Lecture 22: Course Recap Open Problems in Computer Vision

Justin Johnson

Lecture 22 - 1

Assignment 6: Generative Models

Generative Adversarial Networks Variational Autoencoders

Due on Wednesday 12/9, 11:59pm EST

This Course: Deep Learning for Computer Vision

Justin Johnson

Lecture 22 - 3

Deep Learning for <u>Computer Vision</u>

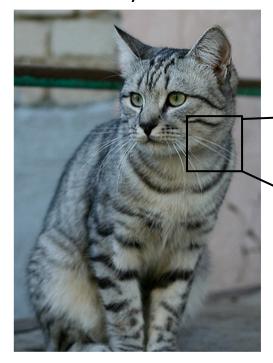
Building artificial systems that process, perceive, and reason about visual data

Justin Johnson

Lecture 22 - 4

Problem: Semantic Gap

What you see



This image by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u>

What computer sees

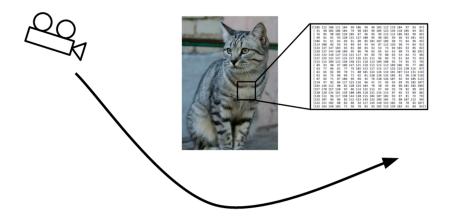
	[[105	112	108	111	104	99	106	99	96	103	112	119	104	97	93	87]
	[91	98	102	106	104	79	98	103	99	105	123	136	110	105	94	85]
	[76	85	90	105	128	105	87	96	95	99	115	112	106	103	99	85]
	[99	81	81	93	120	131	127	100	95	98	102	99	96	93	101	94]
	[106	91	61	64	69	91	88	85	101	107	109	98	75	84	96	95]
	[114	108	85	55	55	69	64	54	64	87	112	129	98	74	84	91]
	[133	137	147	103	65	81	80	65	52	54	74	84	102	93	85	82]
	[128	137	144	140	109	95	86	70	62	65	63	63	60	73	86	101]
	[125	133	148	137	119	121	117	94	65	79	80	65	54	64	72	98]
	[127	125	131	147	133	127	126	131	111	96	89	75	61	64	72	84]
	[115	114	109	123	150	148	131	118	113	109	100	92	74	65	72	78]
	[89	93	90	97	108	147	131	118	113	114	113	109	106	95	77	80]
	[63	77	86	81	77	79	102	123	117	115	117	125	125	130	115	87]
	[62	65	82	89	78	71	80	101	124	126	119	101	107	114	131	119]
	[63	65	75	88	89	71	62	81	120	138	135	105	81	98	110	118]
	[87	65	71	87	106	95	69	45	76	130	126	107	92	94	105	112]
	[118	97	82	86	117	123	116	66	41	51	95	93	89	95	102	107]
	[164	146	112	80	82	120	124	104	76	48	45	66	88	101	102	109]
	[157	170	157	120	93	86	114	132	112	97	69	55	70	82	99	94]
	[130	128	134	161	139	100	109	118	121	134	114	87	65	53	69	86]
	[128	112	96	117	150	144	120	115	104	107	102	93	87	81	72	79]
	[123	107	96	86	83	112	153	149	122	109	104	75	80	107	112	99]
	[122	121	102	80	82	86	94	117	145	148	153	102	58	78	92	107]
	[122	164	148	103	71	56	78	83	93	103	119	139	102	61	69	84]]
1																

Justin Johnson

Lecture 22 - 5

Problem: Visual Data is Complex!

Viewpoint



Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Justin Johnson

Lecture 22 - 6

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels):
 # Machine learning!
 return model

def predict(model, test_images):
 # Use model to predict labels
 return test_labels

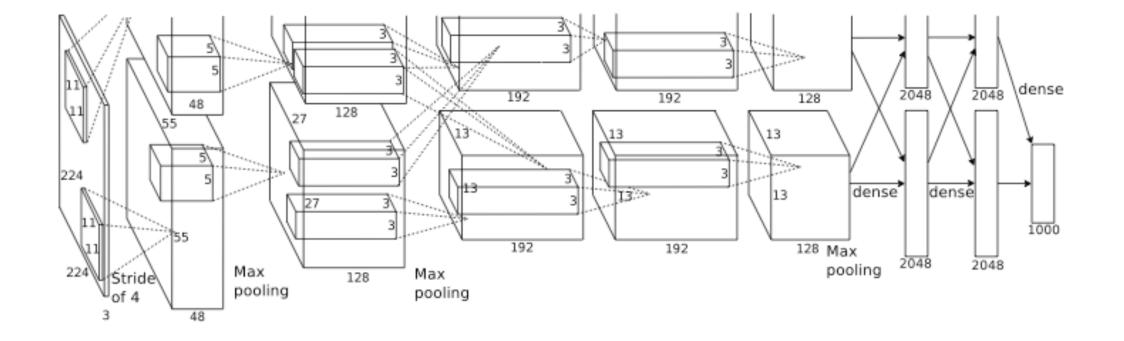
airplaneImage: Image: Imag

Example training set

Justin Johnson

Lecture 22 - 7

Model: Deep Convolutional Networks



Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

Justin Johnson

Lecture 22 - 8

IM GENET Large Scale Visual Recognition Challenge

The Image Classification Challenge: 1,000 object classes 1,431,167 images

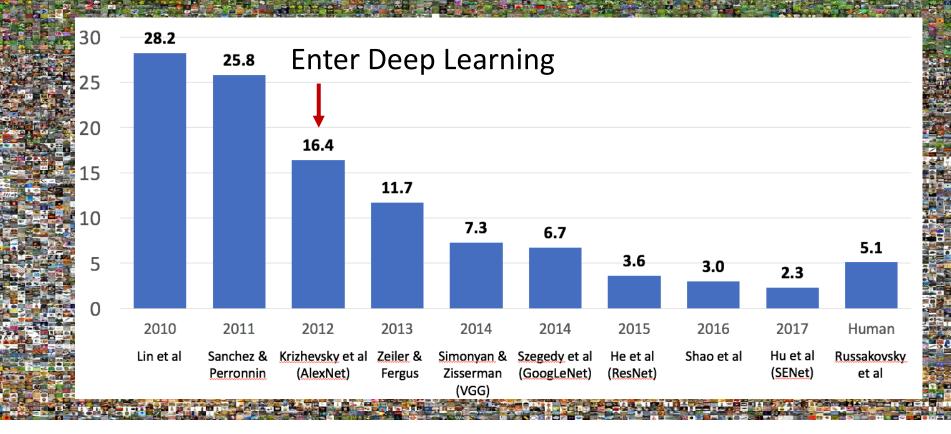
Output: Scale T-shirt Steel drum Drumstick Mud turtle

Deng et al, 2009 Russakovsky et al. IJCV 2015

Justin Johnson

Lecture 22 - 9

IM GENET Large Scale Visual Recognition Challenge

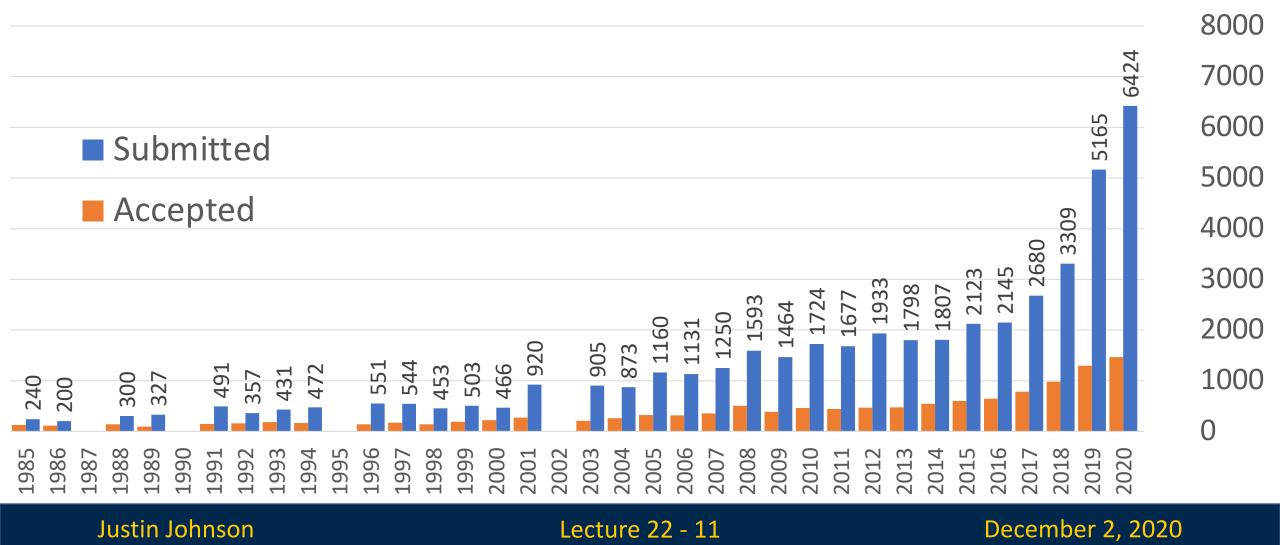


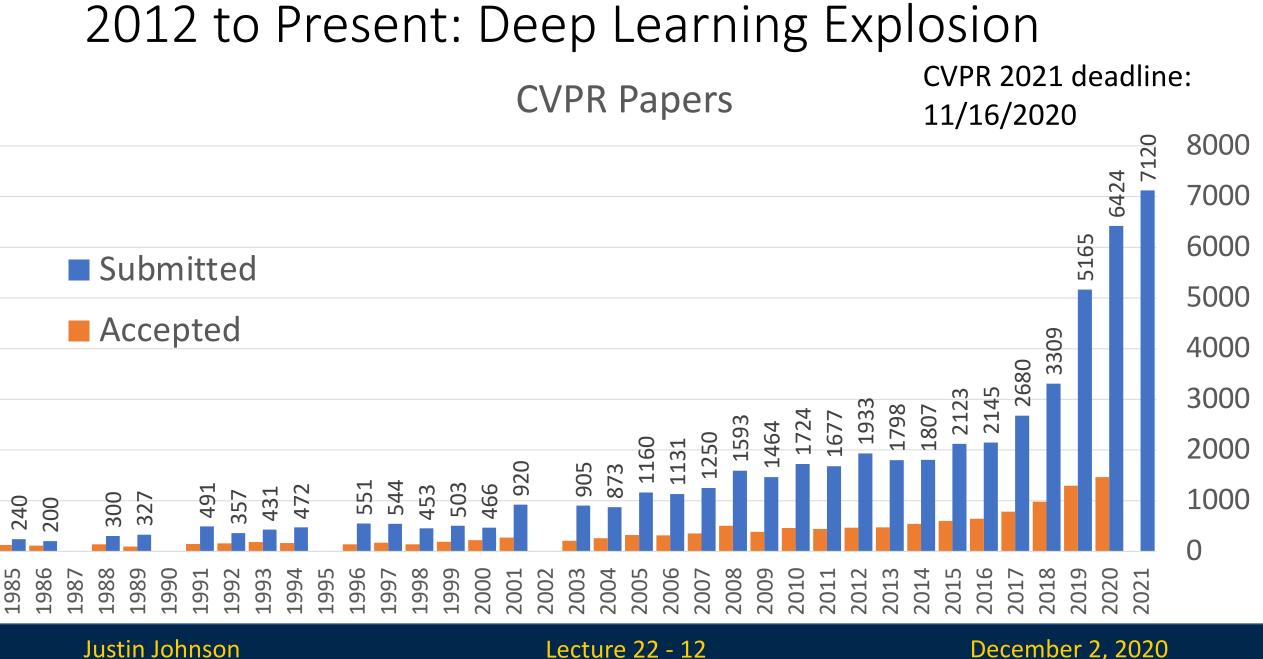
Justin Johnson

Lecture 22 - 10

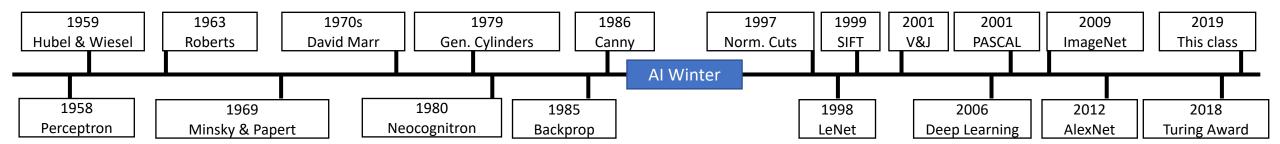
2012 to Present: Deep Learning Explosion

CVPR Papers



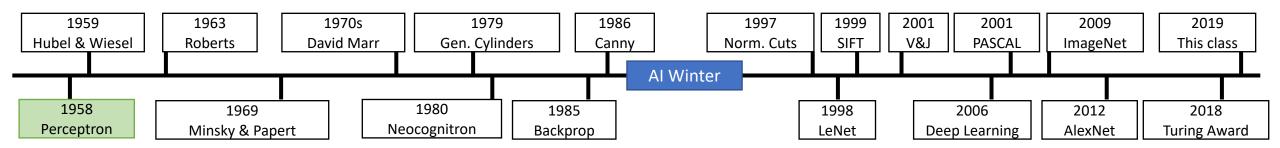


Lecture 22 - 12

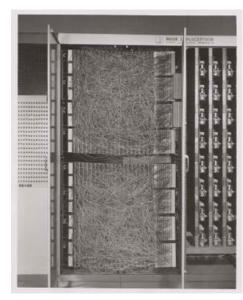


Justin Johnson

Lecture 22 - 13



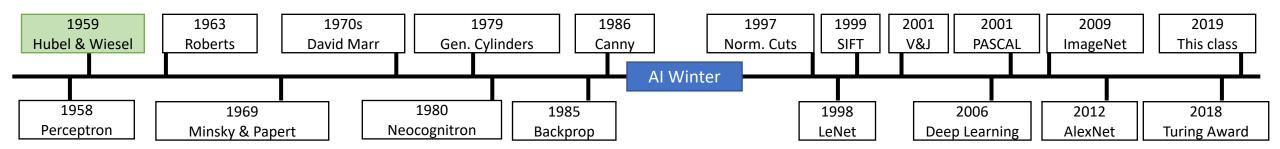
Perceptron



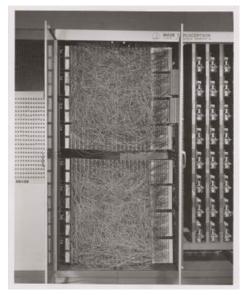
Frank Rosenblatt, ~1957

Justin Johnson

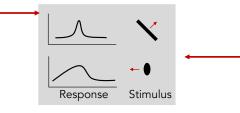
Lecture 22 - 14



Perceptron



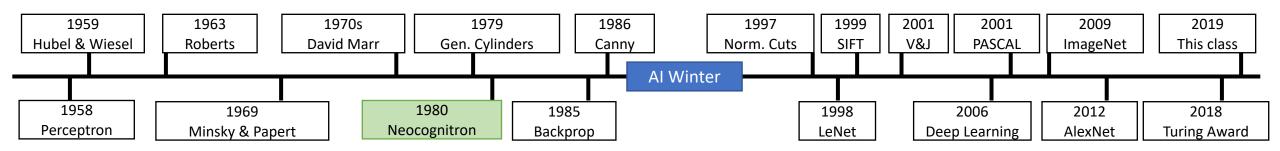
Simple and Complex cells



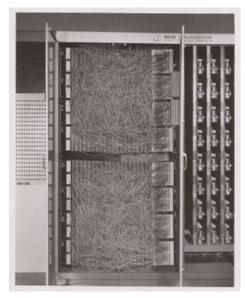
Frank Rosenblatt, ~1957 Hubel and Wiesel, 1959

Justin Johnson

Lecture 22 - 15

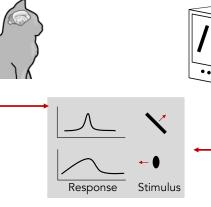


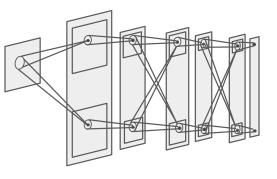
Perceptron



Simple and Complex cells

Neocognitron





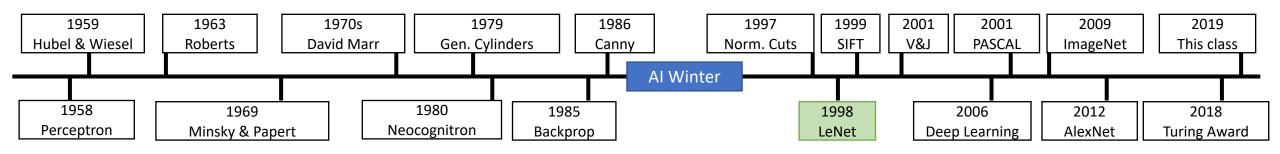
Frank Rosenblatt, ~1957

Hubel and Wiesel, 1959

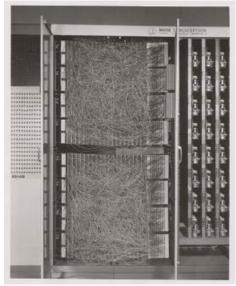
Fukushima, 1980

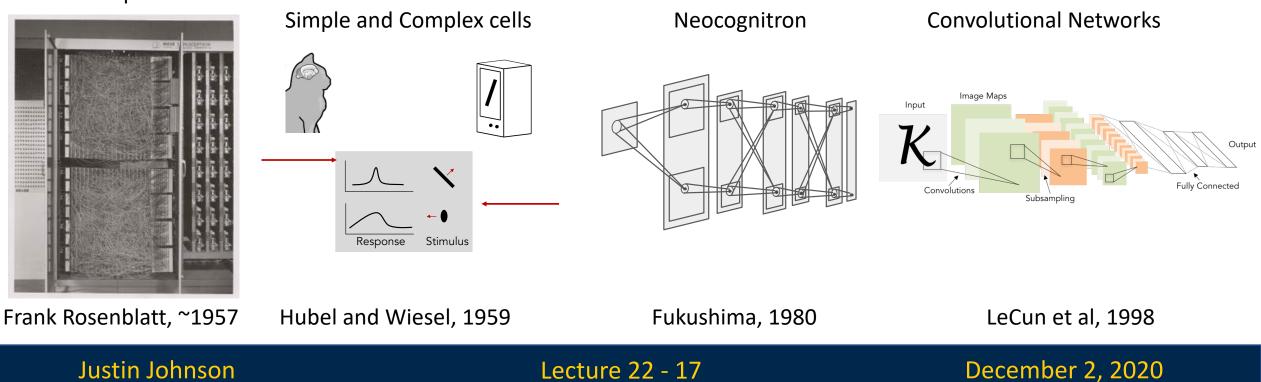
Justin Johnson

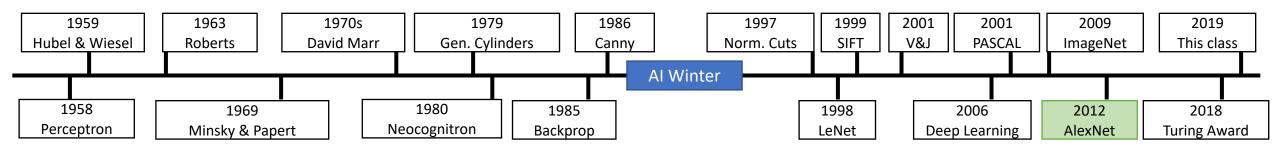
Lecture 22 - 16



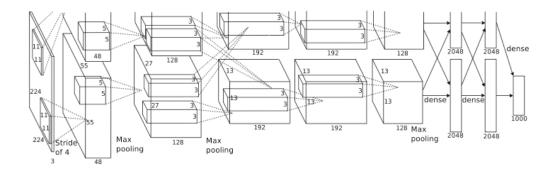
Perceptron







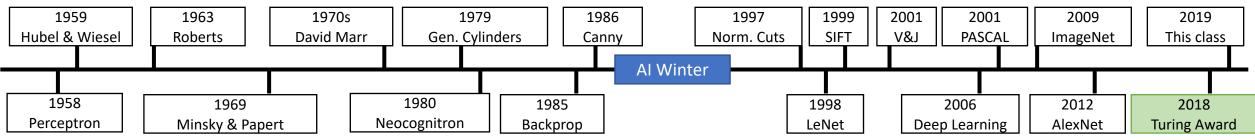
AlexNet



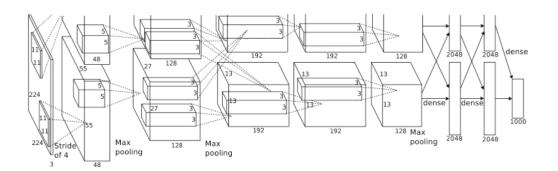
Krizhevsky, Sutskever, and Hinton, 2012

Justin Johnson

Lecture 22 - 18



AlexNet

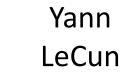


2018 Turing Award

Krizhevsky, Sutskever, and Hinton, 2012

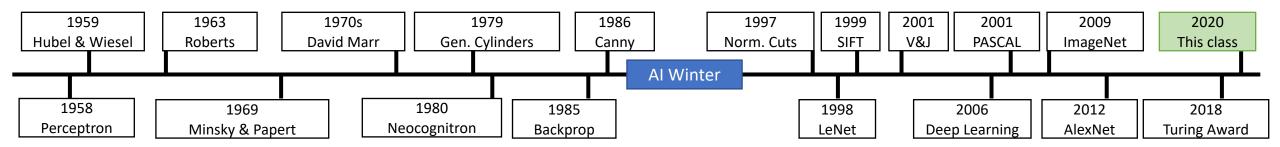
Yoshua Bengio

Geoffrey Hinton



Justin Johnson

Lecture 22 - 19



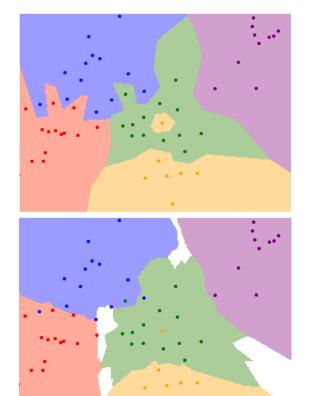
Fall 2020: This class

Justin Johnson

Lecture 22 - 20

Simple Classifiers: kNN and Linear Classifiers

1-NN classifier



Stretch pixels into column 0.2 -0.5 0.1 2.0 1.1 -96.8 Cat score 231 1.3 2.1 3.2 = 1.5 0.0 437.9 +| Dog score 24 0 0.25 0.2 -1.2 -0.3 61.95 Ship score 2 W b plane

airplane classifier

5-NN classifier

Linear Classifiers: y = Wx + b

Justin Johnson

Lecture 22 - 21

Optimization with Gradient Descent

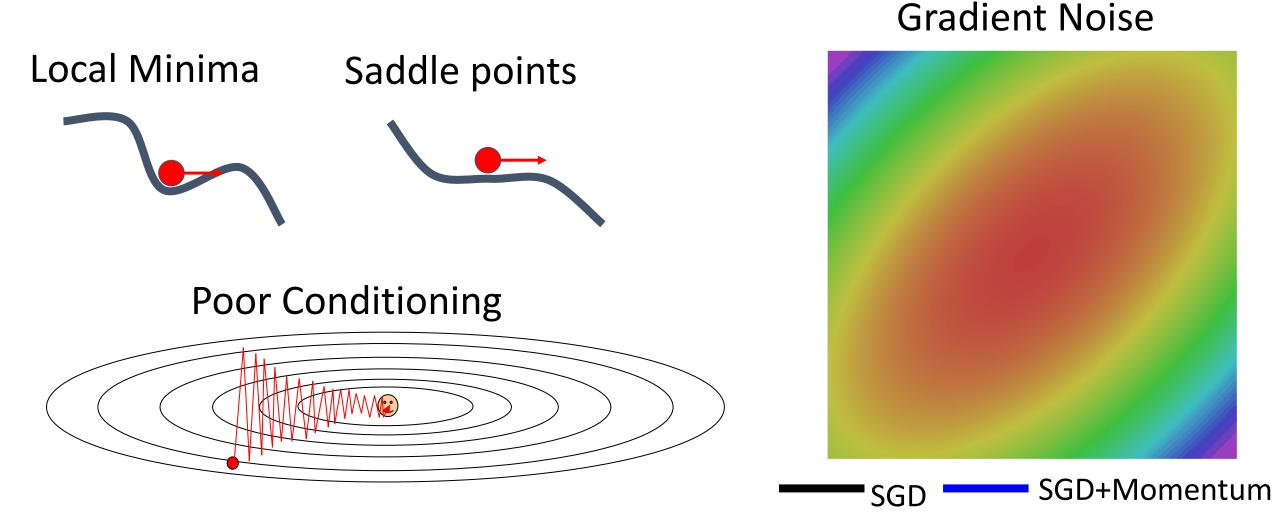
<pre># Vanilla gradient descent</pre>
<pre>w = initialize_weights()</pre>
<pre>for t in range(num_steps):</pre>
<pre>dw = compute_gradient(loss_fn, data, w)</pre>
w —= learning_rate \star dw

This image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain

Justin Johnson

Lecture 22 - 22

Problems with Gradient Descent



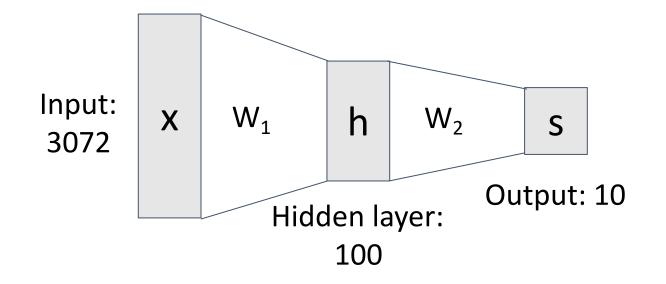
Justin Johnson

Lecture 22 - 23

Gradient Descent Improvements

Algorithm	Tracks first moments (Momentum)	Tracks second moments (Adaptive learning rates)	Leaky second moments	Bias correction for moment estimates	
SGD	X	X	X	X	
SGD+Momentum	\checkmark	X	X	X	
Nesterov	\checkmark	X	X	X	
AdaGrad	X	\checkmark	X	X	
RMSProp	X	\checkmark	\checkmark	X	
Adam	\checkmark	\checkmark	\checkmark	\checkmark	

More Complex Models: Neural Networks

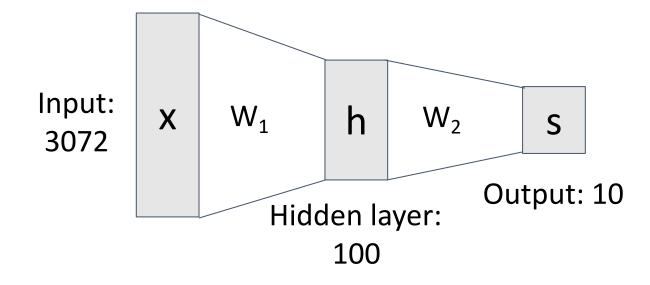


$$f=W_2\max(0,W_1x)$$

Justin Johnson

Lecture 22 - 25

More Complex Models: Neural Networks



$$f=W_2\max(0,W_1x)$$

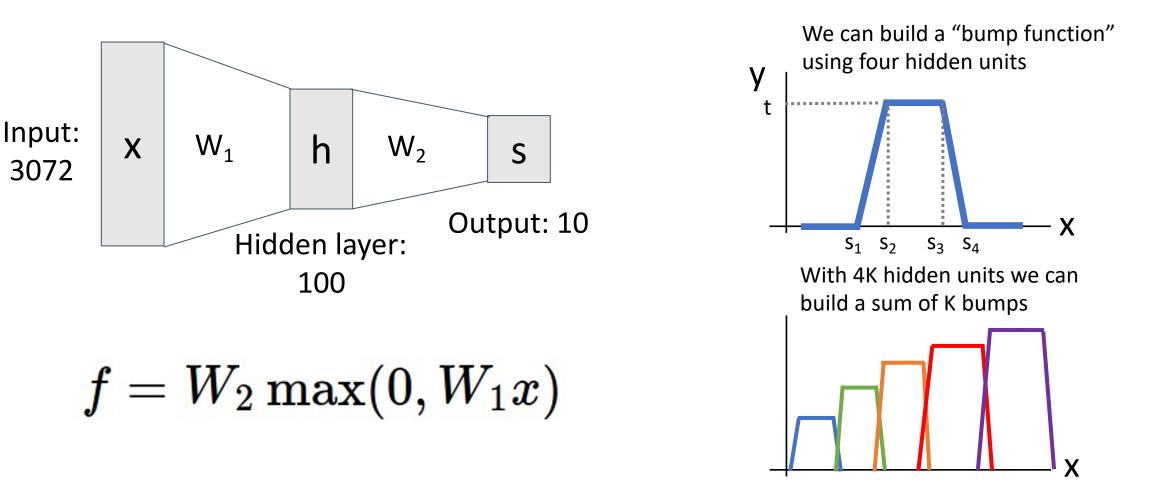
Learns bank of templates

Justin Johnson

Lecture 22 - 26

More Complex Models: Neural Networks

Universal Approximation



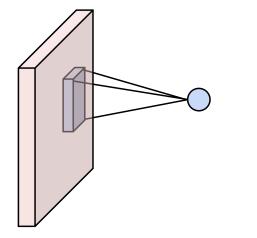
Justin Johnson

Lecture 22 - 27

More Complex Models: Convolutional Networks

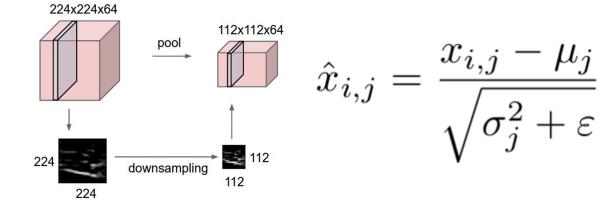
Fully-Connected Layers Activation Function

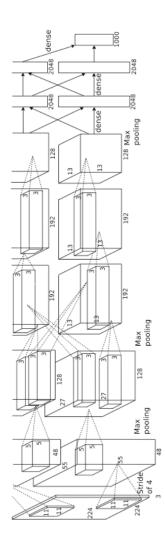
Convolution Layers



Pooling Layers

Normalization



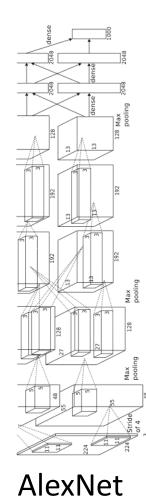


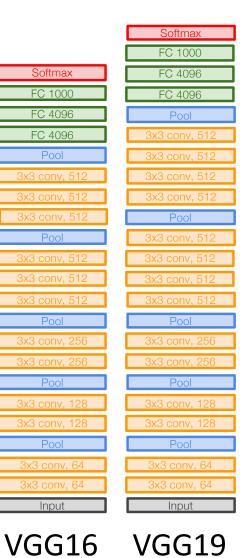
December 2, 2020

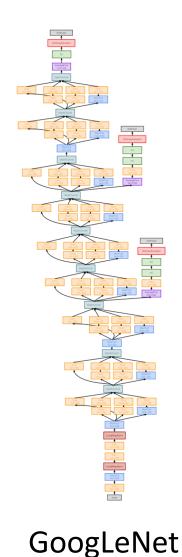
Justin Johnson

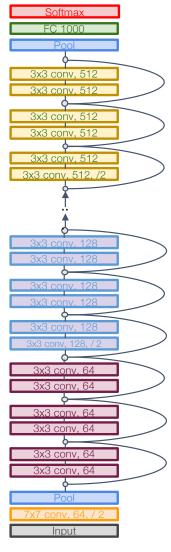
Lecture 22 - 28

CNN Architectures







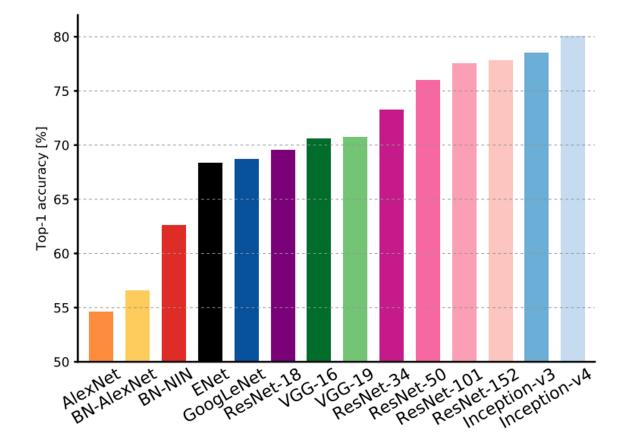


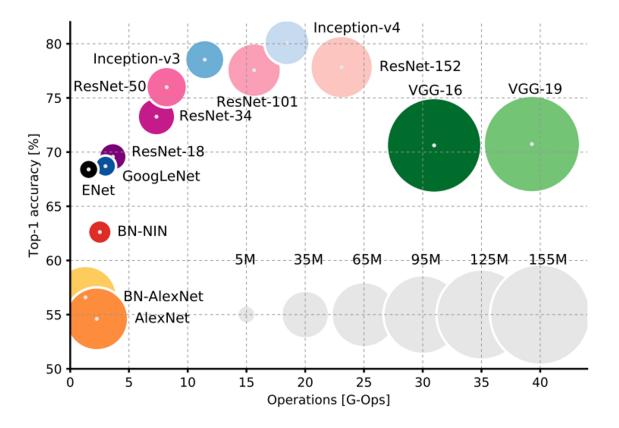
ResNet

Justin Johnson

Lecture 22 - 29

CNN Architectures: Efficiency



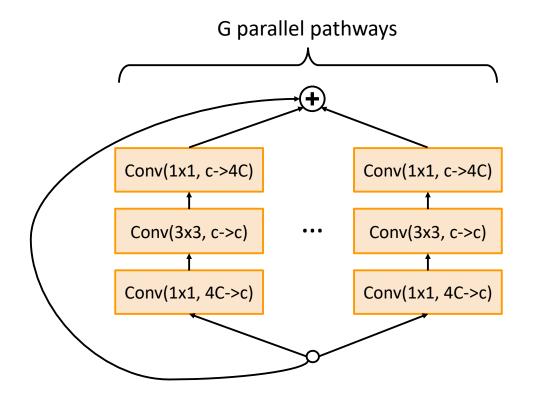


Canziani et al, "An analysis of deep neural network models for practical applications", 2017

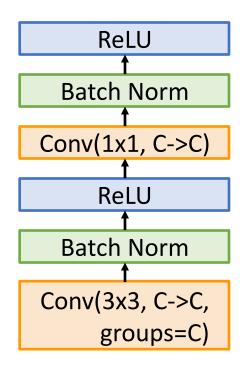
Justin Johnson

Lecture 22 - 30

CNN Architecture: Efficiency



ResNeXt

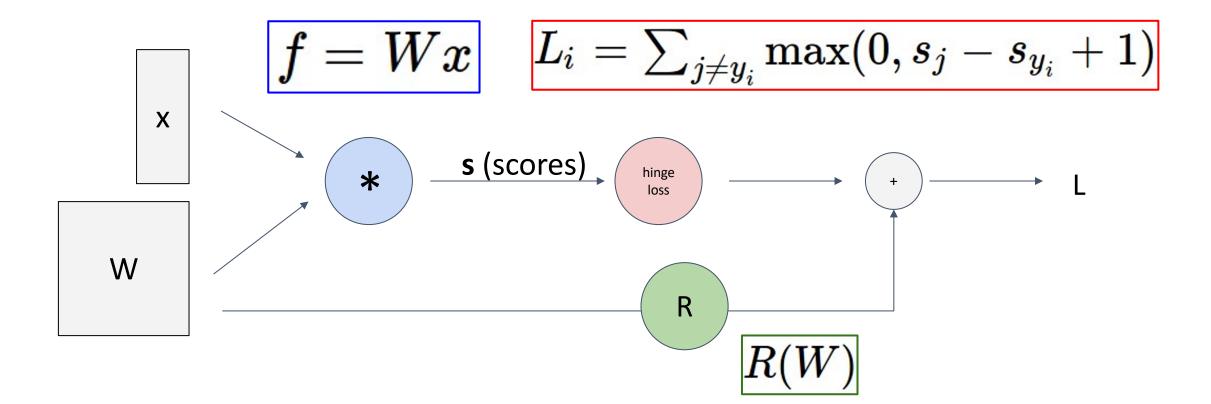


MobileNets

Justin Johnson

Lecture 22 - 31

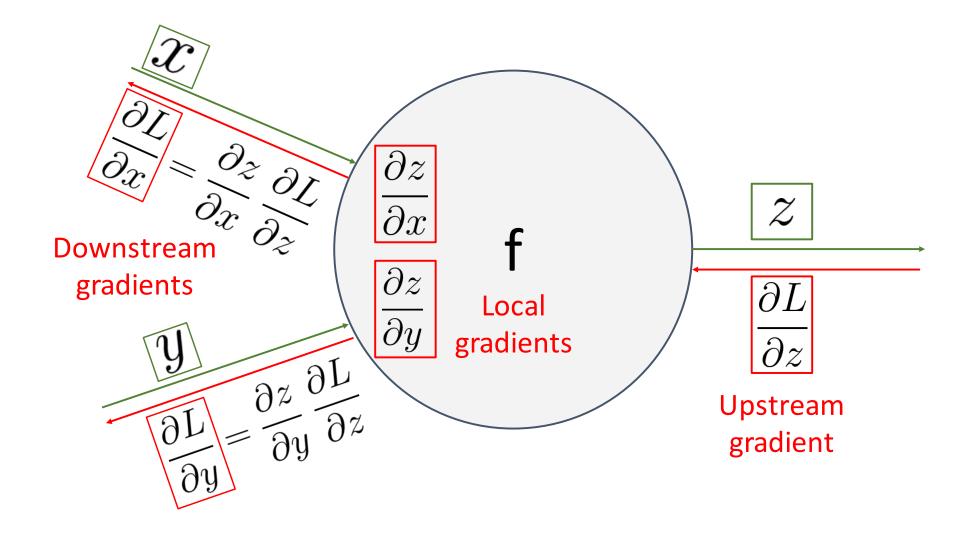
Representing Networks: Computational Graphs



		L				
	US	tin	JC	nr	ารอ	n
<u> </u>	<u></u>	.				

Lecture 22 - 32

Computing Gradients: Backpropagation



Justin Johnson

Lecture 22 - 33

Deep Learning Hardware and Software

CPU

GPU

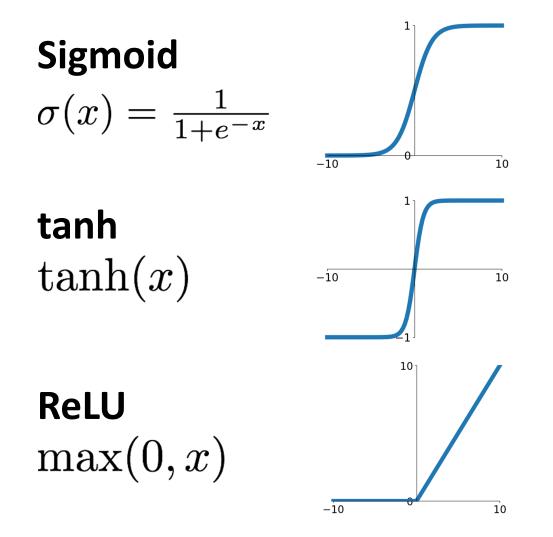
TPU

Static Graphs vs Dynamic Graphs PyTorch vs TensorFlow

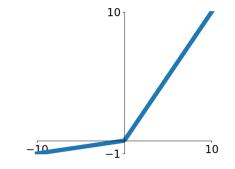
Justin Johnson

Lecture 22 - 34

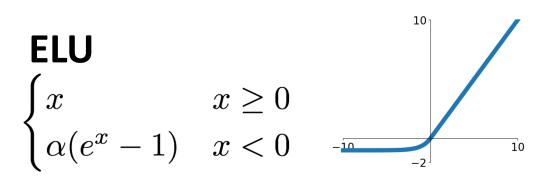
Training Neural Networks: Activation Functions



Leaky ReLU $\max(0.1x, x)$



 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

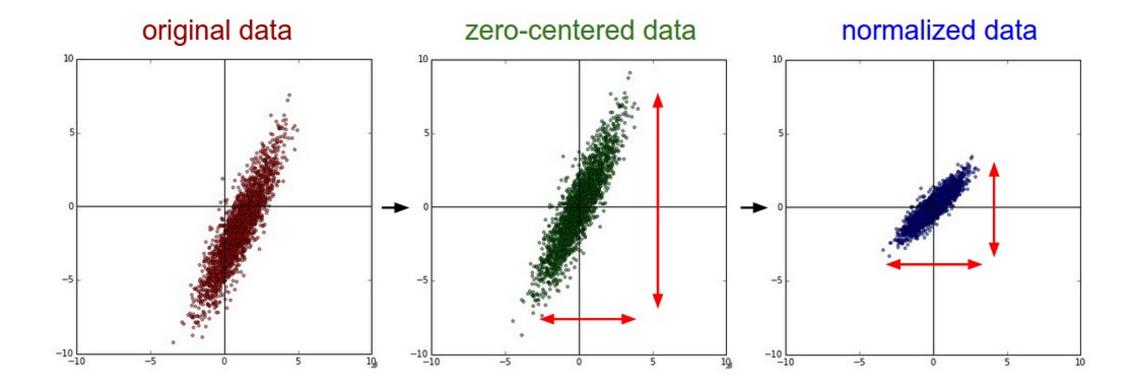


December 2, 2020

Justin Johnson

Lecture 22 - 35

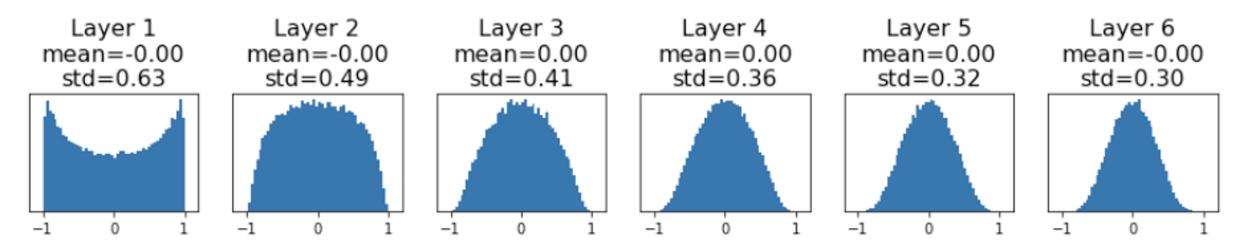
Training Neural Networks: Data Preprocessing



Lecture 22 - 36

Training Neural Networks: Weight Initialization

```
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
"Just right": Activations are
nicely scaled for all layers!
```

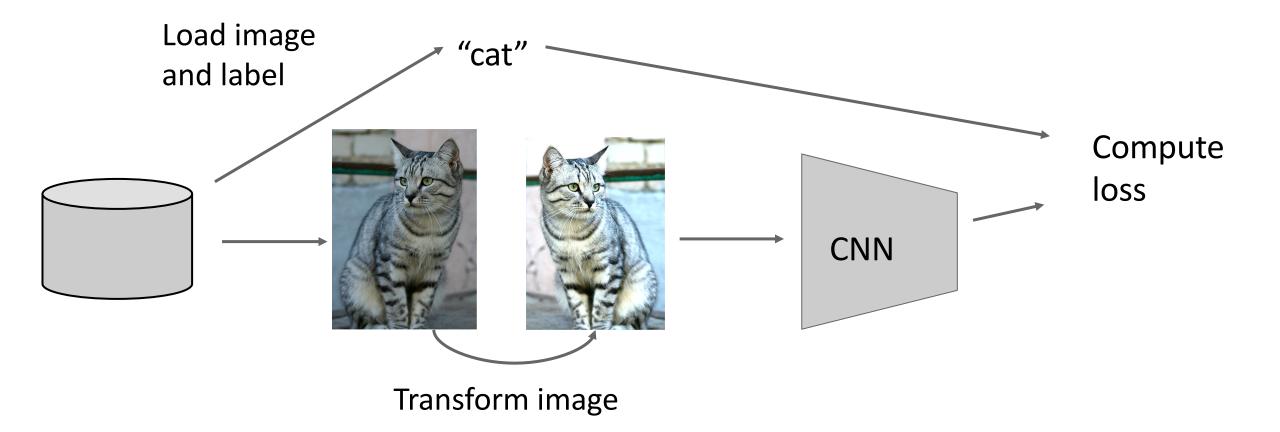


Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

Justin Johnson

Lecture 22 - 37

Training Neural Networks: Data Augmentation



Justin Johnson

Lecture 22 - 38

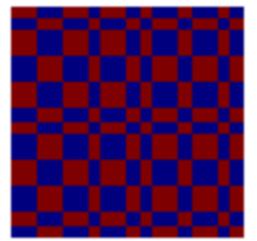
Training Neural Networks: Regularization

Training: Add randomness **Testing**: Marginalize out randomness

Examples:

Batch Normalization Data Augmentation

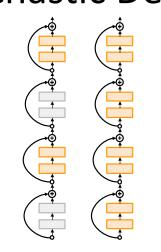
Fractional pooling



Dropout

X

Cutout Stochastic Depth



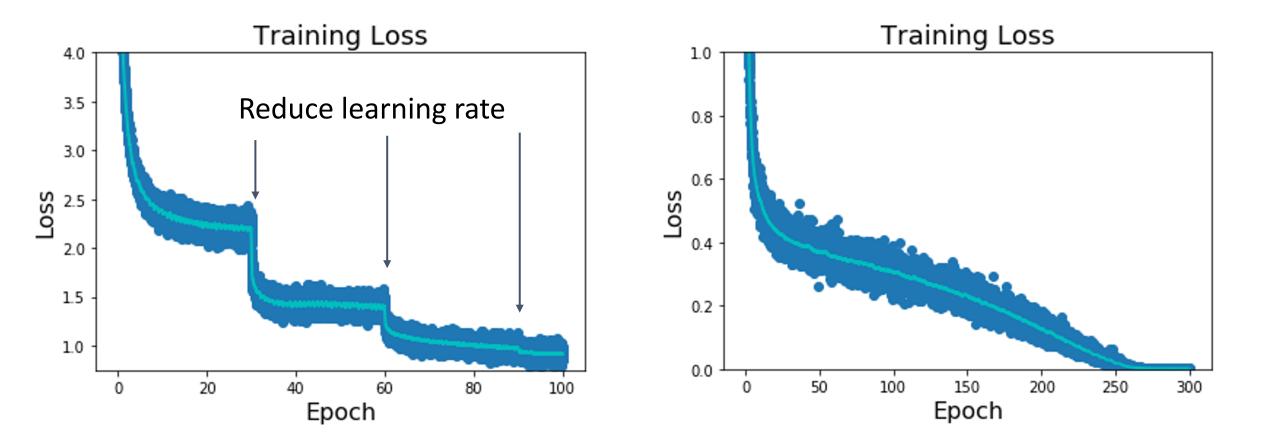
Mixup

Lecture 22 - 39

December 2, 2020

Justin Johnson

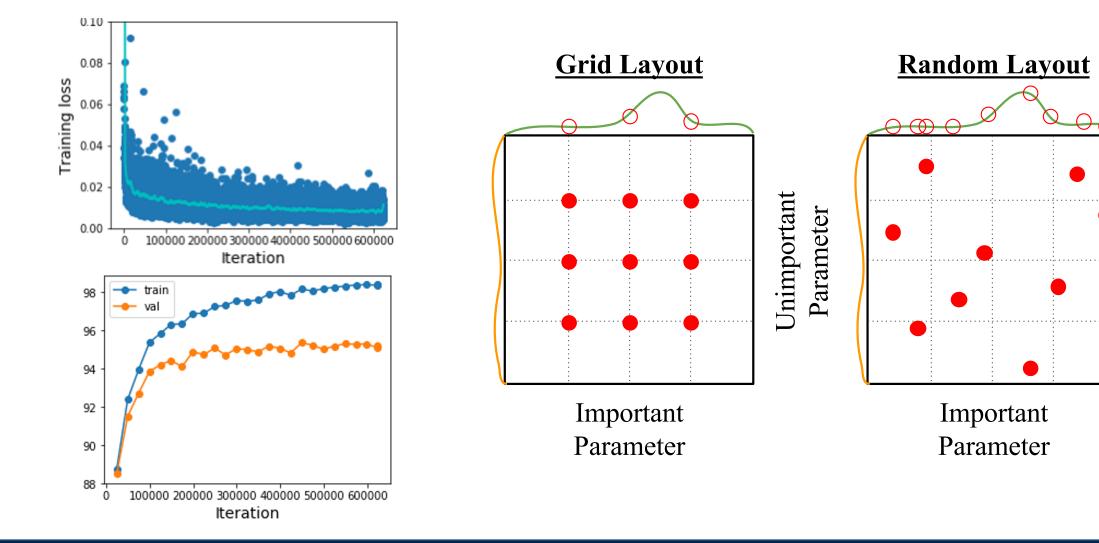
Training Neural Networks: Learning Rate Schedules



Justin Johnson

Lecture 22 - 40

Training Neural Networks: Choosing Hyperarameters



Justin Johnson

Lecture 22 - 41

December 2, 2020

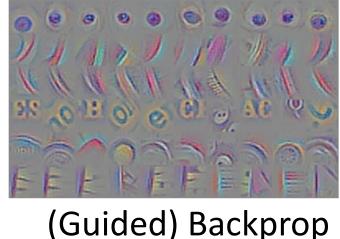
Jnimportant

Parameter

Visualizing and Understanding CNNs

Maximally Activating Patches

Nearest Neighbor



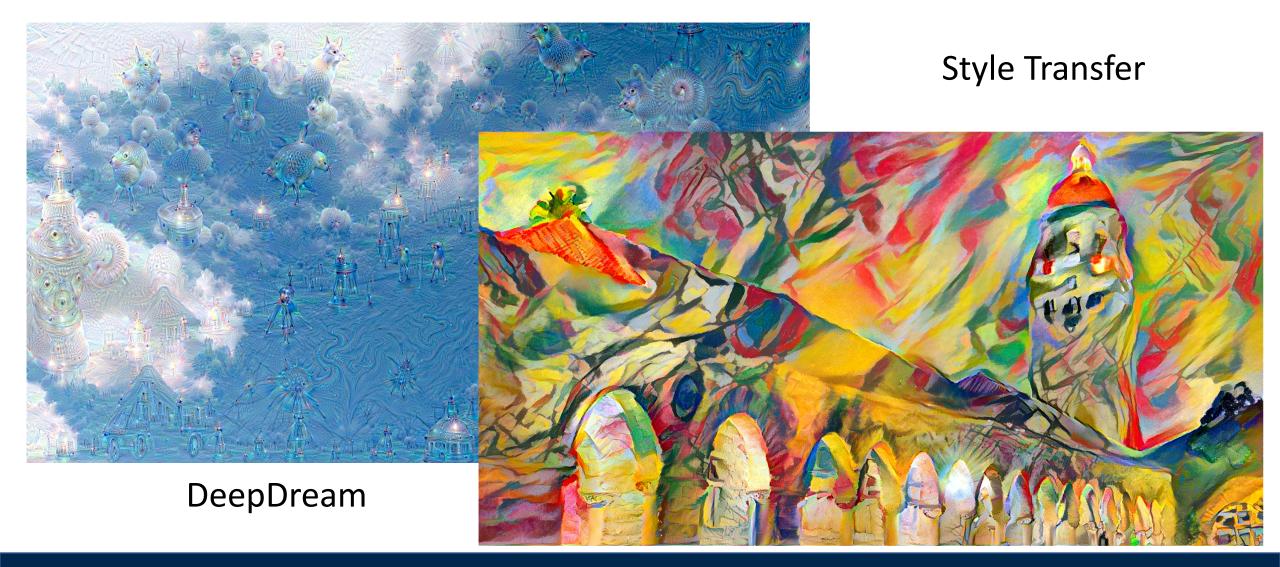
Synthetic Images via Gradient Ascent

Feature Inversion

Justin Johnson

Lecture 22 - 42

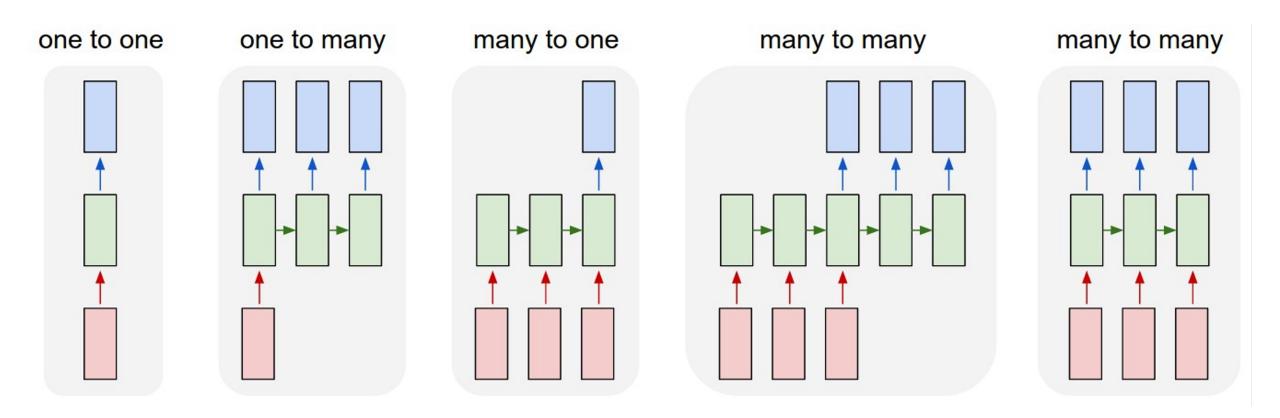
Making Art with CNNs



Justin Johnson

Lecture 22 - 43

Recurrent Neural Networks: Process Sequences

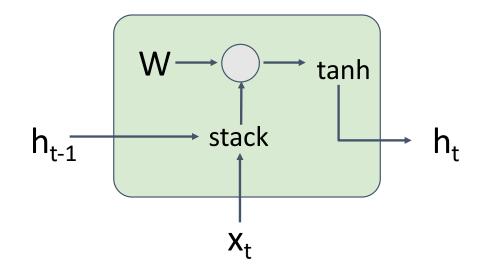


Justin Johnson

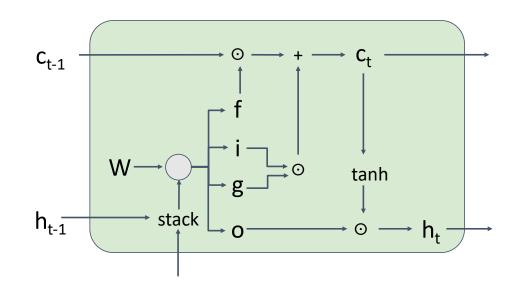
Lecture 22 - 44

Recurrent Neural Networks: Architectures

Vanilla Recurrent Network



Long Short Term Memory (LSTM)

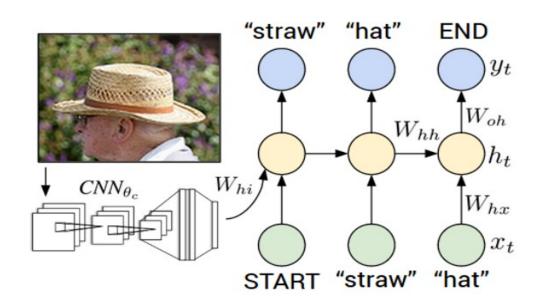


Justin Johnson

Lecture 22 - 45

Recurrent Neural Networks: Image Captioning

Captions generated using <u>neuraltalk2</u> All images are <u>CCO Public domain</u>: <u>cat</u> <u>suitcase</u>, <u>cat tree</u>, <u>dog</u>, <u>bear</u>, <u>surfers</u>, <u>tennis</u>, <u>giraffe</u>, <u>motorcycle</u>



Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015

A dog is running in the grass with a frisbee

Two giraffes standing in a grassy field

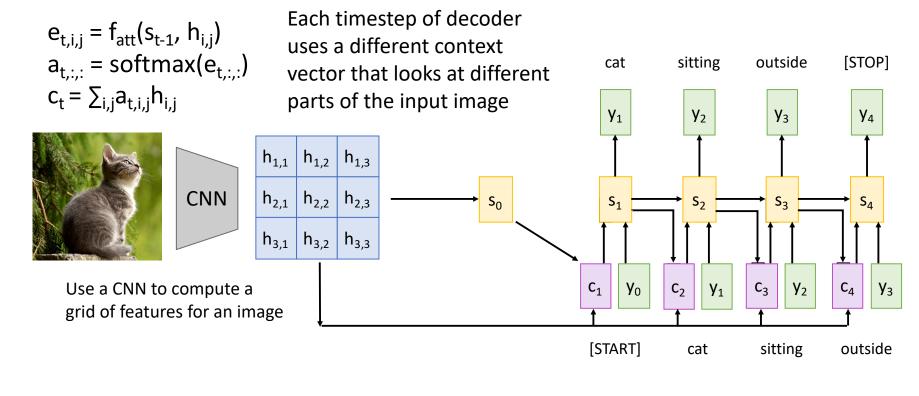
A white teddy bear sitting in the grass

A man riding a dirt bike on a dirt track

Justin Johnson

Lecture 22 - 46

Attention



Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Justin Johnson

Lecture 22 - 47

Self-Attention Layer

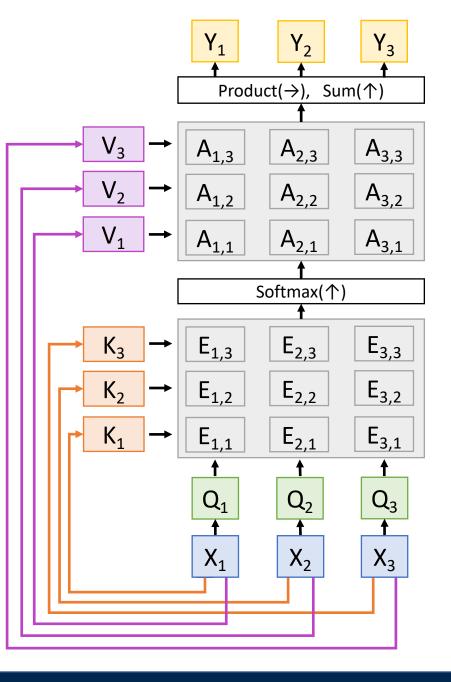
One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

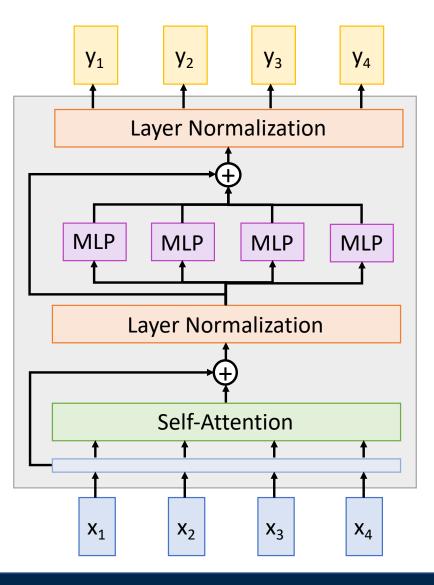
Query vectors: $\mathbf{Q} = \mathbf{XW}_{\mathbf{Q}}$ Key vectors: $\mathbf{K} = \mathbf{XW}_{\mathbf{K}}$ (Shape: $N_X \times D_Q$) Value Vectors: $\mathbf{V} = \mathbf{XW}_{\mathbf{V}}$ (Shape: $N_X \times D_V$) Similarities: $\mathbf{E} = \mathbf{QK}^{\mathsf{T}}$ (Shape: $N_X \times N_X$) $\mathbf{E}_{i,j} = \mathbf{Q}_i \cdot \mathbf{K}_j / \operatorname{sqrt}(D_Q)$ Attention weights: $\mathbf{A} = \operatorname{softmax}(\mathbf{E}, \operatorname{dim}=1)$ (Shape: $N_X \times N_X$) Output vectors: $\mathbf{Y} = \mathbf{AV}$ (Shape: $N_X \times D_V$) $\mathbf{Y}_i = \sum_j A_{i,j} \mathbf{V}_j$



Justin Johnson

Lecture 22 - 48

Attention is all you need: The Transformer



Vaswani et al, "Attention is all you need", NeurIPS 2017

Justin Johnson

Lecture 22 - 49

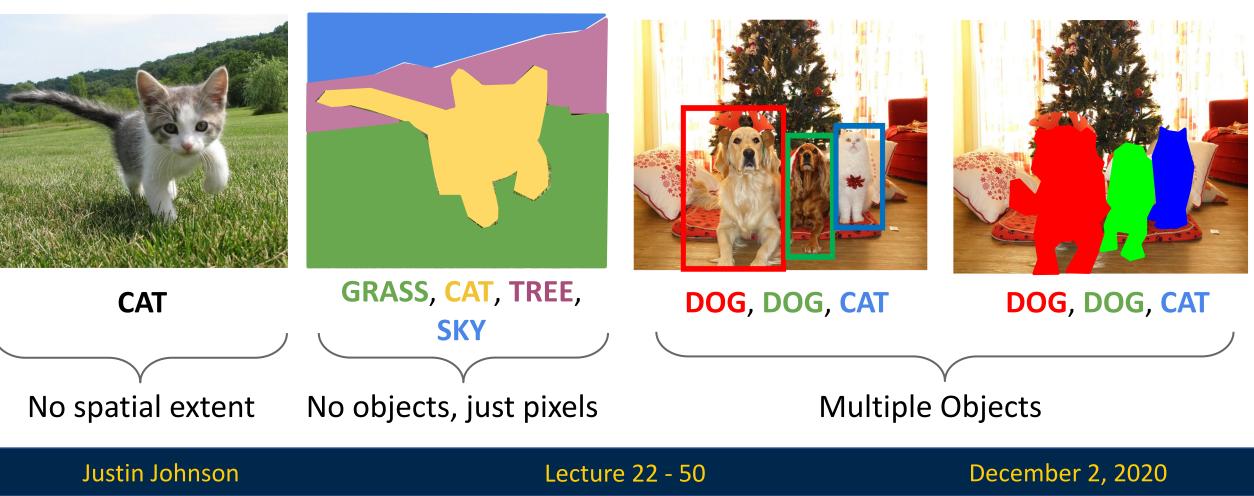
Computer Vision Tasks

Classification

Semantic Segmentation

Object Detection

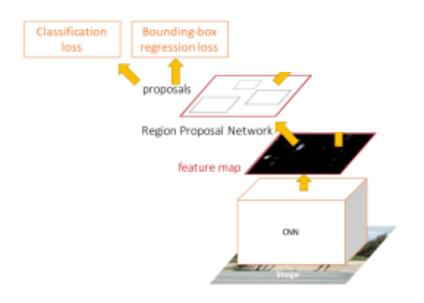
Instance Segmentation



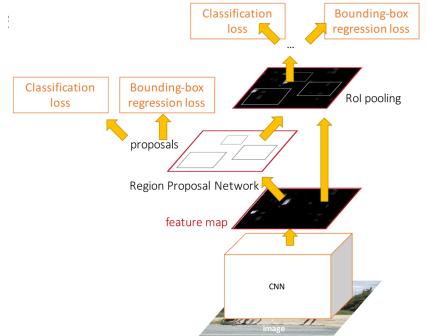
Object Detection: Single Stage vs Two Stage

Single-Stage:

YOLO, SSD, RetinaNet Make all predictions with a CNN



Two-Stage: Faster R-CNN Use RPN to predict proposals, classify them with second stage



Justin Johnson

Lecture 22 - 51

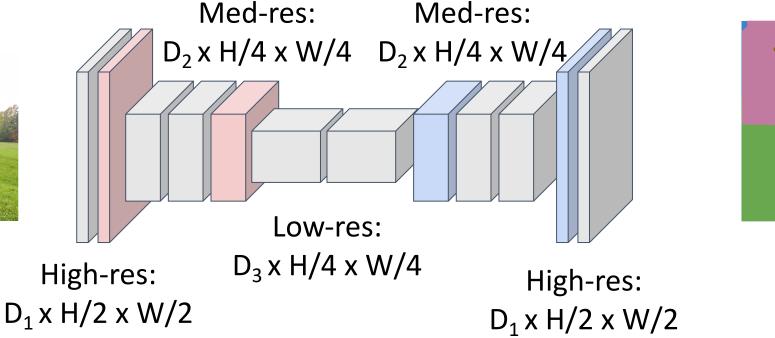
Semantic Segmentation: Fully Convolutional Network

Downsampling: Pooling, strided convolution

Input:

3 x H x W

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!



Upsampling: linterpolation, transposed conv

Predictions: H x W

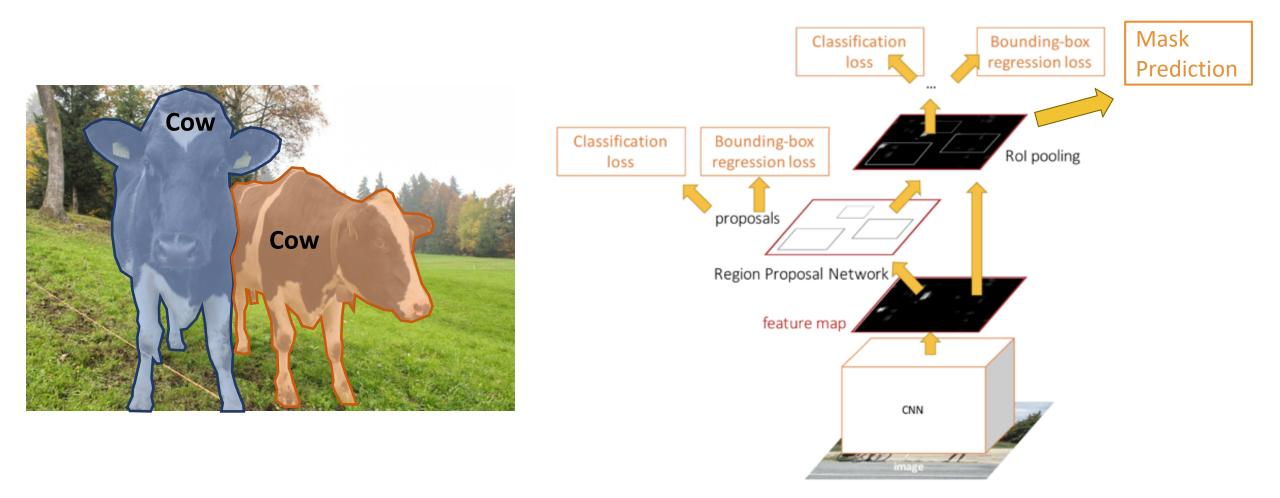
Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Loss function: Per-Pixel cross-entropy

Justin Johnson

Lecture 22 - 52

Instance Segmentation: Detection + Segmentation



He et al, "Mask R-CNN", ICCV 2017

Justin Johnson

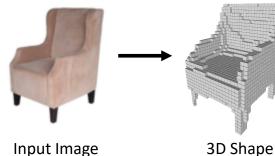
Lecture 22 - 53

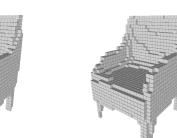
Adding a Dimension: 3D Deep Learning

Processing 3D

input data

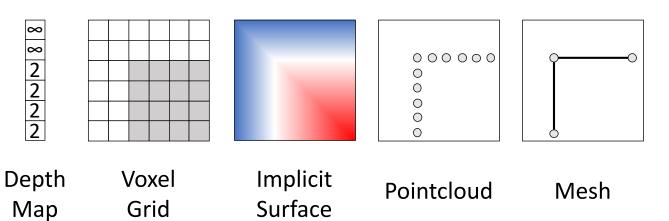
Predicting 3D Shapes from single image



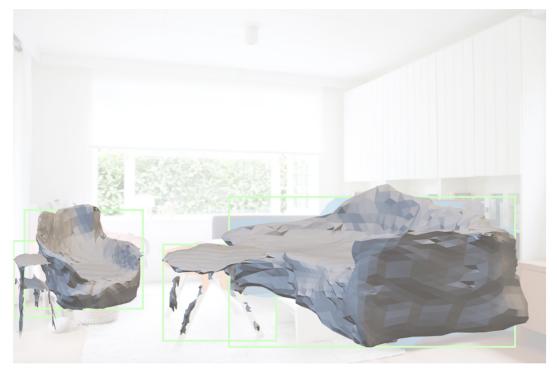


3D Shape

3D Shape Representations



Mesh R-CNN



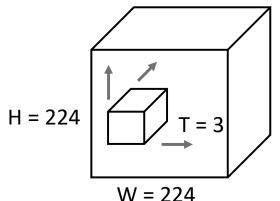
Gkioxari, Malik, and Johnson, ICCV 2019

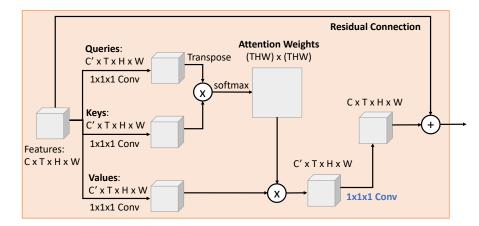
Justin Johnson

Lecture 22 - 54

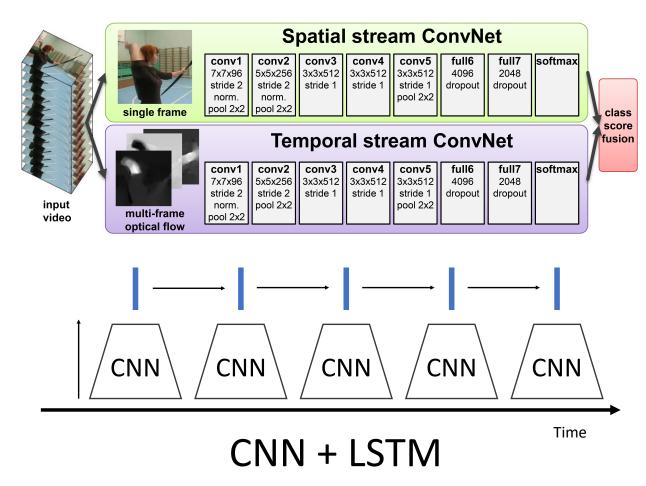
Chair

Adding a Dimension: Deep Learning on Video 3D CNNs Two Stream Networks





Self-Attention



December 2, 2020

Lecture 22 - 55

Justin Johnson

Generative Models

Autoregressive Models directly maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{N} p_{\theta}(x_i | x_1, \dots, x_{i-1})$$

Good image quality, can evaluate with perplexity. Slow to generate data, needs tricks to scale up.

Variational Autoencoders introduce a latent z, and maximize a lower bound:

$$p_{\theta}(x) = \int_{Z} p_{\theta}(x|z)p(z)dz \ge E_{z \sim q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

Latent z allows for powerful interpolation and editing applications.

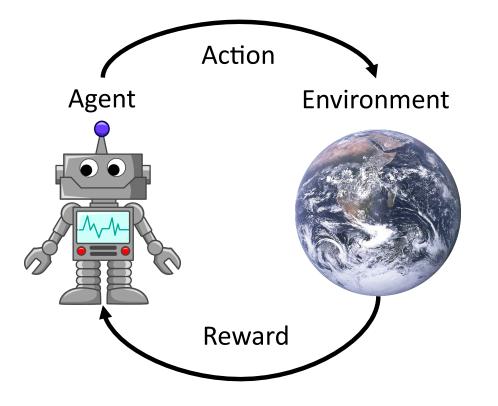
Generative Adversarial Networks give up on modeling p(x), but allow us to draw samples from p(x). Difficult to evaluate, but best qualitative results today

Justin Johnson

Lecture 22 - 56

Reinforcement Learning

RL trains **agents** that interact with an **environment** and learn to maximize **reward**



Q-Learning: Train network $Q_{\theta}(s, a)$ to estimate future rewards for every (state, action) pair. Use <u>Bellman</u> <u>Equation</u> to define loss function for training Q

Policy Gradients: Train a network $\pi_{\theta}(a \mid s)$ that takes state as input, gives distribution over which action to take in that state. Use <u>REINFORCE Rule</u> for computing gradients

Justin Johnson

Lecture 22 - 57

What's Next?

Justin Johnson

Lecture 22 - 58

Prediction #1: We will discover interesting new types of deep models

Justin Johnson

Lecture 22 - 59

Example: Neural ODE

Residual Network: $h_{t+1} = h_t + f(h_t, \theta_t)$ Looks kind of like numerical integration...

Chen et al, "Neural Ordinary Differential Equations", NeurIPS 2018

Justin Johnson

Lecture 22 - 60

Example: Neural ODE

Residual Network: $h_{t+1} = h_t + f(h_t, \theta_t)$ Looks kind of like numerical integration...

Neural ODE: Hidden "states" are the solutions of $\frac{dh}{dt} = f(h(t), t, \theta)$

A deep network with infinitely many layers!

Chen et al, "Neural Ordinary Differential Equations", NeurIPS 2018

Justin Johnson

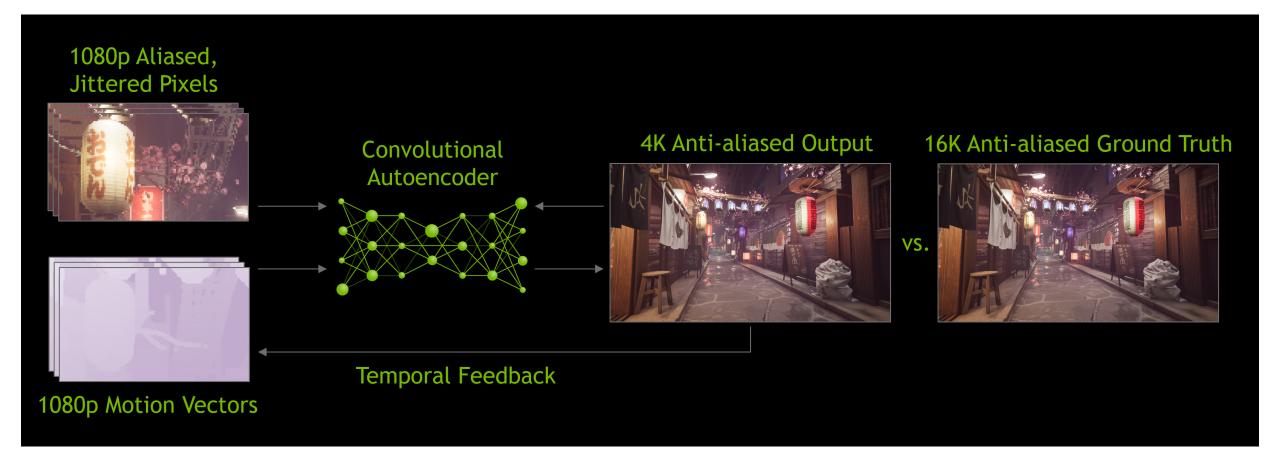
Lecture 22 - 61

Prediction #2: Deep Learning will find new applications

Justin Johnson

Lecture 22 - 62

Deep Learning for Graphics: NVIDIA DLSS



https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

Justin Johnson

Lecture 22 - 63

Deep Learning for Graphics: NVIDIA DLSS

Control NVIDIA DLSS 2.0 "Performance Mode" 3840x2160 Performance Max Game Settings, All Ray-Traced Effects Enabled, i9-9900K, 32GB RAM, Win 10 x64

https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

Justin Johnson

Lecture 22 - 64

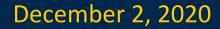
Deep Learning for Graphics: Nerfie

(a) Capture Process (b) Input

Park et al, "Deformable Neural Radiance Fields", arXiv 2020, <u>https://nerfies.github.io/</u>

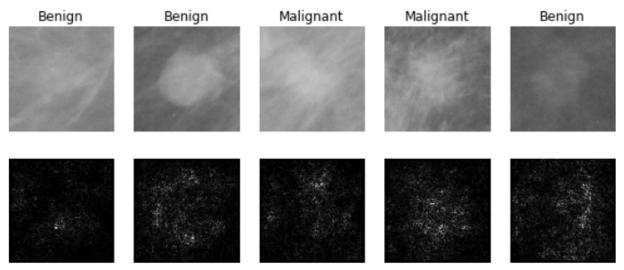
Justin Johnson

Lecture 22 - 65



Deep Learning for scientific applications

Medical Imaging



Levy et al, 2016 Figure reproduced with permission

Galaxy Classification

Dieleman et al, 2014

From left to right: <u>public domain by NASA</u>, usage <u>permitted</u> by ESA/Hubble, <u>public domain by NASA</u>, and <u>public domain</u>.

Whale recognition

Kaggle Challenge

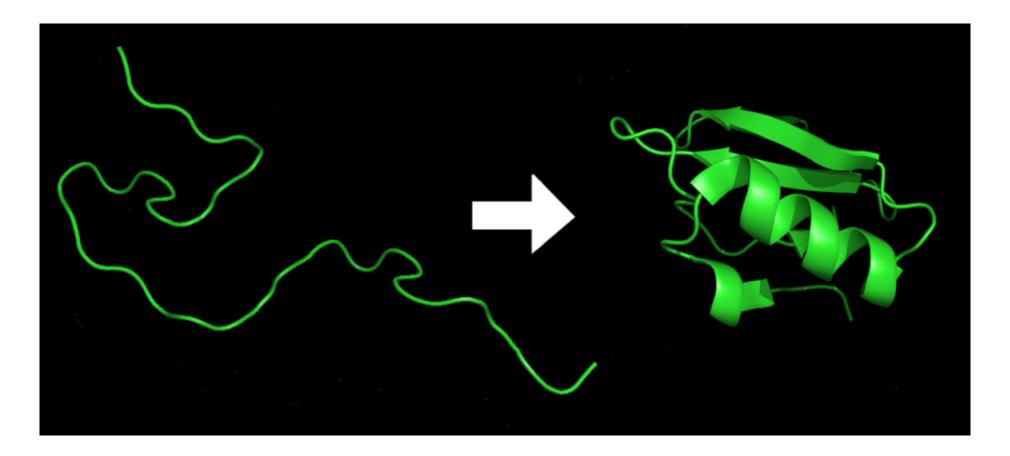
This image by Christin Khan is in the public domain and originally came from the U.S. NOAA.

December 2, 2020

Justin Johnson

Lecture 22 - 66

Deep Learning for Science: Protein Folding



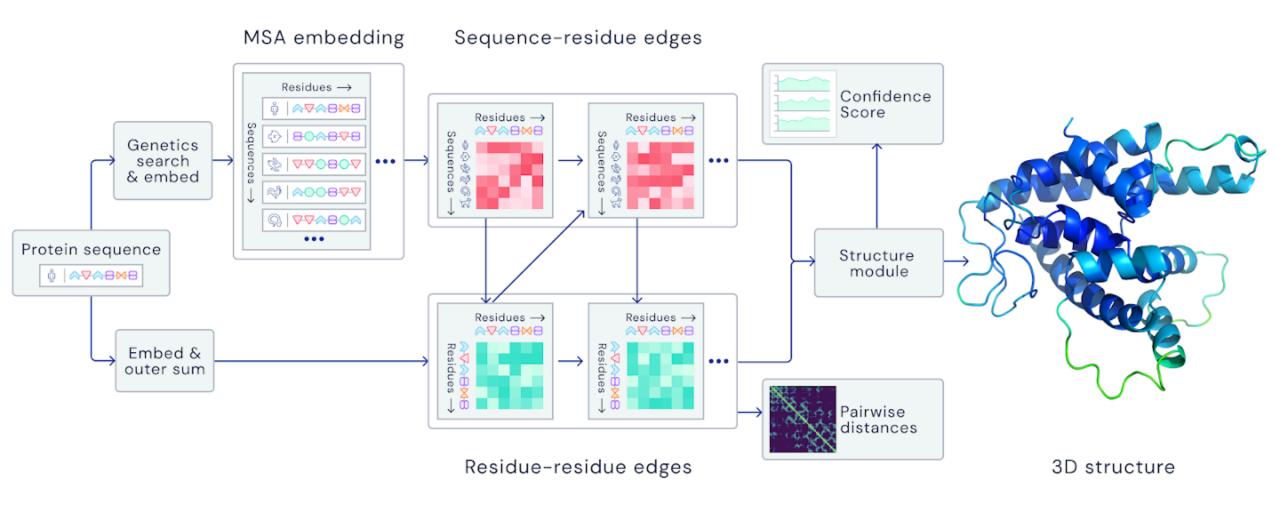
Input: 1D sequence of amino acids

Output: 3D protein structure

Justin Johnson

Lecture 22 - 67

Deep Learning for Science: AlphaFold 2



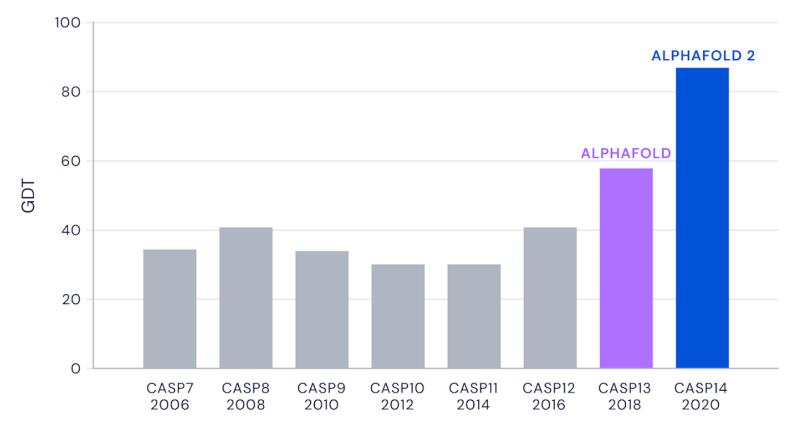
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Justin Johnson

Lecture 22 - 68

Deep Learning for Science: AlphaFold 2

Median Free-Modelling Accuracy



CASP

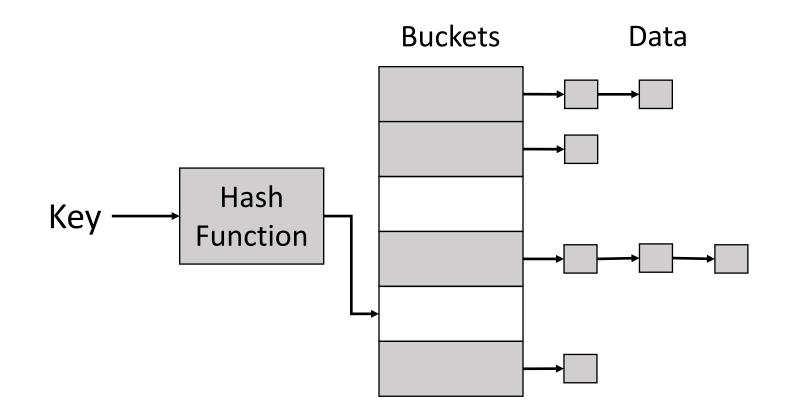
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Justin Johnson

Lecture 22 - 69

Deep Learning for Computer Science

Traditional Hash Table

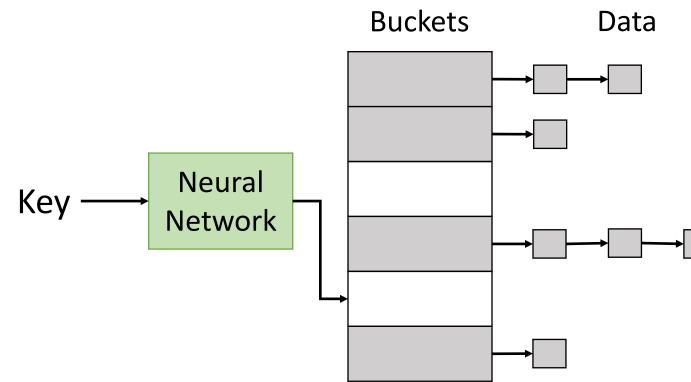


Kraska et al, "The Case for Learned Index Structures", SIGMOD 2018

Justin Johnson	Lecture 22 - 70	December 2, 2020
----------------	-----------------	------------------

Deep Learning for Computer Science

Traditional Hash Table



Learn to assign keys to buckets in a way that minimizes hash collisions for the types of data you encounter

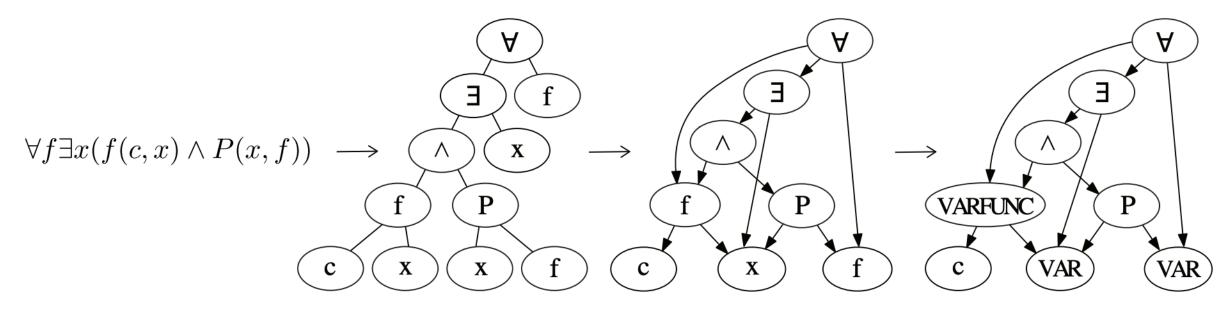
Kraska et al, "The Case for Learned Index Structures", SIGMOD 2018

Just	in J	0	hn	SO	n
343 0				50	

Lecture 22 - 71

Deep Learning for Mathematics

Convert mathematical expressions into graphs, process then with graph neural networks!



Applications: Theorem proving, symbolic integration

Wang et al, "Premise Selection for Theorem Proving by Deep Graph Embedding", NeurIPS 2017 Kaliszyk et al, "Reinforcement Learning of Theorem Proving", NeurIPS 2018 Lample and Charton, "Deep Learning for Symbolic Mathematics", arXiv 2019

Justin Johnson

Lecture 22 - 72

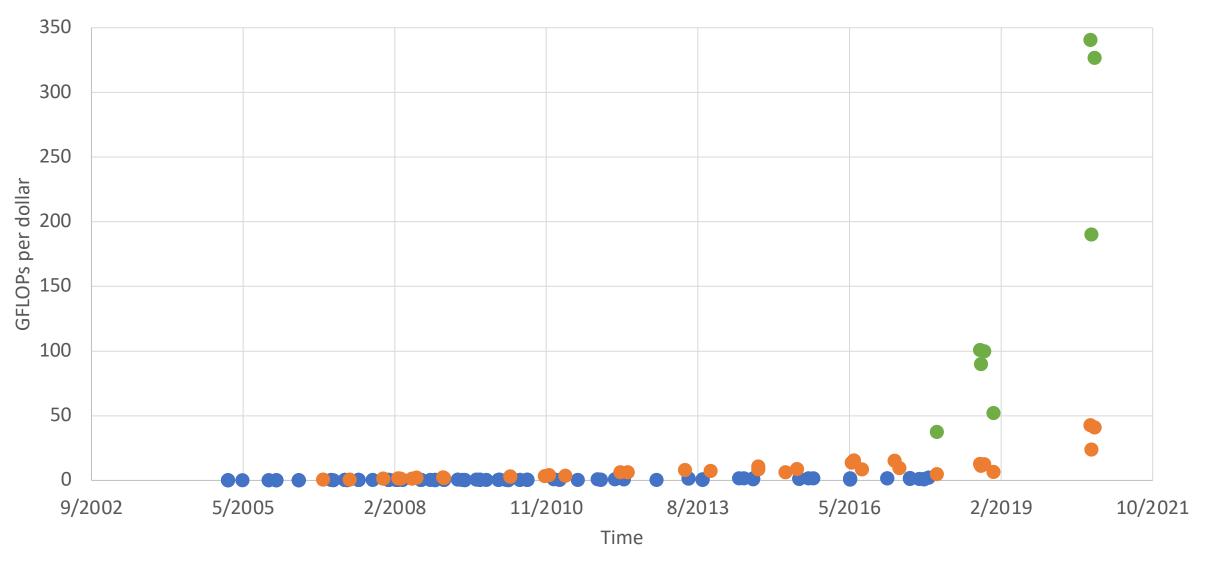
Prediction #3: Deep Learning will use more data and compute

Justin Johnson

Lecture 22 - 73

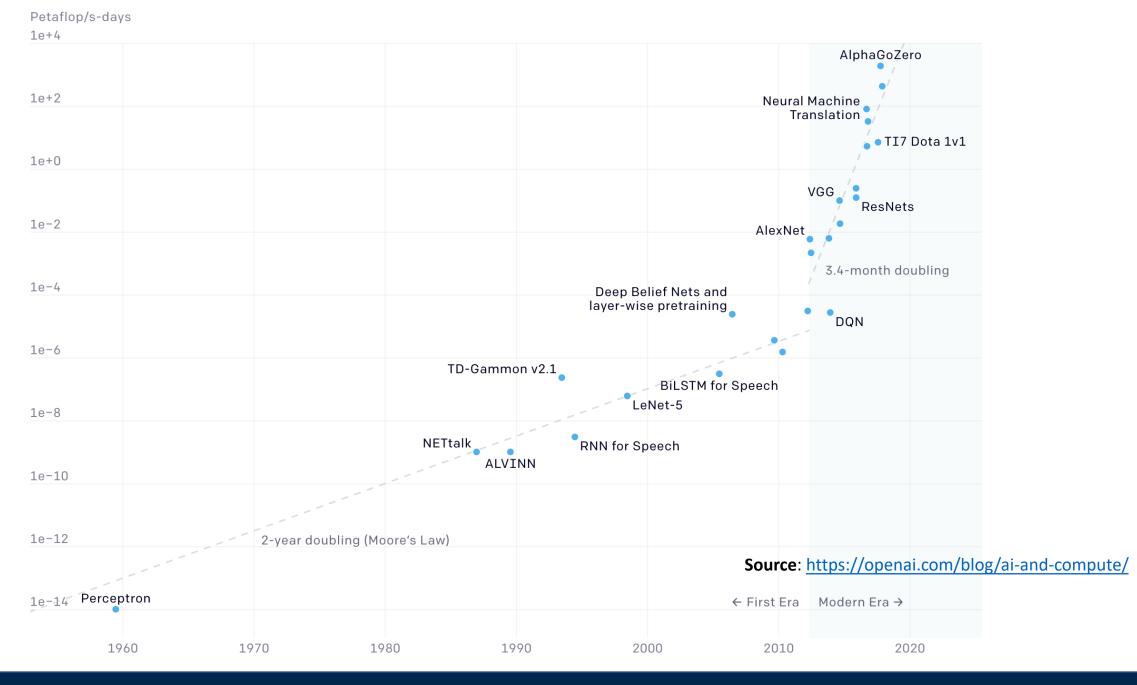
GFLOPs per Dollar

● CPU ● GPU FP32 ● GPU Tensor Core



Justin Johnson

Lecture 22 - 74



Justin Johnson

Lecture 22 - 75

New Hardware for Deep Learning

			С	er	et	ora	as	W	/af	er	S	Scale Engine	
3	<u>.</u>	97	•	9	•	e	••••••••••••••••••••••••••••••••••••••		• • •				
•	•••				••••	••••••							
		•			• • •	••••••	• • •		• • •				
			3 	•		•	1						
•	•		• • • •	(* * (*)	*	(* * *		••••					
2			t,	7	-			*	7	•	•	T TAWAN IZZAI PENKELIKO 6 UKIC-66-AT	
Cerebras WSE 1.2 Trillion Transistors 46,225 mm ² Silicon										Largest GI	v		
										21.1 Billion Tran 815 mm² Silio			

SPECIFICATIONS

Sparse Linear Algebra Compute Cores	400,000
On-chip Memory	18 GB SRAM
Memory Bandwidth	9.6 PB/sec
Core-to-Core Bandwidth	100 Pb/sec
Maximum Power Requirement	20 kW
System IO	12x100 GbE
Cooling	Air-cooled
Dimensions	15 Rack Units (26.25")

December 2, 2020

Cerebras Systems, "Wafer-Scale Deep Learning", 2019; https://secureservercdn.net/198.12.145.239/a7b.fcb.myftpupload.com/wp-content/uploads/2019/08/HC31 1.13 Cerebras.SeanLie.v02.pdf

Justin Johnson

Lecture 22 - 76

Transistors

Problem #1: Models are biased

Justin Johnson

Lecture 22 - 77

Recall: Vector Arithmetic with GANs

Samples from the model Smiling

woman

Neutral woman

Neutral

man

Average Z vectors, do arithmetic

Justin Johnson

Radford et al, ICLR 2016

Lecture 22 - 78

Vector Arithmetic with Word Vectors

Training: Input a large corpus of text, learn to represent each word with a <u>vector</u>

Can used trained vectors to solve analogies: Man is to King as Woman is to x?

Find nearest neighbor to: Man – King + Woman

Mikolov et al, "Distributed Representations of Words and Phrases and their Compositionality", NeurIPS 2013 Mikolov et al, "Linguistic Regularities in Continuous Space Word Representations", NAACL HLT 2013

Justin Johnson

Lecture 22 - 79

Gender Bias in Word Vectors

Extreme *she*

1. homemaker 2. nurse 3. receptionist 4. librarian 5. socialite 6. hairdresser 7. nanny 8. bookkeeper 9. stylist 10. housekeeper 10. magician

Extreme *he* 1. maestro 2. skipper 3. protege 4. philosopher 5. captain 6. architect 7. financier 8. warrior 9. broadcaster

sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-football cupcakes-pizzas

queen-king waitress-waiter

Gender stereotype *she-he* analogies

registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar

housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant

Gender appropriate *she-he* analogies

sister-brother mother-father ovarian cancer-prostate cancer convent-monastery

Bolukbasi et al, "Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings", NeurIPS 2016

Justin Johnson

Lecture 22 - 80

Ground-Truth: Soap **Source**: UK, \$1890/month

DeVries et al, "Does Object Recognition Work for Everyone?", CVPR Workshops, 2019

Justin Johnson

Lecture 22 - 81

Ground-Truth: Soap **Source**: UK, \$1890/month

Azure: toilet, design, art, sink Clarifai: people, faucet, healthcare, lavatory, wash closet **Google**: product, liquid, water, fluid, bathroom accessory **Amazon**: sink, indoors, bottle, sink faucet Watson: gas tank, storage tank, toiletry, dispenser, soap dispenser **Tencent**: lotion, toiletry, soap dispenser, dispenser, after shave

DeVries et al, "Does Object Recognition Work for Everyone?", CVPR Workshops, 2019

Justin Johnson

Lecture 22 - 82

Ground-Truth: Soap **Source**: Nepal, \$288/month

Ground-Truth: Soap **Source**: UK, \$1890/month

Azure: toilet, design, art, sink Clarifai: people, faucet, healthcare, lavatory, wash closet **Google:** product, liquid, water, fluid, bathroom accessory **Amazon**: sink, indoors, bottle, sink faucet Watson: gas tank, storage tank, toiletry, dispenser, soap dispenser **Tencent**: lotion, toiletry, soap dispenser, dispenser, after shave

DeVries et al, "Does Object Recognition Work for Everyone?", CVPR Workshops, 2019

Justin Johnson

Lecture 22 - 83

Ground-Truth: Soap **Source**: Nepal, \$288/month

Azure: food, cheese, bread, cake, sandwich **Clarifai**: food, wood, cooking, delicious, healthy **Google**: food, dish, cuisine, comfort food, spam Amazon: food, confectionary, sweets, burger Watson: food, food product, turmeric, seasoning **Tencent**: food, dish, matter, fast food, nutriment

Commercial object recognition systems work best for objects found in high-income western houseolds **Ground-Truth**: Soap **Source**: UK, \$1890/month

Azure: toilet, design, art, sink **Clarifai**: people, faucet, healthcare, lavatory, wash closet **Google:** product, liquid, water, fluid, bathroom accessory **Amazon**: sink, indoors, bottle, sink faucet Watson: gas tank, storage tank, toiletry, dispenser, soap dispenser **Tencent**: lotion, toiletry, soap dispenser, dispenser, after shave

DeVries et al, "Does Object Recognition Work for Everyone?", CVPR Workshops, 2019

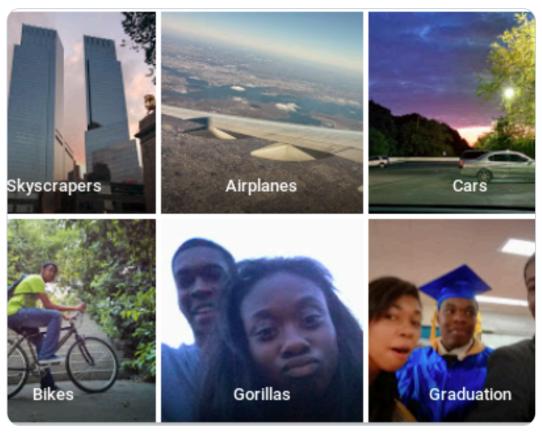
Justin Johnson

Lecture 22 - 84

Racial Bias in Visual Classifiers

Google Photos, y'all fucked up. My friend's not a gorilla.

 \sim



Source: https://twitter.com/jackyalcine/status/615329515909156865 (2015)

Justin Johnson

Lecture 22 - 85

Racial Bias in Visual Classifiers

Commercial gender classifiers fail much more often for women with dark skin

Classifier	Metric	All	\mathbf{F}	\mathbf{M}	Darker	Lighter	DF	$\mathbf{D}\mathbf{M}$	\mathbf{LF}	$\mathbf{L}\mathbf{M}$
	PPV(%)	93.7	89.3	97.4	87.1	99.3	79.2	94.0	98.3	100
MSFT	Error $Rate(\%)$	6.3	10.7	2.6	12.9	0.7	20.8	6.0	1.7	0.0
MISE I	TPR(%)	93.7	96.5	91.7	87.1	99.3	92.1	83.7	100	98.7
	FPR (%)	6.3	8.3	3.5	12.9	0.7	16.3	7.9	1.3	0.0
	PPV(%)	90.0	78.7	99.3	83.5	95.3	65.5	99.3	94.0	99.2
Enco I I	Error $Rate(\%)$	10.0	21.3	0.7	16.5	4.7	34.5	0.7	6.0	0.8
Face++	TPR(%)	90.0	98.9	85.1	83.5	95.3	98.8	76.6	98.9	92.9
	FPR (%)	10.0	14.9	1.1	16.5	4.7	23.4	1.2	7.1	1.1
	PPV(%)	87.9	79.7	94.4	77.6	96.8	65.3	88.0	92.9	99.7
IBM	Error $Rate(\%)$	12.1	20.3	5.6	22.4	3.2	34.7	12.0	7.1	0.3
IDIVI	TPR(%)	87.9	92.1	85.2	77.6	96.8	82.3	74.8	99.6	94.8
	FPR(%)	12.1	14.8	7.9	22.4	3.2	25.2	17.7	5.20	0.4

Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Justin Johnson

Lecture 22 - 86

Making ML Work for Everyone

Wang et al, "Balanced datasets are not enough: Estimating and mitigating gender bias in deep image representations", ICCV 2019

Hutchinson and Mitchell, "50 Years of Test (Un) fairness: Lessons for Machine Learning", CFAT 2019

Mitchell et al, "Model Cards for Model Reporting", CFAT 2019

Zhang et al, "Mitigating unwanted biases with adversarial learning", AAAI 2018

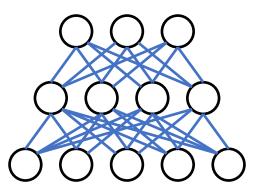
Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", CFAT 2018

Problem #2: Need new theory?

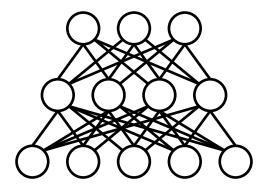
Justin Johnson

Lecture 22 - 88

Step 1: Randomly initialize a network



Step 2: Train on your favorite dataset

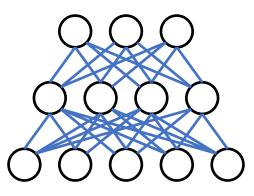


Han et al, "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

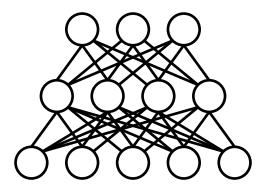
Justin Johnson

Lecture 22 - 89

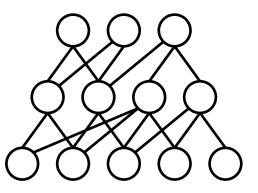
Step 1: Randomly initialize a network



Step 2: Train on your favorite dataset



Step 3: Remove weights of small magnitude



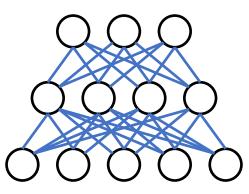
Pruned network works about the same as full network in (2)!

Han et al, "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding", ICLR 2016

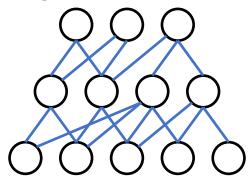
Justin Johnson

Lecture 22 - 90

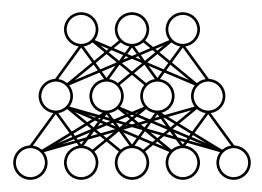
Step 1: Randomly initialize a network



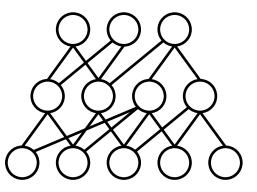
Step 4: Return pruned network weights to initial values



Step 2: Train on your favorite dataset



Step 3: Remove weights of small magnitude



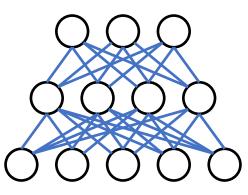
Pruned network works about the same as full network in (2)!

Frankle and Carbin, "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks", ICLR 2019

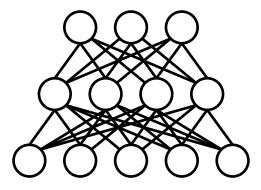
Justin Johnson

Lecture 22 - 91

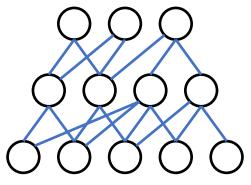
Step 1: Randomly initialize a network



Step 2: Train on your favorite dataset



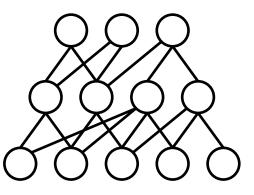
Step 4: Return pruned network weights to initial values



Step 5: Train pruned network; it works almost as good as (2)!



Step 3: Remove weights of small magnitude



Pruned network works about the same as full network in (2)!

Lottery Ticket Hypothesis:

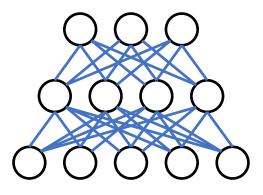
Within a random deep network is a good subnet that won the "initialization lottery"

Frankle and Carbin, "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks", ICLR 2019

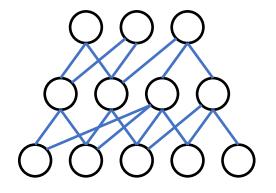
Justin Johnson

Lecture 22 - 92

Step 1: Randomly initialize a network



Step 2: Find an <u>untrained</u> subnet that works for classification!



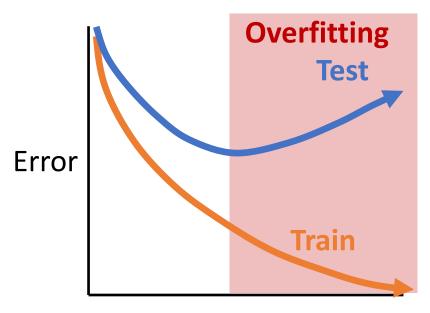
I think we are missing something about how to train and initialize deep nets, what training actually does

> Ramanujan et al, "What's Hidden in a Randomly Weighted Neural Network?", arXiv 2019

Justin Johnson

Lecture 22 - 93

What we expect from classical statistical learning theory:

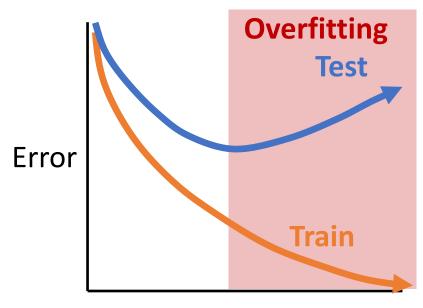


Model complexity

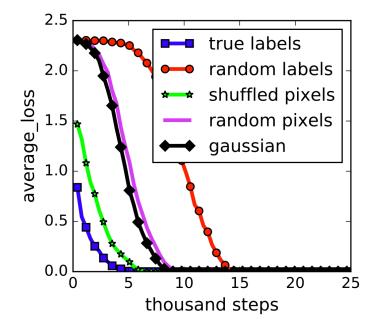
Justin Johnson

Lecture 22 - 94

What we expect from classical statistical learning theory:



Model complexity

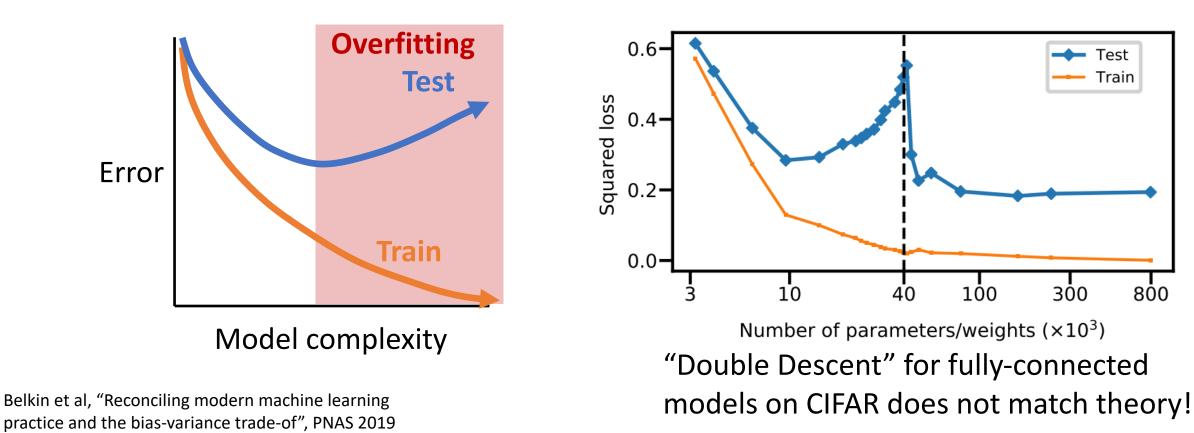


Deep networks can achieve 0 training loss on CIFAR with random labels. When we train the same model on real data, why doesn't it overfit?

Justin Johnson

Lecture 22 - 95

What we expect from classical statistical learning theory:



Justin Johnson

Lecture 22 - 96

December 2, 2020

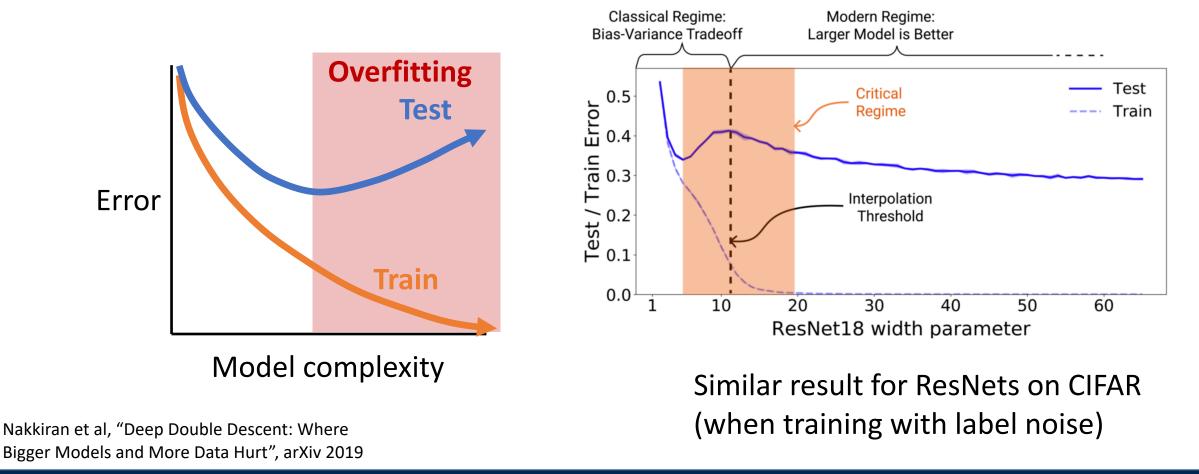
300

🔶 Test

Train

800

What we expect from classical statistical learning theory:



Justin Johnson

Lecture 22 - 97

Problem #3: Deep Learning needs a lot of labeled training data

Justin Johnson

Lecture 22 - 98

MNIST Dataset
10 classes: Digits 0 to 9
28x28 grayscale images
6k images per class (5k train, 1k test)

Omniglot Dataset

1623 classes: Letters from 50 alphabets20 images per class

Lake et al, "Human-level concept learning through probabilistic program induction," Science 2015

Justin Johnson

Lecture 22 - 99

KMNIST Dataset
10 classes: 3832 Kanji characters
64x64 grayscale images
1 to 1766 images per class

Omniglot Dataset

1623 classes: Letters from 50 alphabets20 images per class

Lake et al, "Human-level concept learning through probabilistic program induction," Science 2015

Justin Johnson

Lecture 22 - 100

COCO Dataset

118k images80 categories1.2M object instances



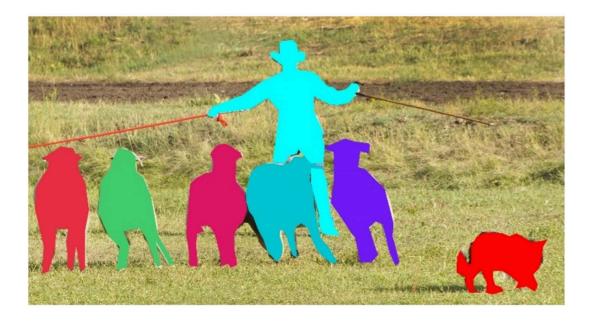
Lin et al, "Microsoft COCO: Common Objects in Context", ECCV 2014

Justin Johnson

Lecture 22 - 101

COCO Dataset

118k images80 categories1.2M object instances



Lin et al, "Microsoft COCO: Common Objects in Context", ECCV 2014

LVIS Dataset

160k images

>1000 categories

~2M object instances

Gupta et al, "LVIS: A Dataset for Large Vocabulary Instance Segmentation", CVPR 2019

Justin Johnson

Lecture 22 - 102

Using Unlabeled Data: Self-Supervised Learning

Step 1: Train a CNN on some "pretext task" that does not require labeled data

Step 2: Fine-tune CNN on <u>target task</u> (hopefully using not much labeled data)

Lecture 22 - 103

Self-Supervised Learning: Jigsaw Puzzles

Source Image

Shuffled patches Network unscrambles

Noroozi and Favaro, "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles", ECCV 2016

Justin Johnson

Lecture 22 - 104

Self-Supervised Learning: Colorization

Input: Grayscale image

Output: Color Image

Zhang et al, "Colorful Image Colorization", ECCV 2016 Zhang et al, "Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction", ECCV 2016

Justin Johnson

Lecture 22 - 105

Self-Supervised Learning: Inpainting

Input: Image with a hole

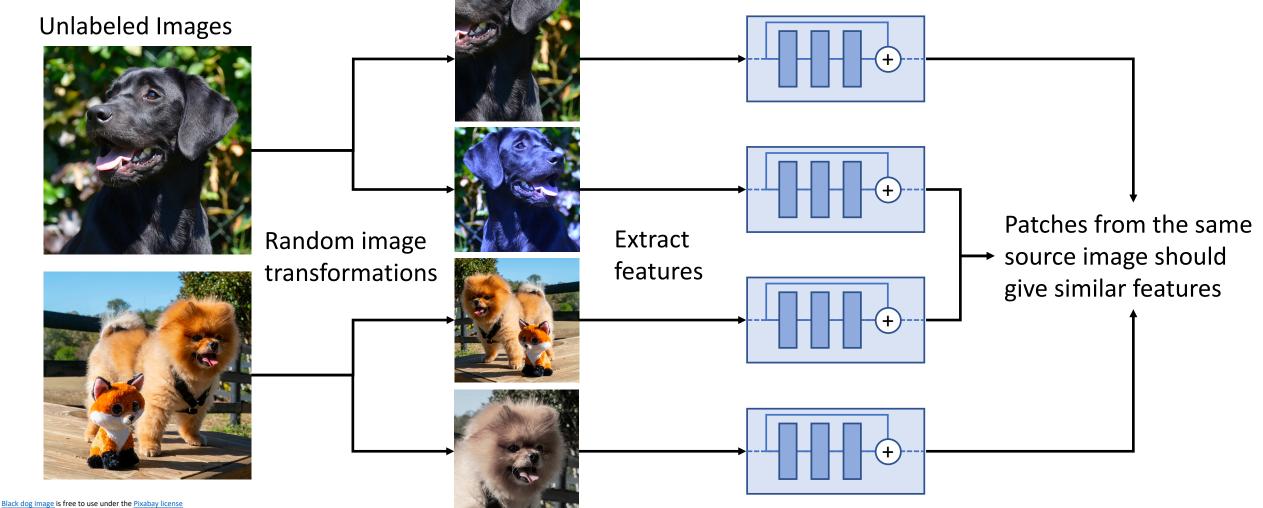
Pathak et al, "Context Encoders: Feature Learning by Inpainting", CVPR 2016

Output: Hole filled in

Justin Johnson

Lecture 22 - 106

Self-Supervised Learning: Contrastive Learning

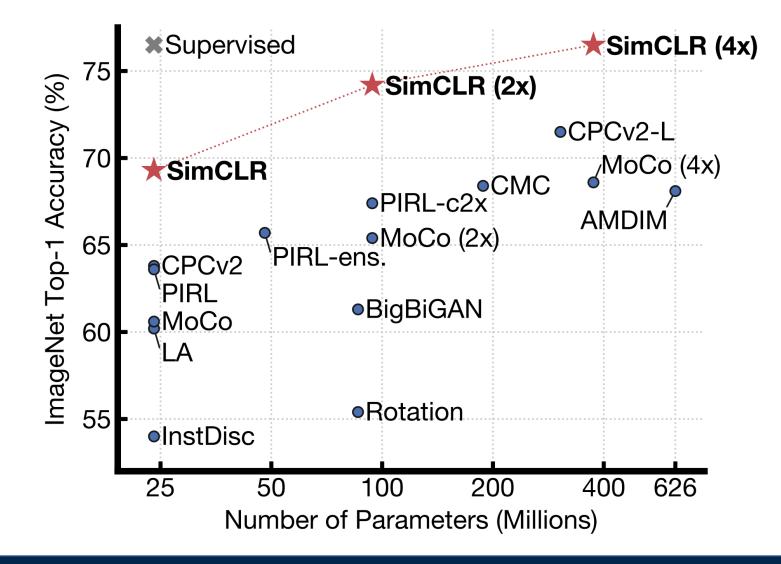


lack dog image is free to use under the <u>Pixabay license</u> omeranian dog image is free to use under the <u>Pixabay license</u>

Justin Johnson

Lecture 22 - 107

Self-Supervised Learning: Contrastive Learning



- Misra and van der Maaten, "Self-supervised learning of pretext-invariant representations" CVPR 2020 (PIRL)
- He et al, "Momentum Contrast for Unsupervised Visual Representation Learning", CVPR 2020 (MoCo)
- Chen et al, "A Simple Framework for Contrastive Learning of Visual Representations", ICML 2020 (SimCLR)
- Chen et al, "Improved Baselines with Momentum Contrastive Learning", arXiv 2020 (MoCo-v2)
- Chen et al, "Big Self-Supervised Models are Strong Semi-Supervised Learners", arXiv 2020 (SimCLR-v2)
- Caron et al, "Unsupervised Learning of Visual Features by Contrasting Cluster Assignments", arXiv 2020
- Chen and He, "Exploring Simple Siamese Representation Learning", arXiv 2020

Justin Johnson

Lecture 22 - 108

Problem #4: Deep Learning doesn't "Understand" the world

Justin Johnson

Lecture 22 - 109

Bold = prompt written by me

Italic = completion written by GPT-2

I was born in 1950. In the year 2025 my age will be

Examples generated using https://talktotransformer.com/

Justin Johnson

Lecture 22 - 110

Bold = prompt written by me

Italic = completion written by GPT-2

I was born in 1950. In the year 2025 my age will be 35. That was only a few years ago. Most things in life just continue to improve.

Examples generated using https://talktotransformer.com/

Bold = prompt written by me Italic = completion written by GPT-2

I was born in 1950. In the year 2025 my age will be 35. That was only a few years ago. Most things in life just continue to improve. I see a black dog and a brown horse. The bigger animal's color is

Examples generated using https://talktotransformer.com/

Bold = prompt written by me Italic = completion written by GPT-2

I was born in 1950. In the year 2025 my age will be 35. That was only a few years ago. Most things in life just continue to improve. I see a black dog and a brown horse. The bigger animal's color is black, and the smaller is brown.

Examples generated using https://talktotransformer.com/

Bold = prompt written by me *Italic = completion written by GPT-2*

I was born in 1950. In the year 2025 my age will be 35. That was only a few years ago. Most things in life just continue to improve. I see a black dog and a brown horse. The bigger animal's color is black, and the smaller is brown. One of my parents is a doctor and the other is a professor. My father is a professor. My mother is

Examples generated using https://talktotransformer.com/

Bold = prompt written by me *Italic = completion written by GPT-2*

I was born in 1950. In the year 2025 my age will be 35. That was only a few years ago. Most things in life just continue to improve. I see a black dog and a brown horse. The bigger animal's color is black, and the smaller is brown.

One of my parents is a doctor and the other is a professor. My father is a professor. My mother is a social worker. They're super smart people.

Examples generated using https://talktotransformer.com/

Bold = prompt written by me *Italic = completion written by GPT-2*

I was born in 1950. In the year 2025 my age will be 35. That was only a few years ago. Most things in life just continue to improve. I see a black dog and a brown horse. The bigger animal's color is black, and the smaller is brown. What about GPT-3?

One of my parents is a doctor and the other is a professor. My father is a professor. My mother is a social worker. They're super smart people.

Examples generated using https://talktotransformer.com/

Bold = prompt written by me *Italic = completion written by GPT-2*

I was born in 1950. In the year 2025 my age will be 35. That was only a few years ago. Most things in life just continue to improve. I see a black dog and a brown horse. The bigger animal's color is black, and the smaller is brown. What about GPT-3?

One of my parents is a doctor and the other is a professor. My father is a professor. My mother is a social worker. They're super smart people.

Examples generated using https://talktotransformer.com/

Language Models lack common sense	What
Bold = prompt written by me <i>Italic = completion written by GPT-2</i>	about GPT-3?
THEVERGE TECH - REVIEWS - SCIENCE - CREATORS - ENTERTAINMENT - VIDEO MORE -	f 🎽 🔊 💄 ଦ୍

MICROSOFT 🔪 TECH 🔪 ARTIFICIAL INTELLIGENCE 🎽

Microsoft exclusively licenses OpenAl's groundbreaking GPT-3 text generation model

Microsoft will get to use the underlying technology of the AI model in its products

By Nick Statt | @nickstatt | Sep 22, 2020, 4:08pm EDT

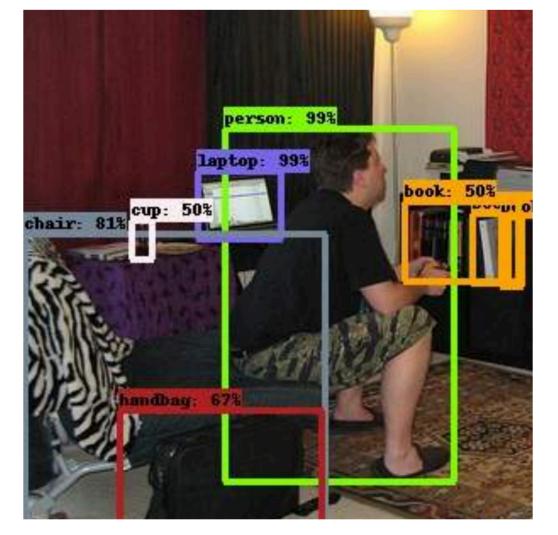
Exclusive Microsoft license means I can't play with it!

Justin Johnson

Lecture 22 - 118

8

Modern object detectors seem to work well!

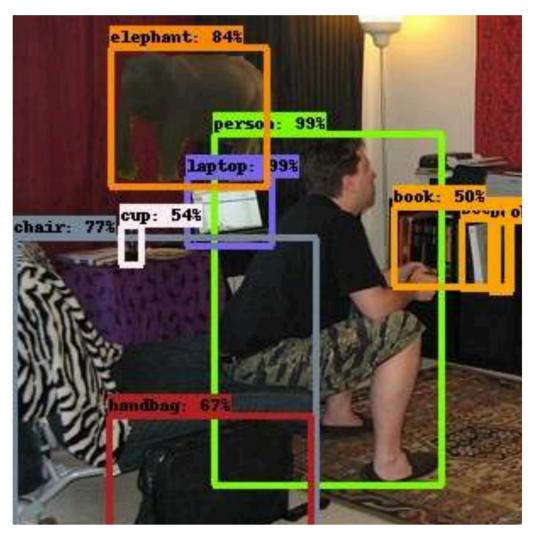


Rosenfeld et al, "The Elephant in the Room", arXiv 2018

Justin Johnson

Lecture 22 - 119

We add an out-ofcontext elephant to the scene; Sometimes it is detected Sometimes it messes up other objects: cup

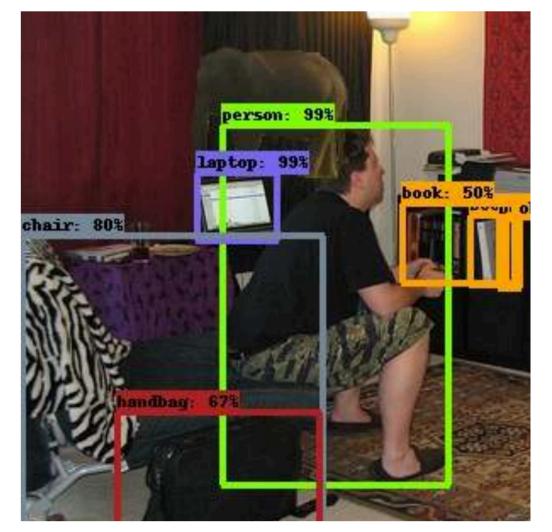


Rosenfeld et al, "The Elephant in the Room", arXiv 2018

Justin Johnson

Lecture 22 - 120

We add an out-ofcontext elephant to the scene; Sometimes it is missed

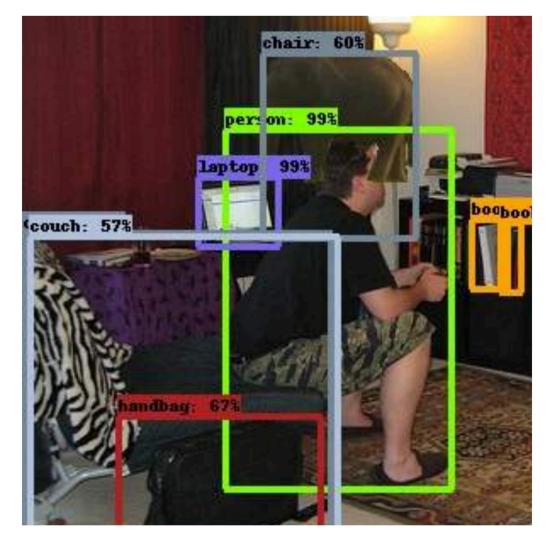


Rosenfeld et al, "The Elephant in the Room", arXiv 2018

Justin Johnson

Lecture 22 - 121

We add an out-ofcontext elephant to the scene; Sometimes it is assigned the wrong label Or mess up other objects! (cup, couch)

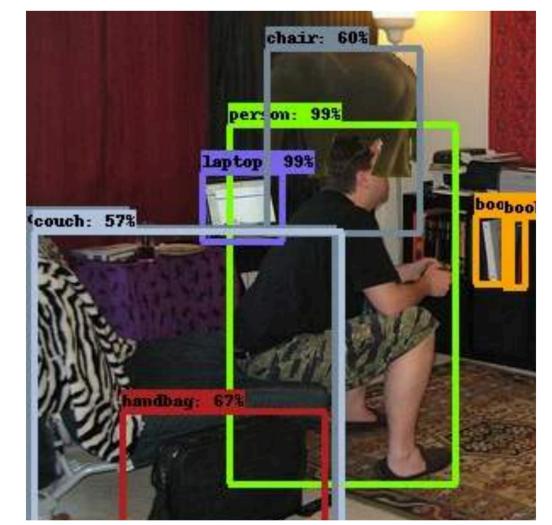


Rosenfeld et al, "The Elephant in the Room", arXiv 2018

Justin Johnson

Lecture 22 - 122

We add an out-ofcontext elephant to the scene; Sometimes it is assigned the wrong label Or mess up other objects! (cup, couch)



Conclusion: CNNs "see" in a very different way from us. They can fail catastrophically on images even slightly different from those seen during training. How can we fix this?

Rosenfeld et al, "The Elephant in the Room", arXiv 2018

Justin Johnson

Lecture 22 - 123

Deep Learning: Problems and Predictions

Predictions:

New deep learning models New applications

More compute, new hardware

Problems:

Models are biased Need new theory Using less data Understanding the world

Deep Learning: Problems and Predictions

Predictions:

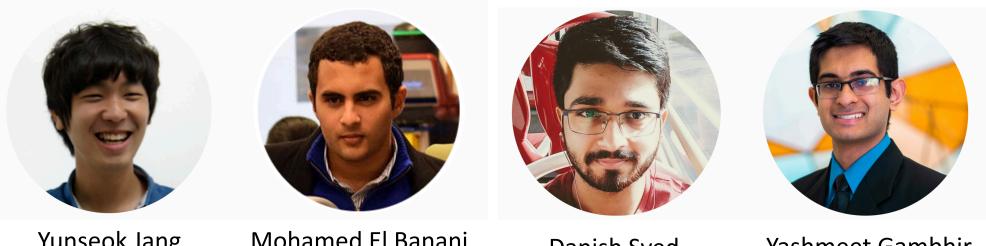
New deep learning models New applications More compute, new hardware

Problems:

Models are biased Need new theory Using less data Understanding the world

Now is a great time to be working in computer vision and machine learning!

Thanks GSIs!



Yunseok Jang

Mohamed El Banani

Danish Syed

Yashmeet Gambhir

Justin Johnson

Lecture 22 - 126

Thank You!

Justin Johnson

Lecture 22 - 127