Lecture 22:
Course Recap
Open Problems in Computer Vision
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Assignment 6: Generative Models

Generative Adversarial Networks
Variational Autoencoders

Due on Wednesday 12/9, 11:59pm EST
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This Course:
Deep Learning for Computer Vision
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Deep Learning for Computer Vision

Building artificial systems that process,
perceive, and reason about visual data
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Problem: Semantic Gap

What you see

w

Justin Johnson

What computer sees
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https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

roblem: Visual Data is Complex!

Viewpoint lllumination Deformation

_ ¥ -~ -

Occlusion

This image by Umberto Salvagnin is
licensed under CC-BY 2.0

This image is CC0O 1.0 public domain This image by jonsson is licensed

under CC-BY 2.0

Clutter Intraclass Variation

This image is CC0O 1.0 public domain This image is CC0 1.0 public domain
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https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cat-Kittens-Free-Float-Kitten-Rush-Cat-Puppy-555822
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Machine Learning: Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

4 '3
.
~
A

def train(images, labels):
# Machine learning!
return model

airplane

#e Lyl

def predict(model, test_images):
# Use model to predict labels
return test_labels
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Model: Deep Convolutional Networks
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Max = Max pooling  #%° w0
pooling pooling

Krizhevsky, Sutskever, and Hinton, NeurlPS 2012
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Justin Johnson
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Steel drum
Drumstick

Deng et al, 2009
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Russakovsky et al. [JCV 2015
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sual Recognition

28.2
258 Enter Deep Learning L
16.4
11.7 :
7.3 6.7 51 :
i e 3
B B == =

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human

Lin et al Sanchez & Krizhevsky et al Zeiler & Simonyan & Szegedyetal Heetal Shao et al Huetal Russakovsky
(GoogleNet) (ResNet) (SENet) et al
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CVPR Papers

2012 to Present: Deep Learning Explosion
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CVPR 2021 deadline:
11/16/2020

CVPR Papers

2012 to Present: Deep Learning Explosion
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Deep Learning wasn’t invented overnight!

1959 1963 1970s 1979 1986 1997 1999 2001 2001 | 2009 2019
Hubel & Wiesel Roberts David Marr Gen. Cylinders Canny Norm. Cuts SIFT V&I PASCAL ImageNet This class
. | — =, - | — .
1958 1969 1980 1985 1998 2006 2012 2018
Perceptron Minsky & Papert Neocognitron Backprop LeNet Deep Learning AlexNet Turing Award

Justin Johnson
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Deep Learning wasn’t invented overnight!

1959 1963 1970s 1979 1986 1997 1999 2001 2001 | 2009 2019
Hubel & Wiesel Roberts David Marr Gen. Cylinders Canny Norm. Cuts SIFT V&IJ PASCAL ImageNet This class
. | — =, - | — .
1958 1969 1980 1985 1998 2006 2012 2018
Perceptron Minsky & Papert Neocognitron Backprop LeNet Deep Learning AlexNet Turing Award
Perceptron

Frank Rosenblatt, ~1957

Justin Johnson
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Deep Learning wasn’t invented overnight!

1959 1963 1970s 1979 1986 1997 1999 2001 2001 | 2009 2019
Hubel & Wiesel Roberts David Marr Gen. Cylinders Canny Norm. Cuts SIFT V&IJ PASCAL ImageNet This class
. | — =, - | — .
1958 1969 1980 1985 1998 2006 2012 2018
Perceptron Minsky & Papert Neocognitron Backprop LeNet Deep Learning AlexNet Turing Award
Perceptron

Simple and Complex cells

—
S X
C———
P
Response  Stimulus

Frank Rosenblatt, ~1957 Hubel and Wiesel, 1959

Lecture 22 - 15
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Deep Learning wasn’t invented overnight!

1959 1963 1970s 1979 1986 1997 1999 2001 2001 | 2009 2019
Hubel & Wiesel Roberts David Marr Gen. Cylinders Canny Norm. Cuts SIFT V&IJ PASCAL ImageNet This class
. | - =, - | — .
1958 1969 1980 1985 1998 2006 2012 2018
Perceptron Minsky & Papert Neocognitron Backprop LeNet Deep Learning AlexNet Turing Award
Perceptron

Simple and Complex cells Neocognitron

)

A
1R

N_ X
A

Response

|
‘= S /:,*

|

Stimulus

Frank Rosenblatt, ~1957 Hubel and Wiesel, 1959 Fukushima, 1980
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Deep Learning wasn’t invented overnight!

1959 1963 1970s 1979 1986 1997 1999 2001 2001 | 2009 2019
Hubel & Wiesel Roberts David Marr Gen. Cylinders Canny Norm. Cuts SIFT V&IJ PASCAL ImageNet This class
. | — =, - | — .
1958 1969 1980 1985 1998 2006 2012 2018
Perceptron Minsky & Papert Neocognitron Backprop LeNet Deep Learning AlexNet Turing Award
Perceptron
Simple and Complex cells Neocognitron Convolutional Networks

\

;. ‘: — | Image Maps
& ¥ =7@:: Input
& 'R Ijx \Nutput
i - =
;4 f _JL Y §§~ Convo{:tions \ D7 FuIIy'E:onnected
v :{ Subsampling
Ny AN\ ! —
tt : ‘ Response  Stimulus
Frank Rosenblatt, ~1957 Hubel and Wiesel, 1959 Fukushima, 1980 LeCun et al, 1998
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Deep Learning wasn’t invented overnight!

1959 1963 1970s 1979 1986 1997 1999 2001 2001 | 2009 2019
Hubel & Wiesel Roberts David Marr Gen. Cylinders Canny Norm. Cuts SIFT V&I PASCAL ImageNet This class
. | — =, - | — .
1958 1969 1980 1985 1998 2006 2012 2018
Perceptron Minsky & Papert Neocognitron Backprop LeNet Deep Learning AlexNet Turing Award
AlexNet

£ | I N

Krizhevsky, Sutskever, and Hinton, 2012
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Deep Learning wasn’t invented overnight!

1959 1963 1970s 1979 1986 1997 1999 2001 2001 | 2009 2019
Hubel & Wiesel Roberts David Marr Gen. Cylinders Canny Norm. Cuts SIFT V&IJ PASCAL ImageNet This class

| | | | L 1 1 L | |

I I I I | I ! I

1958 1969 1980 1985 1998 2006 2012 2018
Perceptron Minsky & Papert Neocognitron Backprop LeNet Deep Learning AlexNet Turing Award

2018 Turing Award
AlexNet '

24
R
W\ .
224%, St
of

id
T\
3 48

Yoshua
Bengio

Geoffrey
Hinton

Krizhevsky, Sutskever, and Hinton, 2012
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Deep Learning wasn’t invented overnight!

1959 1963 1970s 1979 1986 1997 1999 2001 2001 | 2009 2020
Hubel & Wiesel Roberts David Marr Gen. Cylinders Canny Norm. Cuts SIFT V&I PASCAL ImageNet This class
. | — =, - | — .
1958 1969 1980 1985 1998 2006 2012 2018
Perceptron Minsky & Papert Neocognitron Backprop LeNet Deep Learning AlexNet Turing Award

Fall 2020: This class

Justin Johnson

Lecture 22 - 20
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Simple Classifiers: KNN and Linear Classifiers
1-NN classifier
- - Linear Classifiers:y=Wx + b

Stretch pixels into column

56
tetw . T e e e ) 02 | 05| 01 | 20 1.1 -96.8 | Catscore
: . ¢ ;.,\k-- 231
. " =4 15 | 13 | 21 0.0 + 32 | = 437.9 Dog score
‘1,4‘# ?/ 24
e 0 025 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2

W b

&
G

airplane classifier,

Soa |7 deer classifier
= : h
*
1 Y

5-NN classifier
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Optimization with Gradient Descent

# Vanilla gradient descent

w = initialize_weights()

for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)
w —= learning_rate * dw

This image is CCO 1.0 public domain
Walking man image is CCO 1.0 public domain
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http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/

Problems with Gradient Descent

Gradient Noise

Local Minima Saddle points

SN

Poor Conditioning

SGD SGD+Momentum

Justin Johnson Lecture 22 - 23 December 2, 2020



Gradient Descent Improvements

Tracks second

Tracks first Bias correction
. moments Leaky second
Algorithm moments : for moment
(Adaptive moments !
(Momentum) ! estimates
learning rates)
SGD X X X X
SGD+Momentum v X X X
Nesterov v X X X
AdaGrad X v X X
RMSProp X v v X
Adam v V4 v v

Justin Johnson Lecture 22 - 24
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More Complex Models: Neural Networks

Input:
X | W W
3072 1 h 2 S
Output: 10
Hidden layer: P
100

f = Waomax(0, Wiz)
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More Complex Models: Neural Networks

Learns bank of templates

Input:
X | W W
3072 1 h 2 S
Output: 10
Hidden layer: P
100

f = Wamax(0, Wix)
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More Complex Models: Neural Networks

Universal Approximation

We can build a “bump function”

Y, using four hidden units
O T
Input:
X | W W
3072 1 h W s
Output: 10 — N
Hidden layer: P S; S, S3 Sq X
100 With 4K hidden units we can
build a sum of K bumps
f = Wamax(0, Wix) /_{—;
| }
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More Complex Models: Convolutional Networks

Fully-Connected Layers  Activation Function

10,

-10 Y 10

Convolution Layers  Pooling Layers Normalization

224x224x64
112x112x64
pool ,CU L.
L,

R

@>® 2V Ty = — '

| 0'2.—|—5

> o 112
/ 224 downsampling

224
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CNN Architectures .

Softmax |
| FC 1000 |
l Softmax ] [ Pool ]
| FC 1000 | [ 3x3conv, 512
| Softmax | | FC 4096 ] . C 3Goow 510
;/ i : L EC 1000 ] £C 4096 ] f‘\\ 1 [ 3x3 conv, 512
— — [__caooe ] | Pool | B CoGoon. 572
ﬁi . ; 2 I SR | ._\“\\V]/' : %1 33 conv. 512
]}(:g ) | Pool | A L_3x3 cony 512, /2

128
128 Max
pooling

l Pool | S Caecon 128

| Pool | TN [3x3conv, 128
almalr-

\}/ % [ 3 conv 128

L_3x3 conv, 128

}V‘\ L_3x3 conv, 128
| Pool | | Pool | 2] [ 3x3conv, 128./2

i L33 conv. 64

| 3x3 conv, 64

g | Pool | | Pool | >(
L_3x3 cony, 64

2] [ -\‘)Vi | 3x3 conv, 64

Max
pooling

8

pooling

Max

: | ! = L__3x3conv, 64
Pool Pool : | 3x3 conv, 64
= I Pool |
=0
[ Input ] | Input | [ Input ]

AlexNet VGG16 VGG19 GoogleNet ResNet
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CNN Architectures: Efficiency

Inception-v4
80 1 80 -
Inception-v3 ResNet-152
: ResNet-50 VGG-16 VGG-19
75 1 751 ResNet-101
’ ResNet-34
ResNet-18
° GooglLeNet

ENet

° BN-NIN

65 1 65 1

5M 35M 65M 95M 125M ---155M

Top-1 accuracy [%]
(*)] ~
o o
Top-1 accuracy [%]

*)] ~
o o

BN-AlexNet
351 55 1 AlexNet
50 - 50 T T T T T T T T
e N e (et A T PR P UL 0 5 10 15 20 25 30 35 40
\e* \e $ $ €$ \§9‘ 6 §\ \\\e e\-\' el &\00 ‘\0‘\ Operations [G-Ops]
e\ o ?@6 N € Q8% e D BhC
© R X \

Canziani et al, “An analysis of deep neural network models for practical applications”, 2017
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CNN Architecture: Efficiency

G parallel pathways
A

Conv(1x1, c->4C) Conv(1x1, c->4CQ)

| t
Conv(3x3, c->c) e Conv(3x3, c->c)
| |

Conv(1x1, 4C->c) Conv(1x1, 4C->c)

ResNeXt

Justin Johnson Lecture 22 - 31

RelLU

|
Batch Norm
t
Conv(1x1, C->C)
|

RelLU

1
Batch Norm
t
Conv(3x3, C->C,

groups=C)

MobileNets
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Representing Networks: Computational Graphs

f

Wz

Lz‘ — Zj#yz- maX(O, S5 — Sy, -+ 1)

. @ s(scoreS)= Yo -

hinge
loss

Justin Johnson

<&

R(W)
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Computing Gradients: Backpropagation

073 0z
Sl :

o~ ox
Downstream f

radients 0z :
° - Local oL

@ o gradients E
0% @ U
// 37 pstr.eam

= oV gradient
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Deep Learning Hardware and Software

CPU GPU TPU

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow
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Training Neural Networks:

Sigmoid |
o(x) = 1+i—w

tanh 1/
tanh(z) )

RelU
max(0, x)

Activation Functions

Leaky RelLU )
max(0.1x, x)

Maxout
max(wi x + by, wi x + by)

10,

ELU

T x>0
ae® —1) =<0
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Training Neural Networks: Data Preprocessing

original data

10

Justin Johnson

14

10

-10

zero-centered data

:° i:’o A
e

>o
P g w
“‘,4

-10 == 0 5

Lecture 22 - 36
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normalized data
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Training Neural Networks: Weight Initialization

dims = [4096] * 7 “Just right”: Activations are

hs = [] . |
- o G e TG, a1 nicely scaled for all layers!

for Din, Dout in zip(dims[:-1], dims[1l:]):
W = np.random.randn(Din, Dout) / np.sqrt(Din)
X = np.tanh(x.dot(W))

hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

-1 0 1 -1 0 1 -1 0 1 o | 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Training Neural Networks: Data Augmentation

Load image
and label

Compute
> - loss
CNN
— _ /

Transform image
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Training Neural Networks: Regularization
Cutout Stochastic Depth

o

. -

Training: Add randomness
Testing: Marginalize out randomness

Examples:
Batch Normalization
Data Augmentation Dropout DropConnect

Fractional pooling ; %
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Training Neural Networks: Learning Rate Schedules

Training Loss

Training Loss

10 -

Reduce learning rate

|

Loss

0 20 40 60 80 100 0 50 100 150 200 250 300
Epoch Epoch
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Training Neural Networks: Choosing Hyperarameters

Training loss

Grid Lavyout

0 100000 200000 300000 400000 500000 600000
lteration

% - /

88 T T T T T T T
0 100000 200000 300000 400000 500000 600000
lteration

Justin Johnson

Unimportant

Important
Parameter

Lecture 22 - 41

Parameter

Random Lavyout

Unimportant

Important
Parameter

December 2, 2020
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Visualizing and Understanding CNNs

Maximally Activating Patches  Synthetic Images via
Gradient Ascent

relub_3

(Guided) Backprop

Feature Inversion
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Making Art with CNNs

Style Transfer

DeepDream
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many
! Pt i Pttt Pt
! ! Pt bt bt
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Recurrent Neural Networks: Architectures

Vanilla Recurrent Network Long Short Term Memory (LSTM)
f b C / O] + C \
t-1 t
W_’Q_’ tanh ]I
> \__, — |
ht—l Sthk ht W_'Q_Lg}e tanh
- ~ h., — T stack h
t-1 — 0 ©
X, . tJ

Justin Johnson Lecture 22 - 45 December 2, 2020



neuraltalk2
CCO Public domain: cat

Recurrent Neural Networks: Image Captioning s

“straw” “hat” END

A dog is running in the grass A white teddy bear sitting in
with a frisbee the grass

START “straw” “hat”

% S
ﬁma i

Two giraffes standing in a A man riding a dirt bike on a
Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments grassy field dirt track

for Generating Image Descriptions”, CVPR 2015
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https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Each timestep of decoder

Atte nt 10N Ctij = ate(Se-1 hi'j) uses a different context

A, = Softm""x(et,:,:) vector that looks at different ct sitting outside  [STOP]
C = ZI,jat,l,Jh ij parts of the input image
Y1 Y2 Y3 Ya
o
CNN h2,1 hz,z h2,3 ———— S Sq > S, > S3 > Sy
Use a CNN to compute a Ci /Yo | |[C||Y1| |G| V2 Ca| Y3
grid of features for an image f £ f f
[START] cat sitting outside
bird flying over body of water "

Al

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x D)

Value Vectors: V = XW,, (Shape: Ny x D)

Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dyg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = 3;A; )V,

Justin Johnson Lecture 22 - 48

Y, Y, Y3
4 4 1
Product(->), Sum(1)
t

Q Q) |G
t t t
X1 X5 X3
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Attention is all you need: The Transtormer

Y1 Y2 Y3 Ya

! f f f

Layer Normalization

:
I I I I
MLP MLP MLP MLP

1 1 | 1

Layer Normalization

:¢

Self-Attention

t t t t
I | I |

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

:—:T =¥ E;— =

CAT GRASS, CAT, TREE,

DOG, DOG, CA
- VAN oKy Y, Y,
e Y Y
No spatial extent  No objects, just pixels Multiple Objects
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Object Detection: Single Stage vs Two Stage

Single-Stage:

YOLO, SSD, RetinaNet
Make all predictions
with a CNN

Justin Johnson

Two-Stage:

Faster R-CNN

Use RPN to predict proposals,
classify them with second stage

Lecture 22 - 51 December 2, 2020



Semantic Segmentation: Fully Convolutional Network

Design network as a bunch of convolutional layers, with Upsampling:
downsampling and upsampling inside the network! linterpolation,
transposed conv

Downsampling:
Pooling, strided

convolution Med-res: Med-res:

/4 D,xH/AxW/4 D,xH/4xW/4 7/

il Low-res: il
Input: .
- E W High-res: D3 x H/4 x W/4 High-res: Predictions:
D, x H/2 x W/2 D, xH/2 x W/2 HxW
Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015 LOSS funCtion: Per-Pixel Cross_entro py

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015
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Instance Segmentation: Detection + Segmentation

Classification Bounding-box MaSk
0SS R regression loss PrediCtion

Classification Bounding-box

Region Proposal Network LS

feature map

He et al, “Mask R-CNN”, ICCV 2017
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Adding a Dimension: 3D Deep Learning

Predicting 3D Shapes Processing 3D

from single image input data Mesh R-CNN

Input Image 3D Shape 3D Shape

3D Shape Representations

E 000000

2| o

2 @)

2] o

2] o

. Gkioxari, Malik, and Johnson, ICCV 2019

Depth Vo>.<el Implicit Pointcloud Mesh
Map Grid Surface
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Adding a Dimension: Deep Learning on Video
Two Stream Networks

3D CNNs
d Spatial stream ConvNet

fullé full7 |[softmax

4096 2048
dropout || dropout

conv1 || conv2 || conv3 || conv4 || conv5
3x3x512 || 3x3x512

5x5x256 || 3x3x512

L 3 / 7X7x96
stride 2 || stride 2 || stride 1 || stride 1 || stride 1
norm. norm. pool 2x2
pool 2x2 || pool 2x2

single frame

-

Temporal stream ConvNet

full7 |[softmax|

conv4 || convb fullé

‘ conv1 || conv2 || conv3
7x7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
W = 2 24 stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
input . norm. ||pool 2x2 pool 2x2
video multi-frame pool 2x2
\__optical flow Y,
Residual Connection

Queries: Attention Weights

CxTxHXW Transpose  (THW) x (THW)

1x1x1 Conv e

CxTxHxW
Keys:
T |CxTxHXxW —‘(—ID—’
—
X 1x1x1 Conv

Features: CNN CNN CNN CNN CNN
CxTxHxW C’'XxTXHXW

Values:

P Txtxl Conv >

CNN + LSTM "

1x1x1 Conv

Self-Attention
December 2, 2020
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Generative Models

Autoregressive Models directly maximize likelihood of training data:

N
pg(x) = 1_[ Po (xi|Xy, o Xi—1)
i=1

Good image quality, can evaluate with perplexity. Slow to generate data, needs
tricks to scale up.

Variational Autoencoders introduce a latent z, and maximize a lower bound:

po(x) = j Po(x|2)p(2)dz = E,-q,(z1x)[10g Po (x12)] — Dy (a9 (212, p(2) )
Z
Latent z allows for powerful interpolation and editing applications.

Generative Adversarial Networks give up on modeling p(x), but allow us to
draw samples from p(x). Difficult to evaluate, but best qualitative results today
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Reinforcement Learning

RL trains agents that interact Q-Learning: Train network Qy (s, a) to
with an environment and estimate future rewards for every
learn to maximize reward (state, action) pair. Use Bellman
Equation to define loss function for
/AC“O”\ training Q

Environment

Policy Gradients: Train a network

g (a | s) that takes state as input,
gives distribution over which action to
take in that state. Use REINFORCE Rule
for computing gradients

Justin Johnson Lecture 22 - 57 December 2, 2020



What’'s Next?
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Prediction #1:
We will discover interesting
new types of deep models
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Example: Neural ODE

Residual Network: h,,; = h; + f(h, 0;)
Looks kind of like numerical integration...

Chen et al, ”Neural Ordinary Differential Equations”, NeurlIPS 2018
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Example: Neural ODE

Residual Network: h,,; = h; + f(h, 0;)
Looks kind of like numerical integration...

Neural ODE: Hidden “states”

are the solutions of
A deep network

dh
SE— h(t) t O with infinitely
— = f(h(6),,6)

many layers!

Chen et al, ”Neural Ordinary Differential Equations”, NeurlIPS 2018
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Prediction #2:
Deep Learning will find
new applications
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Deep Learning for Graphics: NVIDIA DLSS

1080p Aliased,
Jittered Pixels

Convolutional 4K Anti-aliased Output 16K Anti-aliased Ground Truth
Autoencoder | == L4 TR

Temporal Feedback
1080p Motion Vectors

www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-bi -in-ai-renderin
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https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

Deep Learning for Graphics: NVIDIA DLSS

Control NVIDIA DLSS 2.0 "Performance Mode" 3840x2160 Performance
Max Game Settings, All Ray-Traced Effects Enabled, i19-9900K, 32GB RAM, Win 10 x64

RTX 2080 Ti

RTX 2080 SUPER

RTX 2070 SUPER

RTX 2060 SUPER

RTX 2060

AVERAGE FRAMES PER SECOND
DLSS ON

www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-bi -in-ai-renderin
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Deep Learning for Graphics: Nerfie

(a) Capture Process (b) Input

Park et al, “Deformable Neural Radiance Fields”, arXiv 2020, https://nerfies.github.io/
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https://nerfies.github.io/

Deep Learning for scientific applications

Medical Imaging
Mallgnant Malignant Benign Whale recognition

Levy et al, 2016

Galaxy Classification

Dieleman et al, 2014 Kaggle Challenge
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https://commons.wikimedia.org/wiki/File:NGC_4414_(NASA-med).jpg
https://commons.wikimedia.org/wiki/File:M101_hires_STScI-PRC2006-10a.jpg
https://en.wikipedia.org/wiki/File:Hubble2005-01-barred-spiral-galaxy-NGC1300.jpg
https://pixabay.com/en/galaxies-overlapping-galaxies-601015/
https://commons.wikimedia.org/wiki/File:Sei_whale_mother_and_calf_Christin_Khan_NOAA.jpg
https://www.kaggle.com/c/whale-categorization-playground

Deep Learning for Science: Protein Folding

Input: 1D sequence of amino acids Output: 3D protein structure
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Deep Learning for Science: AlphaFold 2

MSA embedding Sequence-residue edges

Residues —

Confidence
” Residues — Residues — Score
Genetics e S 0 m— 89 o=
search — |3 |- eee — | & r —>| 8 3 \ A
& embed g 2 N | S %
i v . . . w
i w . l |
Protein sequence | Structure
module
Residues — Residues —
Embed & N E } _) 5 000
outer sum 1 & a
6 ®
l @ 10 Pairwise
$& distances
Residue-residue edges 3D structure

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Deep Learning for Science: AlphaFold 2

Median Free-Modelling Accuracy

100
ALPHAFOLD 2
80
60 ALPHAFOLD
-
Q
@)
40
20
)
CASP7 CASP8 CASP9  CASP10  CASP11  CASP12 CASP13  CASPl14
2006 2008 2010 2012 2014 2016 2018 2020
CASP

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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Deep Learning for Computer Science

Traditional Hash Table

Buckets Data

Hash
Function

Key —

Kraska et al, “The Case for Learned Index Structures”, SIGMOD 2018
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Deep Learning for Computer Science

Traditional Hash Table Learn to assign keys to

buckets in a way that
minimizes hash
collisions for the types
- of data you encounter

Buckets Data

Ke Neural B
Y Network

Kraska et al, “The Case for Learned Index Structures”, SIGMOD 2018
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Deep Learning for Mathematics

Convert mathematical expressions into graphs,
process then with graph neural networks!

Applications: Theorem proving, symbolic integration

Wang et al, “Premise Selection for Theorem Proving by Deep Graph Embedding”, NeurlPS 2017
Kaliszyk et al, “Reinforcement Learning of Theorem Proving”, NeurIPS 2018
Lample and Charton, “Deep Learning for Symbolic Mathematics”, arXiv 2019
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Prediction #3:
Deep Learning will use
more data and compute
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GFLOPs per Dollar

®@CPU @GPUFP32 @ GPUTensor Core
350

300
250
200

150

GFLOPs per dollar

100 ,

50 ®
®

0 »QQMOQQOQVJ". o‘o‘ﬂ %
9/2002 5/2005 2/2008 11/2010 8/2013 5/2016 2/2019 10/2021

Time
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Petaflop/s-days

le+4
AlphaGoZero

le+2 Neural Machine

Translation

TI7 Dota 1vl
le+0
VGG
ResNets
le-2 AlexNet
3.4-month doubling
le-4 Deep Belief Nets and
layer-wise pretraining
DQN
le-6
TD-Gammon v2.1
BiLSTM for Speech
le-8 LeNet-5
NETtalk RNN for Speech
ALVINN
le-10
le-12 2-year doubling (Moore's Law)
Source: https://openai.com/blog/ai-and-compute/
1e-14 Perceptron ¢ First Era  Modern Era >
1960 1970 1980 1990 2000 2010 2020
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New Hardware for Deep Learning

Cerebras Wafer Scale Engine

SPECIFICATIONS

Sparse Linear Algebra 400,000
Compute Cores

On-chip Memory 18 GB SRAM
Memory Bandwidth 9.6 PB/sec
Core-to-Core Bandwidth 100 Pb/sec
Maximum Power 20 kw
Requirement

System 10 12x100 GbE
Cooling Air-cooled
Dimensions 15 Rack Units (26.25”)

i et R s i i

Cerebras WSE Largest GPU

1.2 Trillion Transistors 21.1 Billion Transistors
46,225 mm?2 Silicon 815 mm? Silicon

Cerebras Systems, “Wafer-Scale Deep Learning”, 2019; https://secureservercdn.net/198.12.145.239/a7b.fcb.myftpupload.com/wp-content/uploads/2019/08/HC31 1.13 Cerebras.SeanLie.v02.pdf
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https://secureservercdn.net/198.12.145.239/a7b.fcb.myftpupload.com/wp-content/uploads/2019/08/HC31_1.13_Cerebras.SeanLie.v02.pdf

Problem #1:
Models are biased
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Recall: Vector Arithmetic with GANs

Smiling Neutral Neutral
woman woman man

Samples Smiling Man

from the <

model

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016
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Vector Arithmetic with Word Vectors

Training: Input a large corpus of text, learn
to represent each word with a vector

Can used trained vectors to solve analogies:
Man is to King as Woman is to x?

Find nearest neighbor to: Man — King + Woman

Mikolov et al, “Distributed Representations of Words and Phrases and their Compositionality”, NeurIPS 2013
Mikolov et al, “Linguistic Regularities in Continuous Space Word Representations”, NAACL HLT 2013
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Gender Bias in Word Vectors

Extreme she Extreme he

. homemaker
. nurse

. receptionist
. librarian

. hairdresser

. hanny

. bookkeeper
stylist 0.

1 1

2 2

3 3

4 4

5. socialite 5.
6 6

7 7

8 8

9.

1

. maestro

. skipper

. protege

. philosopher

captain

. architect
. financier
. ‘warrior

broadcaster

0. housekeeper 10. magician

Gender stereotype she-he analogies
sewing-carpentry registered nurse-physician housewife-shopkeeper

nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle  vocalist-guitarist petite-lanky

sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas lovely-brilliant

Gender appropriate she-he analogies
queen-king sister-brother mother-father
waitress-waiter ~ ovarian cancer-prostate cancer convent-monastery

Bolukbasi et al, “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings”, NeurlPS 2016

Justin Johnson
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Economic Bias in Visual Classifiers

Ground-Truth: Soap
Source: UK, $1890/month

DeVries et al, “Does Object Recognition Work for Everyone?”, CVPR Workshops, 2019
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Economic Bias in Visual Classifiers

DeVries et al, “Does Object Recognition Work for Everyone?”, CVPR Workshops, 2019

Justin Johnson Lecture 22 - 82

Ground-Truth: Soap
Source: UK, $1890/month

Azure: toilet, design, art, sink
Clarifai: people, faucet,
healthcare, lavatory, wash
closet

Google: product, liquid,
water, fluid, bathroom
accessory

Amazon: sink, indoors,
bottle, sink faucet

Watson: gas tank, storage
tank, toiletry, dispenser, soap
dispenser

Tencent: lotion, toiletry, soap
dispenser, dispenser, after
shave

December 2, 2020



Economic Bias in Visual Classifiers

Ground-Truth: Soap
Ground-Truth: Soap Source: UK, $1890/month
Source: Nepal, $288/month
Azure: toilet, design, art, sink
Clarifai: people, faucet,
healthcare, lavatory, wash
closet
Google: product, liquid,
water, fluid, bathroom
accessory
Amazon: sink, indoors,
bottle, sink faucet
Watson: gas tank, storage
tank, toiletry, dispenser, soap
dispenser
Tencent: lotion, toiletry, soap
dispenser, dispenser, after

shave

DeVries et al, “Does Object Recognition Work for Everyone?”, CVPR Workshops, 2019
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Economic Bias in Visual Classifiers

Ground-Truth: Soap
Source: Nepal, $288/month

Azure: food, cheese, bread,
cake, sandwich

Clarifai: food, wood, cooking,
delicious, healthy

Google: food, dish, cuisine,
comfort food, spam
Amazon: food,
confectionary, sweets,
burger

Watson: food, food product,
turmeric, seasoning
Tencent: food, dish, matter,
fast food, nutriment

Commercial object recognition
systems work best for objects found
in high-income western houseolds

DeVries et al, “Does Object Recognition Work for Everyone?”, CVPR Workshops, 2019

Ground-Truth: Soap
Source: UK, $1890/month

Azure: toilet, design, art, sink
Clarifai: people, faucet,
healthcare, lavatory, wash
closet

Google: product, liquid,
water, fluid, bathroom
accessory

Amazon: sink, indoors,
bottle, sink faucet

Watson: gas tank, storage
tank, toiletry, dispenser, soap
dispenser

Tencent: lotion, toiletry, soap
dispenser, dispenser, after
shave

Justin Johnson
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Racial Bias in Visual Classifiers

https://jacky.wtf v
@jackyalcine

Google Photos, y'all fucked up. My friend's not a gorilla.

Airplanes

Graduation

Source: https://twitter.com/jackyalcine/status/615329515909156865 (2015)
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Racial Bias in Visual Classifiers

Commercial gender classifiers fail much more often for women with dark skin

Classifier Metric All F M Darker Lighter DF DM LF LM
PPV (%) 93.7 893 974 87.1 99.3 79.2  94.0 983 100
vepp  PrrorRate(%) 63 107 26 129 0.7 208 6.0 17 00
TPR (%) 93.7 96.5 91.7 87.1 99.3 92.1 83.7 100 98.7
FPR (%) 63 83 35 129 0.7 163 7.9 13 0.0
PPV (%) 90.0 78.7 99.3 83.5 95.3 65.5 99.3 94.0 99.2
Facet 4 Error Rate(%) 10.0 21.3 0.7 16.5 4.7 34.5 0.7 6.0 0.8
TPR (%) 90.0 98.9 85.1 83.5 95.3 98.8 76.6 98.9 929
FPR (%) 100 149 11 165 47 234 12 71 11
PPV (%) 87.9 T79.7 944 77.6 96.8 65.3 83.0 929 99.7
IBM Error Rate(%) 12.1 20.3 5.6 22.4 3.2 34.7 120 7.1 0.3
TPR (%) 87.9 92.1 85.2 77.6 96.8 82.3 T74.8 99.6 948
FPR (%) 121 148 7.9 22.4 3.2 25.2 17.7  5.20 0.4

Buolamwini and Gebru, “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification”, FAT* 2018
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Making ML Work for Everyone

Wang et al, “Balanced datasets are not enough: Estimating and mitigating
gender bias in deep image representations”, ICCV 2019

Hutchinson and Mitchell, 50 Years of Test (Un) fairness: Lessons for Machine
Learning”, CFAT 2019

Mitchell et al, “Model Cards for Model Reporting”, CFAT 2019

Zhang et al, “Mitigating unwanted biases with adversarial learning”, AAAI 2018

Buolamwini and Gebru, “Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification”, CFAT 2018
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Problem #2:
Need new theory?
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Empirical Mystery: Good Subnetworks

Step 1: Randomly Step 2: Train on your
initialize a network favorite dataset

Han et al, “Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Empirical Mystery: Good Subnetworks

Step 1: Randomly Step 2: Train on your Step 3: Remove weights
initialize a network favorite dataset of small magnitude

Pruned network works about
the same as full network in (2)!

Han et al, “Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding”, ICLR 2016
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Empirical Mystery: Good Subnetworks

Step 1: Randomly Step 2: Train on your Step 3: Remove weights
initialize a network favorite dataset of small magnitude

Pruned network works about
Step 4: Return pruned network the same as full network in (2)!

weights to initial values

Frankle and Carbin, “The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks”, ICLR 2019
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Empirical Mystery: Good Subnetworks

Step 1: Randomly Step 2: Train on your Step 3: Remove weights
initialize a network favorite dataset of small magnitude

) Pruned network works about
Step 4: Return pruned network Step 5: Train pruned network; the same as full network in (2)!

weights to initial values it works almost as good as (2)! . .
Lottery Ticket Hypothesis:

Within a random deep
network is a good subnet that
won the “initialization lottery”

Frankle and Carbin, “The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks”, ICLR 2019
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Empirical Mystery: Good Subnetworks

Step 1: Randomly Step 2: Find an untrained subnet
initialize a network that works for classification!

| think we are missing something
about how to train and initialize deep
nets, what training actually does

Ramanujan et al, “What's Hidden in a Randomly
Weighted Neural Network?”, arXiv 2019
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Empirical Mystery: Generalization

What we expect from classical statistical learning theory:

Overfitting
Test

Error

Model complexity
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Empirical Mystery: Generalization

What we expect from classical statistical learning theory:

Overfitting
Test

Error

Model complexity

Justin Johnson

2.5 . . .
m—a true labels
2.0t e—e random labels
A »= shuffled pixels
215k random pixels |
o 4—é (gaussian
C 10|
>
©
0.5
0.0
0 5 10 15 20 25

thousand steps
Deep networks can achieve 0 training loss on
CIFAR with random labels. When we train the
same model on real data, why doesn’t it overfit?
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Empirical Mystery: Generalization

What we expect from classical statistical learning theory:

Overfitting 0.6 : —o— Test

Test Train
v |
S 0.4 l
5 I
E ; :

Frror ©
2 0.2 |
v |
I
0.0 |
] I ] | | I
> 3 10 40 100 300 800

Number of parameters/weights (x103)
“Double Descent” for fully-connected

Belkin et al, “Reconciling modern machine learning mOdEIS on CIFAR does not matCh theory!
practice and the bias-variance trade-of”, PNAS 2019

Model complexity
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Empirical Mystery: Generalization

What we expect from classical statistical learning theory:

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
r A \ A .
Overfitting ;
0.5 | Critical — Test
Test § : Regime Train
504 :
£ '
© 0.3 ! :
I— \ 1 Interpolation
Error ~0.2 \\ ! Threshold
+/ 1
f \
— 0.1 \:
|\ .-
0.073 10 20 30 40 50 60
- ResNetl8 width parameter

Model complexity Similar result for ResNets on CIFAR

Nakkiran et al, “Deep Double Descent: Where (When training with label noise)
Bigger Models and More Data Hurt”, arXiv 2019
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Problem #3:
Deep Learning needs a lot
of labeled training data
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New Datasets for Low-Shot Learning

MNIST Dataset

10 classes: Digits 0to 9

28x28 grayscale images

6k images per class (5k train, 1k test)

3357§507fb/q

X 67
357
101
7 &\
o &0
21 8
73 &

Lake et al, “Human-level concept learning through probabilistic program induction,” Science 2015

Justin Johnson
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Omniglot Dataset
1623 classes: Letters from 50 alphabets

20 images per class

TINTIXTH 1 0 oty
LUNYTHM MY | @g
INDS> T "d A A
TIE BT80N 3 ==
JEIS T 8w 3= k=
I BHIVI gy =hbl
GOGAGIP LN T
AYDTY> o Y =W
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New Datasets for Low-Shot Learning

KMNIST Dataset

10 classes: 3832 Kanji characters
64x64 grayscale images

1 to 1766 images per class

H zamzw\:p,z)z Z‘i 5%

ot

+ R

U Gt

Omniglot Dataset
1623 classes: Letters from 50 alphabets
20 images per class

TIXTXTH 1T 1 iy
LSUAYT MM Y { ag
INDS> T "d A A
TIE BT80N 3 ==
JEIS T 8w 3= k=
I BN 3VR3Fgy =ahl
GOGQAGP LN AT
AYDdYCe oy =W

Lake et al, “Human-level concept learning through probabilistic program induction,” Science 2015

Justin Johnson
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New Datasets for Low-Shot Learning

COCO Dataset

118k images

80 categories

1.2M object instances

Lin et al, “Microsoft COCO: Common Objects in Context”, ECCV 2014
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New Datasets for Low-Shot Learning

COCO Dataset LVIS Dataset

118k images 160k images

80 categories >1000 categories
1.2M object instances ~2M object instances

Lin et al, “Microsoft COCO: Common Objects in Context”, ECCV 2014 Gupta et al, “LVIS: A Dataset for Large Vocabulary Instance Segmentation”, CVPR 2019
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Using Unlabeled Data: Self-Supervised Learning

Step 1: Train a CNN on some
“pretext task” that does not

require labeled data

Step 2: Fine-tune CNN on
target task (hopefully using
not much labeled data)
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Self-Supervised Learning: Jigsaw Puzzles

Source Image Shuffled patches Network unscrambles

Noroozi and Favaro, “Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles”, ECCV 2016
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Self-Supervised Learning: Colorization

Input: Grayscale image Output: Color Image

Zhang et al, “Colorful Image Colorization”, ECCV 2016
Zhang et al, “Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction”, ECCV 2016
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Self-Supervised Learning: Inpainting

Input: Image with a hole Output: Hole filled in

Pathak et al, “Context Encoders: Feature Learning by Inpainting”, CVPR 2016
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Self-Supervised Learning: Contrastive Learning

Unlabeled Images

:

v

Patches from the same
— source image should

| |:| |:| |:| | give similar features

:

Extract
features

Random image
transformations

\ 4

:

Black dog image is free to use under the Pixabay license
Pomeranian dog image is free to use under the Pixabay license
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https://pixabay.com/photos/black-lab-happy-dog-young-3003839/
https://pixabay.com/service/license/
https://pixabay.com/photos/pomeranian-dog-puppy-pomeranian-dog-4699726/
https://pixabay.com/service/license/

Self-Supervised Learning: Contrastive Learning

% Supervised % SimCLR (4x)

)
o

* Misra and van der Maaten, “Self-supervised learning
of pretext-invariant representations” CVPR 2020
eCPCv2-L

(PIRL)
JMOCO (4X) He et al, “Momentum Contrast for Unsupervised
oeCMC Visual Representation Learning”, CVPR 2020 (MoCo)
ePIRL-c2x AMDIM * Chen et al, “A Simple Framework for Contrastive
eMoCo (2X) Learning of Visual Representations”, ICML 2020

QCPCVZ XPIRL-ens. (SImCLR)

*SimCLR

~
o

* Chen et al, “Improved Baselines with Momentum
PIRL eBiaBiGAN Contrastive Learning”, arXiv 2020 (MoCo-v2)

*MoCo 9 * Chen et al, “Big Self-Supervised Models are Strong
LA

)]
o

Semi-Supervised Learners”, arXiv 2020 (SimCLR-v2)
* Caron et al, “Unsupervised Learning of Visual
Features by Contrasting Cluster Assignments”, arXiv
eRotation 2020
e|nstDisc * Chen and He, “Exploring Simple Siamese
Representation Learning”, arXiv 2020

ImageNet Top-1 Accuracy (%
o
6))

o)
9)

25 50 100 200 400 626
Number of Parameters (Millions)
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Problem #4:

Deep Learning doesn’t
“Understand” the world
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Language Models lack common sense

Bold = prompt written by me
Italic = completion written by GPT-2

| was born in 1950. In

the year 2025 my age
will be

Examples generated using https://talktotransformer.com/
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https://talktotransformer.com/

Language Models lack common sense

Bold = prompt written by me
Italic = completion written by GPT-2

| was born in 1950. In
the year 2025 my age
will be 35. That was
only a few years ago.
Most things in life just
continue to improve.

Examples generated using https://talktotransformer.com/
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https://talktotransformer.com/

Language Models lack common sense

Bold = prompt written by me
Italic = completion written by GPT-2

| was born in 1950. In | see a black dog
the year 2025 my age and a brown

will be 35. That was horse. The bigger
only a few years ago. animal’s color is

Most things in life just
continue to improve.

Examples generated using https://talktotransformer.com/
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https://talktotransformer.com/

Language Models lack common sense

Bold = prompt written by me
Italic = completion written by GPT-2

| was born in 1950. In | see a black dog
the year 2025 my age and a brown

will be 35. That was horse. The bigger
only a few years ago. animal’s color is
Most things in life just black, and the
continue to improve. smaller is brown.

Examples generated using https://talktotransformer.com/
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Language Models lack common sense

Bold = prompt written by me
Italic = completion written by GPT-2

| was born in 1950. In | see a black dog One of my parents is a
the year 2025 my age and a brown doctor and the other is a
will be 35. That was horse. The bigger professor. My father is a
only a few years ago. animal's color is professor. My mother is
Most things in life just black, and the

continue to improve. smaller is brown.

Examples generated using https://talktotransformer.com/
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https://talktotransformer.com/

Language Models lack common sense

| was born in 1950. In
the year 2025 my age
will be 35. That was
only a few years ago.
Most things in life just
continue to improve.

Bold = prompt written by me

Italic = completion written by GPT-2

| see a black dog
and a brown
horse. The bigger
animal's color is
black, and the
smaller is brown.

Examples generated using https://talktotransformer.com/

One of my parents is a
doctor and the other is a
professor. My father is a
professor. My mother is
a social worker. They're
super smart people.

December 2, 2020

Justin Johnson

Lecture 22 - 115


https://talktotransformer.com/

Language Models lack common sense What

| about

Bold = prompt written by me

Italic = completion written by GPT-2 G PT—3 ?
| was born in 1950. In | see a black dog One of my parents is a
the year 2025 my age and a brown doctor and the other is a
will be 35. That was horse. The bigger professor. My father is a
only a few years ago. animal's color is professor. My mother is
Most things in life just black, and the a social worker. They're
continue to improve. smaller is brown. super smart people.

Examples generated using https://talktotransformer.com/
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Language Models lack common sense What

| about

Bold = prompt written by me

Italic = completion written by GPT-2 G PT—3 ?
| was born in 1950. In | see a black dog One of my parents is a
the year 2025 my age and a brown doctor and the other is a
will be 35. That was horse. The bigger professor. My father is a
only a few years ago. animal's color is professor. My mother is
Most things in life just black, and the a social worker. They're
continue to improve. smaller is brown. super smart people.

Examples generated using https://talktotransformer.com/
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Language Models lack common sense What

Bold = prompt written by me
Italic = completion written by GPT-2 G PT—3 ?

'IHEVERGE TECH REVIEWS SCIENCE CREATORS ENTERTAINMENT VIDED  MORE

MICROSOFT \ TECH \ ARTIFICIAL INTELLIGENCE \

Microsoft exclusively licenses OpenAl's
groundbreaking GPT-3 text generation model

Microsoft will get to use the underlying technology of the Al model in its products

g

By Nick Statt | @nickstatt | Sep 22, 2020, 4:08pm EDT

Exclusive Microsoft license means | can’t play with it!
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“The Elephant in the Room”

Modern object
detectors seem
to work well!

Rosenfeld et al, “The Elephant in the Room”, arXiv 2018
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“The Elephant in the Room”

We add an out-of-
context elephant
to the scene;
Sometimes it is
detected
Sometimes it
messes up other
objects: cup

Rosenfeld et al, “The Elephant in the Room”, arXiv 2018
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“The Elephant in the Room”

We add an out-of-
context elephant
to the scene;
Sometimes it is
missed

Rosenfeld et al, “The Elephant in the Room”, arXiv 2018
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“The Elephant in the Room”

We add an out-of-
context elephant
to the scene;
Sometimes it is
assigned the
wrong label

Or mess up other
objects! (cup,
couch)

Rosenfeld et al, “The Elephant in the Room”, arXiv 2018
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“The Elephant in the Room”

We add an out-of-
context elephant
to the scene;
Sometimes it is
assigned the
wrong label

Or mess up other
objects! (cup,
couch)

Conclusion: CNNs
“see” in a very
different way from
us. They can fail
catastrophically on
images even slightly
different from those
seen during training.
How can we fix this?

Rosenfeld et al, “The Elephant in the Room”, arXiv 2018
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Deep Learning: Problems and Predictions

Problems:

Models are biased

Need new theory

Using less data
Understanding the world

Predictions:

New deep learning models
New applications

More compute, new hardware
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Deep Learning: Problems and Predictions

Problems:

Models are biased

Need new theory

Using less data
Understanding the world

Predictions:

New deep learning models
New applications

More compute, new hardware

Now is a great time to be working in
computer vision and machine learning!
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Thanks GSls!

Yunseok Jang Mohamed El Banani Danish Syed Yashmeet Gambhir
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Thank You!
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