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Lecture 3:
Linear Classifiers

Lecture 3 - 1



Justin Johnson January 12, 2022

Reminder: Assignment 1

Lecture 3 - 2

• Due Friday 1/14, 11:59pm EST
• If you enroll late, you get a free extension for A1:
• due_date = latest_day(original_due_date, your_enroll_date + 7 days)

• Make sure you submit the right .py file!
• Make sure to manually save the .py file in Colab
• After you download the .zip file, check that the .py file is correct
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Office Hours
• Check Google Calendar (link also on website):

https://calendar.google.com/calendar/b/0?cid=dW1pY2guZWR1X2cxMXJnNnZxNmd2YWNqOWRhZDRxOHVvZHNvQGdyb
3VwLmNhbGVuZGFyLmdvb2dsZS5jb20

• Office hours may shift a bit from week to week (especially mine) –
check Google Calendar for up-to-date info
• We’ll use Umich office hours queue system; find link in the 

description of each calendar event

Lecture 3 - 3

https://calendar.google.com/calendar/b/0?cid=dW1pY2guZWR1X2cxMXJnNnZxNmd2YWNqOWRhZDRxOHVvZHNvQGdyb3VwLmNhbGVuZGFyLmdvb2dsZS5jb20
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Last time: Image Classification

Lecture 3 - 4

cat
bird
deer
dog
truck

Output: Assign image to one 
of a fixed set of categories

This image by Nikita is 
licensed under CC-BY 2.0

Input: image

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Last Time: Challenges of Recognition

Lecture 3 - 5

This image is CC0 1.0 public domain This image by Umberto Salvagnin is 
licensed under CC-BY 2.0

This image by jonsson is licensed 
under CC-BY 2.0

Illumination Deformation Occlusion

This image is CC0 1.0 public domain

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

Viewpoint

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Last time: Data-Drive Approach, kNN

Lecture 3 - 6

1-NN classifier 5-NN classifier

train test

train testvalidation
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Today: Linear Classifiers

Lecture 3 - 7
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This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Recall CIFAR10

Lecture 3 - 9

50,000 training images
each image is 32x32x3

10,000 test images.
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Parametric Approach

Lecture 3 - 10

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)



Justin Johnson January 12, 2022

Parametric Approach: Linear Classifier

Lecture 3 - 11

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
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Parametric Approach: Linear Classifier

Lecture 3 - 12

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx
(10,) (10, 3072)

(3072,)
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Parametric Approach: Linear Classifier

Lecture 3 - 13

Image

parameters
or weights

W

f(x,W) 10 numbers giving 
class scores

Array of 32x32x3 numbers
(3072 numbers total)

f(x,W) = Wx + b
(10,) (10, 3072)

(3072,)
(10,)
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Example for 2x2 image, 3 classes (cat/dog/ship)

Lecture 3 - 14

Input image
(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

(4,)

f(x,W) = Wx + b
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Example for 2x2 image, 3 classes (cat/dog/ship)

Lecture 3 - 15

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3, 4)

(3,)

(3,)

f(x,W) = Wx + b
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Linear Classifier: Algebraic Viewpoint

Lecture 3 - 16

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3, 4)

(3,)

(3,)

f(x,W) = Wx + b
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Linear Classifier: Bias Trick

Lecture 3 - 17

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input image

(2, 2)

56

231

24

2

56 231

24 2

Stretch pixels into column

1.1

3.2

-1.2

-96.8

437.9

61.95

=

(5,)
(3, 5) (3,)

1

Add extra one to data vector; 
bias is absorbed into last 
column of weight matrix
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Linear Classifier: Predictions are Linear!

Lecture 3 - 18

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)
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Linear Classifier: Predictions are Linear!

Lecture 3 - 19

f(x, W) = Wx (ignore bias)

f(cx, W) = W(cx) = c * f(x, W)
Image 0.5 * ImageScores

-96.8

437.8

62.0

-48.4

218.9

31.0

0.5 * Scores
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Interpreting a Linear Classifier

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input	image

(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3,	4)

(3,)

(3,)

f(x,W) = Wx + b

Algebraic Viewpoint
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Interpreting a Linear Classifier

0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3

W
Input	image

(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

1.1

3.2

-1.2

+
-96.8

437.9

61.95

=

b(4,)
(3,	4)

(3,)

(3,)

Algebraic Viewpoint

f(x,W) = Wx + b

Instead of stretching pixels into 
columns, we can equivalently 
stretch rows of W into images!
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0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier
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0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier: Visual Viewpoint
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0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one 
“template” per category
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0.2 -0.5

0.1 2.0

1.5 1.3

2.1 0.0

0 .25

0.2 -0.3

1.1 3.2 -1.2

W

b

-96.8 437.9 61.95

Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one 
“template” per category

A single template cannot capture 
multiple modes of the data

e.g. horse template has 2 heads!
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 26

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)Value of pixel (15, 8, 0)

Airplane 
Score Car 

ScoreCat 
ScoreClassifier 

score
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 27

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)Value of pixel (15, 8, 0)

Airplane 
Score Car 

ScoreCat 
ScoreClassifier 

score

Decision Regions
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 28

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Pixel
(15, 8, 0)

Car Score 
= 0

Pixel 
(11, 11, 0)

Car score 
increases 
this way
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 29

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 30

f(x,W) = Wx + b

Array of 32x32x3 numbers
(3072 numbers total)

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)
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Interpreting a Linear Classifier: Geometric Viewpoint

Lecture 3 - 31

Car Score 
= 0

Car score 
increases 
this way

Car template 
on this line

Cat 
Score

Airplane 
Score

Plot created using Wolfram Cloud

Hyperplanes carving up a 
high-dimensional space

Pixel
(15, 8, 0)

Pixel 
(11, 11, 0)

https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8
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Hard Cases for a Linear Classifier

Lecture 3 - 32

Class 1: 
First and third quadrants

Class 2: 
Second and fourth quadrants

Class 1: 
1 <= L2 norm <= 2

Class 2:
Everything else

Class 1: 
Three modes

Class 2:
Everything else



Justin Johnson January 12, 2022

Recall: Perceptron couldn’t learn XOR

Lecture 3 - 33

X Y F(x,y)

0 0 0

0 1 1

1 0 1

1 1 0 x

y
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Linear Classifier: Three Viewpoints

Lecture 3 - 34

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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So Far: Defined a linear score function

Lecture 3 - 35

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

Given a W, we can 
compute class scores 
for an image x.

But how can we 
actually choose a 
good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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Choosing a good W

Lecture 3 - 36

f(x,W) = Wx + b

-3.45
-8.87
0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

-0.51
6.04
5.31
-4.22
-4.19
3.58
4.49
-4.37
-2.09
-2.93

3.42
4.64
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

TODO:

1. Use a loss function to 
quantify how good a 
value of W is

2. Find a W that minimizes 
the loss function 
(optimization)
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Loss Function

Lecture 3 - 37

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)
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Loss Function

Lecture 3 - 38

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc
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Loss Function

Lecture 3 - 39

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc

Given a dataset of examples

Where 𝑥! is image and 
𝑦! is (integer) label

𝑥! , 𝑦! !"#
$
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Loss Function

Lecture 3 - 40

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc

Given a dataset of examples

Where 𝑥! is image and 
𝑦! is (integer) label

Loss for a single example is

𝐿! 𝑓 𝑥! ,𝑊 , 𝑦!

𝑥! , 𝑦! !"#
$
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Loss Function

Lecture 3 - 41

A loss function tells how good our 
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function; 
cost function)

Negative loss function sometimes 
called reward function, profit 
function, utility function, fitness 
function, etc

Given a dataset of examples

Where 𝑥! is image and 
𝑦! is (integer) label

Loss for a single example is

Loss for the dataset is average of 
per-example losses:

𝐿 =
1
𝑁
*
!

𝐿! 𝑓 𝑥! ,𝑊 , 𝑦!

𝐿! 𝑓 𝑥! ,𝑊 , 𝑦!

𝑥! , 𝑦! !"#
$
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 42

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 43

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 44

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Unnormalized log-
probabilities / logits

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 45

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

Probabilities 
must be >= 0

exp

Softmax
function

unnormalized
probabilities

Unnormalized log-
probabilities / logits

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 46

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#
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𝐿! = − log𝑃 𝑌 = 𝑦! | 𝑋 = 𝑥!

Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 47

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 48

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

Li = -log(0.13)
= 2.04

Maximum Likelihood Estimation
Choose weights to maximize the 
likelihood of the observed data
(See EECS 445 or EECS 545)unnormalized

probabilities probabilitiesUnnormalized log-
probabilities / logits

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#

𝐿! = − log𝑃 𝑌 = 𝑦! | 𝑋 = 𝑥!
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 49

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct 
probs

Compare

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#

𝐿! = − log𝑃 𝑌 = 𝑦! | 𝑋 = 𝑥!
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 50

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct 
probs

Compare

Kullback–Leibler
divergence

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#

𝐿! = − log𝑃 𝑌 = 𝑦! | 𝑋 = 𝑥!

𝐷!" 𝑷 || 𝑸 =

&
#

𝑷 𝒚 log
𝑷 𝒚
𝑸 𝒚
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 51

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

24.5
164.0

0.18

0.13
0.87

0.00

Probabilities 
must be >= 0

Probabilities 
must sum to 1

exp normalize

Softmax
function

unnormalized
probabilities probabilitiesUnnormalized log-

probabilities / logits

1.00
0.00

0.00
Correct 
probs

Compare

Cross Entropy

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#

𝐿! = − log𝑃 𝑌 = 𝑦! | 𝑋 = 𝑥!

𝐻 𝑃, 𝑄 =
𝐻 𝑃 + 𝐷"# 𝑃 || 𝑄
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 52

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#

𝐿$ = − log𝑃 𝑌 = 𝑦$ | 𝑋 = 𝑥$
𝐿! = − log

exp 𝑠$!
∑# exp 𝑠#
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 53

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#

𝐿$ = − log𝑃 𝑌 = 𝑦$ | 𝑋 = 𝑥$
𝐿! = − log

exp 𝑠$!
∑# exp 𝑠#
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 54

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: What is the min / 
max possible loss Li?

A: Min 0, max +infinity

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#

𝐿$ = − log𝑃 𝑌 = 𝑦$ | 𝑋 = 𝑥$
𝐿! = − log

exp 𝑠$!
∑# exp 𝑠#
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 55

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: If all scores are 
small random values, 
what is the loss?

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#

𝐿$ = − log𝑃 𝑌 = 𝑦$ | 𝑋 = 𝑥$
𝐿! = − log

exp 𝑠$!
∑# exp 𝑠#
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Cross-Entropy Loss (Multinomial Logistic Regression)

Lecture 3 - 56

Want to interpret raw classifier scores as probabilities

3.2cat
car
frog

5.1
-1.7

Softmax
function

Maximize probability of correct class Putting it all together:

Q: If all scores are 
small random values, 
what is the loss?

A: -log(1/C)
log(10) ≈ 2.3

𝑠 = 𝑓 𝑥!;𝑊 𝑃 𝑌 = 𝑘 | 𝑋 = 𝑥! =
exp 𝑠"
∑# exp 𝑠#

𝐿$ = − log𝑃 𝑌 = 𝑦$ | 𝑋 = 𝑥$
𝐿! = − log

exp 𝑠$!
∑# exp 𝑠#
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 57

Loss

Score for 
correct class
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 58

Loss

Score for 
correct class

Highest score 
among other classes
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 59

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”
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Multiclass SVM Loss
”The score of the correct class should 
be higher than all the other scores”

Lecture 3 - 60

Loss

Score for 
correct class

Highest score 
among other classes

“Margin”

“Hinge Loss”

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 61

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 62

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

= max(0, 5.1 - 3.2 + 1) 
+ max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9Loss 2.9

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 63

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0

= max(0, 1.3 - 4.9 + 1) 
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 64

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

= max(0, 2.2 - (-3.1) + 1) 
+max(0, 2.5 - (-3.1) + 1)

= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.9

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 65

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 66

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q: What happens to the 
loss if the scores for the 
car image change a bit?

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 67

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q2: What are the min 
and max possible loss?

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 68

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q3: If all the scores 
were random, what 
loss would we expect?

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 69

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q4: What would happen if 
the sum were over all 
classes? (including 𝑖 = 𝑦$)

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 70

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q5: What if the loss used 
a mean instead of a sum?

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
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Multiclass SVM Loss

Lecture 3 - 71

3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 2.9 0 12.9

Q6: What if we used 
this loss instead?

Given an example 𝑥$ , 𝑦$
(𝑥$ is image, 𝑦$ is label)

Let  𝑠 = 𝑓 𝑥$ ,𝑊 be scores

Then the SVM loss has the form:

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1

𝐿$ =&
%&#!

max 0, 𝑠% − 𝑠#! + 1
'
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Cross-Entropy vs SVM Loss

Lecture 3 - 72

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

𝐿$ = − log
exp 𝑠#!
∑% exp 𝑠%

𝐿! =*
"#$$

max 0, 𝑠" − 𝑠$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 73

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What is cross-entropy loss? 
What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0

𝐿$ = − log
exp 𝑠#!
∑% exp 𝑠%

𝐿! =*
"#$$

max 0, 𝑠" − 𝑠$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 74

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
slightly change the scores of the last 
datapoint?

A: Cross-entropy loss will change;
SVM loss will stay the same

𝐿$ = − log
exp 𝑠#!
∑% exp 𝑠%

𝐿! =*
"#$$

max 0, 𝑠" − 𝑠$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 75

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
slightly change the scores of the last 
datapoint?

A: Cross-entropy loss will change;
SVM loss will stay the same

𝐿$ = − log
exp 𝑠#!
∑% exp 𝑠%

𝐿! =*
"#$$

max 0, 𝑠" − 𝑠$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 76

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
double the score of the correct class 
from 10 to 20?

A: Cross-entropy loss will decrease,
SVM loss still 0

𝐿$ = − log
exp 𝑠#!
∑% exp 𝑠%

𝐿! =*
"#$$

max 0, 𝑠" − 𝑠$$ + 1
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Cross-Entropy vs SVM Loss

Lecture 3 - 77

assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 

Q: What happens to each loss if I 
double the score of the correct class 
from 10 to 20?

A: Cross-entropy loss will decrease,
SVM loss still 0

𝐿$ = − log
exp 𝑠#!
∑% exp 𝑠%

𝐿! =*
"#$$

max 0, 𝑠" − 𝑠$$ + 1
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Recap: Three ways to think about linear classifiers

Lecture 3 - 78

f(x,W) = Wx

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint

One template 
per class

Hyperplanes 
cutting up space
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Recap: Loss Functions quantify preferences

Lecture 3 - 79

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: Linear classifier

Softmax: 𝐿! = − log
%&' (%$
∑& %&' (&

SVM: 𝐿! = ∑"#$$max 0, 𝑠" − 𝑠$$ + 1

𝑠 = 𝑓 𝑥;𝑊, 𝑏 = 𝑊𝑥 + 𝑏
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Recap: Loss Functions quantify preferences

Lecture 3 - 80

- We have some dataset of (x, y)
- We have a score function: 
- We have a loss function: 

Q: How do we find the best W, b?

Linear classifier

Softmax: 𝐿! = − log
%&' (%$
∑& %&' (&

SVM: 𝐿! = ∑"#$$max 0, 𝑠" − 𝑠$$ + 1

𝑠 = 𝑓 𝑥;𝑊, 𝑏 = 𝑊𝑥 + 𝑏
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Next time:
Regularization + 

Optimization

Lecture 3 - 81


