 4 - 9

A model is overfit when it performs
too well on the training data, and has
poor performance for unseen data

Both models have perfect accuracy on train data!

Example: Linear classifier with 1D
inputs, 2 classes, softmax loss
𝑠$ = 𝑤$𝑥 + 𝑏$

𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝'

Justin Johnson January 19, 2022

Overfitting

Lecture 4 - 10

A model is overfit when it performs
too well on the training data, and has
poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, softmax loss
𝑠$ = 𝑤$𝑥 + 𝑏$

𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝'

Low loss, but unnatural “cliff”
between training points

Both models have perfect accuracy on train data!

Justin Johnson January 19, 2022

Overfitting

Lecture 4 - 11

A model is overfit when it performs
too well on the training data, and has
poor performance for unseen data

Example: Linear classifier with 1D
inputs, 2 classes, softmax loss
𝑠$ = 𝑤$𝑥 + 𝑏$

𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝'

Overconfidence in regions with no training data could give poor generalization

Justin Johnson January 19, 2022Lecture 4 - 12

Regularization: Beyond Training Error

Data loss: Model predictions
should match training data

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0

Justin Johnson January 19, 2022Lecture 4 - 13

Regularization: Beyond Training Error

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0 + 𝜆𝑅 𝑊 𝜆 is a hyperparameter
giving regularization
strength

Justin Johnson January 19, 2022Lecture 4 - 14

Regularization: Beyond Training Error

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

Simple examples
L2 regularization: 𝑅 𝑊 = ∑!,#𝑊!.#

%

L1 regularization: 𝑅 𝑊 = ∑!,# 𝑊!,#

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0 + 𝜆𝑅 𝑊 𝜆 is a hyperparameter
giving regularization
strength

Justin Johnson January 19, 2022Lecture 4 - 15

Regularization: Beyond Training Error

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

Simple examples
L2 regularization: 𝑅 𝑊 = ∑!,#𝑊!.#

%

L1 regularization: 𝑅 𝑊 = ∑!,# 𝑊!,#

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0 + 𝜆𝑅 𝑊 𝜆 is a hyperparameter
giving regularization
strength

More complex:
Dropout
Batch normalization
Cutout, Mixup, Stochastic depth, etc…

Justin Johnson January 19, 2022

Regularization: Prefer Simpler Models

Lecture 4 - 16

Example: Linear classifier with 1D inputs, 2 classes, softmax loss

𝑠$ = 𝑤$𝑥 + 𝑏$ 𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝' + 𝝀5

𝒊

𝒘𝒊
𝟐

Justin Johnson January 19, 2022

Regularization: Prefer Simpler Models

Lecture 4 - 17

Example: Linear classifier with 1D inputs, 2 classes, softmax loss

𝑠$ = 𝑤$𝑥 + 𝑏$ 𝑝$ =
exp 𝑠$

exp 𝑠% + exp 𝑠&
𝐿 = − log 𝑝' + 𝝀5

𝒊

𝒘𝒊
𝟐

Regularization term
causes loss to increase
for model with sharp cliff

Justin Johnson January 19, 2022

Regularization: Expressing Preferences

Lecture 4 - 18

L2 Regularization

𝑅 𝑊 =$
!,#

𝑊!,#
$

𝑤56𝑥 = 𝑤76𝑥 = 1

𝑥 = 1, 1, 1, 1
𝑤5 = 1, 0, 0, 0
𝑤7 = 0.25, 0.25, 0.25, 0.25

Same predictions, so data
loss will always be the same

Justin Johnson January 19, 2022

Regularization: Expressing Preferences

Lecture 4 - 19

L2 Regularization

L2 regularization prefers
weights to be “spread out”

𝑅 𝑊 =$
!,#

𝑊!,#
$

𝑤56𝑥 = 𝑤76𝑥 = 1

𝑥 = 1, 1, 1, 1
𝑤5 = 1, 0, 0, 0
𝑤7 = 0.25, 0.25, 0.25, 0.25

Same predictions, so data
loss will always be the same

Justin Johnson January 19, 2022

Finding a good W

Lecture 4 - 20

𝐿 𝑊 =
1
𝑁&

012

3

𝐿0 𝑓 𝑥0 ,𝑊 , 𝑦0 + 𝜆𝑅 𝑊

Loss function consists of data loss to fit the training
data and regularization to prevent overfitting

Justin Johnson January 19, 2022

Optimization

Lecture 4 - 21

𝑤∗ = argmin
+
𝐿 𝑤

Justin Johnson January 19, 2022Lecture 4 - 22

Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

Justin Johnson January 19, 2022Lecture 4 - 23

Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

Justin Johnson January 19, 2022

Idea #1: Random Search (bad idea!)

Lecture 4 - 24

Justin Johnson January 19, 2022

Idea #1: Random Search (bad idea!)

Lecture 4 - 25

15.5% accuracy! not bad!

Justin Johnson January 19, 2022

Idea #1: Random Search (bad idea!)

Lecture 4 - 26

15.5% accuracy! not bad!
(SOTA is ~95%)

Justin Johnson January 19, 2022

Idea #2: Follow the slope

Lecture 4 - 27

Justin Johnson January 19, 2022

Idea #2: Follow the slope

Lecture 4 - 28

In 1-dimension, the derivative of a function gives the slope:

𝑑𝑓
𝑑𝑥

= lim
7→9

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

Justin Johnson January 19, 2022

Idea #2: Follow the slope

Lecture 4 - 29

In 1-dimension, the derivative of a function gives the slope:

In multiple dimensions, the gradient is the vector
of (partial derivatives) along each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

𝑑𝑓
𝑑𝑥

= lim
7→9

𝑓 𝑥 + ℎ − 𝑓(𝑥)
ℎ

Justin Johnson January 19, 2022Lecture 4 - 30

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dL/dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Justin Johnson January 19, 2022Lecture 4 - 31

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dL/dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

Justin Johnson January 19, 2022Lecture 4 - 32

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dL/dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

Justin Johnson January 19, 2022Lecture 4 - 33

gradient dL/dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

Justin Johnson January 19, 2022

gradient dL/dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

Lecture 4 - 34

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Justin Johnson January 19, 2022Lecture 4 - 35

gradient dL/dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Justin Johnson January 19, 2022Lecture 4 - 36

gradient dL/dW:

[-2.5,
0.6,
0.0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0.0

Justin Johnson January 19, 2022Lecture 4 - 37

gradient dL/dW:

[-2.5,
0.6,
0.0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Numeric Gradient:
- Slow: O(#dimensions)
- Approximate

Justin Johnson January 19, 2022

Loss is a function of W

Lecture 4 - 38

𝐿 =
1
2%!"#

$
𝐿! +%

%
𝑊%

&

𝐿! =%
'()!

max 0, 𝑠' − 𝑠)! + 1

𝑠 = 𝑓 𝑥,𝑊 = 𝑊𝑥
Want ∇*𝐿

Justin Johnson January 19, 2022

Loss is a function of W: Analytic Gradient

Lecture 4 - 39

𝐿 =
1
2%!"#

$
𝐿! +%

%
𝑊%

&

𝐿! =%
'()!

max 0, 𝑠' − 𝑠)! + 1

𝑠 = 𝑓 𝑥,𝑊 = 𝑊𝑥
Want ∇*𝐿

Use calculus to compute an analytic gradient

This image is in the public domain This image is in the public domain

https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz

Justin Johnson January 19, 2022Lecture 4 - 40

gradient dL/dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

dL/dW = ...
(some function
data and W)

Justin Johnson January 19, 2022Lecture 4 - 41

gradient dL/dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

dL/dW = ...
(some function
data and W)

(In practice we will
compute dL/dW using
backpropagation; see
Lecture 6)

Justin Johnson January 19, 2022

Computing Gradients

Lecture 4 - 42

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

Justin Johnson January 19, 2022

Computing Gradients

Lecture 4 - 43

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Justin Johnson January 19, 2022

Computing Gradients

Lecture 4 - 44

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Justin Johnson January 19, 2022

Computing Gradients

Lecture 4 - 45

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Justin Johnson January 19, 2022

- Numeric gradient: approximate, slow, easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but check implementation
with numerical gradient. This is called a gradient check.

Computing Gradients

Lecture 4 - 46

Justin Johnson January 19, 2022Lecture 4 - 47

Gradient Descent
Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin Johnson January 19, 2022Lecture 4 - 48

negative
gradient
direction

W_1

W_2 original W
Gradient Descent

Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin Johnson January 19, 2022Lecture 4 - 49

Gradient Descent
Iteratively step in the direction of
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Justin Johnson January 19, 2022

Batch Gradient Descent

Lecture 4 - 50

Full sum expensive
when N is large!𝐿 𝑊 =

1
𝑁
&
"#$

%

𝐿" 𝑥" , 𝑦" ,𝑊 + 𝜆𝑅 𝑊

∇&𝐿 𝑊 =
1
𝑁
&
"#$

%

∇&𝐿" 𝑥" , 𝑦" ,𝑊 + 𝜆∇&𝑅 𝑊

Justin Johnson January 19, 2022

Stochastic Gradient Descent (SGD)

Lecture 4 - 51

Full sum expensive
when N is large!

Approximate sum using
a minibatch of examples
32 / 64 / 128 common

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

𝐿 𝑊 =
1
𝑁
&
"#$

%

𝐿" 𝑥" , 𝑦" ,𝑊 + 𝜆𝑅 𝑊

∇&𝐿 𝑊 =
1
𝑁
&
"#$

%

∇&𝐿" 𝑥" , 𝑦" ,𝑊 + 𝜆∇&𝑅 𝑊

Justin Johnson January 19, 2022

Stochastic Gradient Descent (SGD)

Lecture 4 - 52

Think of loss as an
expectation over the full
data distribution pdata

Approximate
expectation via sampling

𝐿 𝑊 = 𝔼 :,< ~>!"#" 𝐿 𝑥, 𝑦,𝑊 + 𝜆𝑅 𝑊

≈
1
𝑁&012

3
𝐿 𝑥0 , 𝑦0 ,𝑊 + 𝜆𝑅 𝑊

Justin Johnson January 19, 2022

Stochastic Gradient Descent (SGD)

Lecture 4 - 53

Think of loss as an
expectation over the full
data distribution pdata

Approximate
expectation via sampling

𝐿 𝑊 = 𝔼 :,< ~>!"#" 𝐿 𝑥, 𝑦,𝑊 + 𝜆𝑅 𝑊

≈
1
𝑁&012

3
𝐿 𝑥0 , 𝑦0 ,𝑊 + 𝜆𝑅 𝑊

∇%𝐿 𝑊 = ∇%𝔼 &,' ∼)&'(' 𝐿 𝑥, 𝑦,𝑊 + 𝜆∇%𝑅 𝑊

≈$
*+,

-
∇.𝐿% 𝑥* , 𝑦* ,𝑊 + ∇.𝑅 𝑊

Justin Johnson January 19, 2022

Interactive Web Demo

Lecture 4 - 54

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 55

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest singular value
of the Hessian matrix is large

Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 56

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest singular value
of the Hessian matrix is large

Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 57

What if the loss function
has a local minimum or
saddle point?

Local
Minimum

Saddle
point

Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 58

What if the loss function
has a local minimum or
saddle point?

Zero gradient, gradient
descent gets stuck

Local
Minimum

Saddle
point

Justin Johnson January 19, 2022

Problems with SGD

Lecture 4 - 59

Our gradients come from minibatches
so they can be noisy!

𝐿 𝑊 =
1
𝑁
,
&'(

)

𝐿& 𝑥&, 𝑦&,𝑊 + 𝜆𝑅 𝑊

∇*𝐿 𝑊 =
1
𝑁
,
&'(

)

∇*𝐿& 𝑥&, 𝑦&,𝑊 + 𝜆∇*𝑅 𝑊

Justin Johnson January 19, 2022

SGD

Lecture 4 - 60

SGD

𝑥*+, = 𝑥* − 𝛼∇𝑓 𝑥*

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

𝑥*+, = 𝑥* − 𝛼∇𝑓 𝑥*
𝑣*+, = 𝜌𝑣* + ∇𝑓 𝑥*
𝑥*+, = 𝑥* − 𝛼𝑣*+,

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 62

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

Gradient

Velocity

actual step

Momentum update:

Combine gradient at current
point with velocity to get step
used to update weights

𝑣*+, = 𝜌𝑣* + ∇𝑓 𝑥*
𝑥*+, = 𝑥* − 𝛼𝑣*+,

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 63

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

You may see SGD+Momentum formulated different ways, but
they are equivalent - give same sequence of x

SGD+Momentum
𝑣*+, = 𝜌𝑣* + ∇𝑓 𝑥*
𝑥*+, = 𝑥* − 𝛼𝑣*+,

𝑣*+, = 𝜌𝑣* − 𝛼∇𝑓 𝑥*
𝑥*+, = 𝑥* + 𝑣*+,

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 64

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Justin Johnson January 19, 2022

SGD + Momentum

Lecture 4 - 65

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point
with velocity to get step used to
update weights

Justin Johnson January 19, 2022

Nesterov Momentum

Lecture 4 - 66

Gradient

Velocity

actual step

Momentum update:

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Combine gradient at current point
with velocity to get step used to
update weights

Gradient
Velocity

actual step

Nesterov Momentum

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to
get actual update direction

Justin Johnson January 19, 2022

Nesterov Momentum

Lecture 4 - 67

Gradient
Velocity

actual step

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to
get actual update direction

Justin Johnson January 19, 2022

Nesterov Momentum

Lecture 4 - 68

Gradient
Velocity

actual step

“Look ahead” to the point where updating
using velocity would take us; compute
gradient there and mix it with velocity to
get actual update direction

Annoying, usually we want
update in terms of

Justin Johnson January 19, 2022

Nesterov Momentum

Lecture 4 - 69

Change of variables
and rearrange:

Annoying, usually we want
update in terms of

Justin Johnson January 19, 2022Lecture 4 - 70

Nesterov Momentum

SGD

SGD+Momentum

Nesterov

Justin Johnson January 19, 2022Lecture 4 - 71

AdaGrad

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Justin Johnson January 19, 2022Lecture 4 - 72

AdaGrad

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Justin Johnson January 19, 2022Lecture 4 - 73

AdaGrad

Q: What happens with AdaGrad?

Justin Johnson January 19, 2022Lecture 4 - 74

AdaGrad

Q: What happens with AdaGrad? Progress along “steep” directions is damped;
progress along “flat” directions is accelerated

Justin Johnson January 19, 2022Lecture 4 - 75

RMSProp: “Leaky Adagrad”

AdaGrad

Tieleman and Hinton, 2012

RMSProp

Justin Johnson January 19, 2022

RMSProp

Lecture 4 - 76

SGD

SGD+Momentum

RMSProp

Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 77

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 78

Momentum

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

SGD+Momentum

Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 79

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

RMSProp

Adam

Momentum
AdaGrad / RMSProp

Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 80

Q: What happens at t=1?
(Assume beta2 = 0.999)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam

Bias correction

Momentum
AdaGrad / RMSProp

Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 81

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction

Bias correction for the fact
that first and second moment
estimates start at zero

Momentum
AdaGrad / RMSProp

Justin Johnson January 19, 2022

Adam (almost): RMSProp + Momentum

Lecture 4 - 82

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Bias correction for the fact
that first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Justin Johnson January 19, 2022

Adam: Very Common in Practice!

Lecture 4 - 83

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

Johnson, Gupta, and Fei-Fei, CVPR 2018

Gupta, Johnson, et al, CVPR 2018

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019

Justin Johnson January 19, 2022

Adam

Lecture 4 - 84

SGD

SGD+Momentum

RMSProp

Adam

Justin Johnson January 19, 2022

Optimization Algorithm Comparison

Lecture 4 - 85

Algorithm
Tracks first
moments

(Momentum)

Tracks second
moments
(Adaptive

learning rates)

Leaky
second

moments

Bias correction for
moment estimates

SGD 𝙭 𝙭 𝙭 𝙭
SGD+Momentum ✓ 𝙭 𝙭 𝙭
Nesterov ✓ 𝙭 𝙭 𝙭
AdaGrad 𝙭 ✓ 𝙭 𝙭
RMSProp 𝙭 ✓ ✓ 𝙭
Adam ✓ ✓ ✓ ✓

Justin Johnson January 19, 2022

L2 Regularization vs Weight Decay

Lecture 4 - 86

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

Justin Johnson January 19, 2022

L2 Regularization vs Weight Decay

Lecture 4 - 87

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝝀 𝒘 𝟐

𝑔& = ∇𝐿 𝑤& = ∇𝐿$%&% 𝑤& + 𝟐𝝀𝒘𝒕
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

Justin Johnson January 19, 2022

L2 Regularization vs Weight Decay

Lecture 4 - 88

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

Weight Decay
𝐿 𝑤 = 𝐿$%&% 𝑤
𝑔& = ∇𝐿$%&% 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔& + 𝟐𝝀𝒘𝒕
𝑤&*+ = 𝑤& − 𝛼𝑠&

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

L2 Regularization
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝝀 𝒘 𝟐

𝑔& = ∇𝐿 𝑤& = ∇𝐿$%&% 𝑤& + 𝟐𝝀𝒘𝒕
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

Justin Johnson January 19, 2022

L2 Regularization vs Weight Decay

Lecture 4 - 89

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization and Weight Decay are
equivalent for SGD, SGD+Momentum so
people often use the terms interchangeably!

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

Weight Decay
𝐿 𝑤 = 𝐿$%&% 𝑤
𝑔& = ∇𝐿$%&% 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔& + 𝟐𝝀𝒘𝒕
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝝀 𝒘 𝟐

𝑔& = ∇𝐿 𝑤& = ∇𝐿$%&% 𝑤& + 𝟐𝝀𝒘𝒕
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

Justin Johnson January 19, 2022

L2 Regularization vs Weight Decay

Lecture 4 - 90

Optimization Algorithm
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝐿'() 𝑤
𝑔& = ∇𝐿 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization and Weight Decay are
equivalent for SGD, SGD+Momentum so
people often use the terms interchangeably!

But they are not the same for adaptive
methods (AdaGrad, RMSProp, Adam, etc)

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

Weight Decay
𝐿 𝑤 = 𝐿$%&% 𝑤
𝑔& = ∇𝐿$%&% 𝑤&
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔& + 𝟐𝝀𝒘𝒕
𝑤&*+ = 𝑤& − 𝛼𝑠&

L2 Regularization
𝐿 𝑤 = 𝐿$%&% 𝑤 + 𝝀 𝒘 𝟐

𝑔& = ∇𝐿 𝑤& = ∇𝐿$%&% 𝑤& + 𝟐𝝀𝒘𝒕
𝑠& = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 𝑔&
𝑤&*+ = 𝑤& − 𝛼𝑠&

Justin Johnson January 19, 2022

AdamW: Decoupled Weight Decay

Lecture 4 - 91

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

Justin Johnson January 19, 2022

AdamW: Decoupled Weight Decay

Lecture 4 - 92

Loshchilov and Hutter, “Decoupled Weight Decay Regularization”, ICLR 2019

AdamW should probably be your
“default” optimizer for new problems

Justin Johnson January 19, 2022

So far: First-Order Optimization

Lecture 4 - 93

Loss

w1

Justin Johnson January 19, 2022

So far: First-Order Optimization

Lecture 4 - 94

Loss

w1

1. Use gradient to make linear approximation
2. Step to minimize the approximation

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 95

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 96

Loss

w1

1. Use gradient and Hessian to make quadratic approximation
2. Step to minimize the approximation

Take bigger steps in areas
of low curvature

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 97

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 98

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: Why is this impractical?

Justin Johnson January 19, 2022

Second-Order Optimization

Lecture 4 - 99

Second-Order Taylor Expansion:

Solving for the critical point we obtain the Newton parameter update:

Q: Why is this impractical?
Hessian has O(N^2) elements
Inverting takes O(N^3)
N = (Tens or Hundreds of) Millions

Justin Johnson January 19, 2022Lecture 4 - 100

Second-Order Optimization

- Quasi-Newton methods (BGFS most popular):
instead of inverting the Hessian (O(n^3)), approximate inverse
Hessian with rank 1 updates over time (O(n^2) each).

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

Justin Johnson January 19, 2022Lecture 4 - 101

Second-Order Optimization: L-BFGS

- Usually works very well in full batch, deterministic mode
i.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives bad
results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017

Justin Johnson January 19, 2022

In practice:

Lecture 4 - 102

- Adam is a good default choice in many cases
SGD+Momentum can outperform Adam but may
require more tuning

- If you can afford to do full batch updates then try out
L-BFGS (and don’t forget to disable all sources of noise)

Justin Johnson January 19, 2022

Summary

Lecture 4 - 103

1. Use Linear Models for image
classification problems

2. Use Loss Functions to express
preferences over different
choices of weights

3. Use Regularization to prevent
overfitting to training data

4. Use Stochastic Gradient
Descent to minimize our loss
functions and train the model

Softmax SVM

Justin Johnson January 19, 2022

Next time:
Neural Networks

Lecture 4 - 104

