
Justin Johnson November 30, 2020

Lecture 21:
Reinforcement Learning

Lecture 21 - 1

Justin Johnson November 30, 2020Lecture 21 - 2

Assignment 6: Generative Models

Generative Adversarial Networks
Variational Autoencoders

Due on Wednesday, 12/9 11:59pm EST

Justin Johnson November 30, 2020

So far: Supervised Learning

Lecture 21 - 3

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 30, 2020

So far: Unsupervised Learning

Lecture 21 - 4

Feature Learning
(e.g. autoencoders)

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden
structure of the data

Examples: Clustering, dimensionality
reduction, feature learning, density
estimation, etc.

Justin Johnson November 30, 2020

Today: Reinforcement Learning

Lecture 21 - 5

Earth photo is in the public domain
Robot image is in the public domain

Action

Reward

Agent EnvironmentProblems where an
agent performs actions
in environment, and
receives rewards

Goal: Learn how to
take actions that
maximize reward

https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg

Justin Johnson November 30, 2020

Overview

Lecture 21 - 6

- What is reinforcement learning?
- Algorithms for reinforcement learning

- Q-Learning
- Policy Gradients

Justin Johnson November 30, 2020

Overview

Lecture 21 - 7

- What is reinforcement learning?
- Algorithms for reinforcement learning

- Q-Learning
- Policy Gradients

This is just a taste! Can easily teach entire courses on (deep) RL:
- UMich EECS 598-003
- Berkeley CS 285
- Stanford CS 234
- CMU 10-703

https://ece.engin.umich.edu/wp-content/uploads/2020/03/EECS_598_Reinforcement.pdf
http://rail.eecs.berkeley.edu/deeprlcourse/
http://web.stanford.edu/class/cs234/index.html
https://cmudeeprl.github.io/703website/

Justin Johnson November 30, 2020

Reinforcement Learning

Lecture 21 - 8

Environment

Agent

Justin Johnson November 30, 2020

Reinforcement Learning

Lecture 21 - 9

Environment

State
st

Agent

The agent sees a state; may
be noisy or incomplete

Justin Johnson November 30, 2020

Reinforcement Learning

Lecture 21 - 10

Environment

State
st

Action
at

Agent

The makes an action
based on what it sees

Justin Johnson November 30, 2020

Reinforcement Learning

Lecture 21 - 11

Environment

State
st

Action
at

Agent

Reward
rt

Reward tells the agent
how well it is doing

Justin Johnson November 30, 2020

Reinforcement Learning

Lecture 21 - 12

Environment

State
st

Action
at

Agent

Reward
rt

Environment

Agent

Action causes change
to environment

Agent learns

Justin Johnson November 30, 2020

Reinforcement Learning

Lecture 21 - 13

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Process repeats

Justin Johnson November 30, 2020

Example: Cart-Pole Problem

Lecture 21 - 14

Objective: Balance a pole
on top of a movable cart

State: angle, angular speed,
position, horizontal velocity

Action: horizontal force
applied on the cart

Reward: 1 at each time
step if the pole is upright

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 30, 2020

Example: Robot Locomotion

Lecture 21 - 15

Objective: Make the
robot move forward

State: Angle, position,
velocity of all joints

Action: Torques applied
on joints

Reward: 1 at each time
step upright + forward
movement

Figure from: Schulman et al, “High-Dimensional Continuous
Control Using Generalized Advantage Estimation”, ICLR 2016

Justin Johnson November 30, 2020

Example: Atari Games

Lecture 21 - 16

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013

Justin Johnson November 30, 2020

Example: Go

Lecture 21 - 17

Objective: Win the game!

State: Position of all pieces

Action: Where to put the
next piece down

Reward: On last turn: 1 if
you won, 0 if you lost

This image is CC0 public domain

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 30, 2020

Reinforcement Learning vs Supervised Learning

Lecture 21 - 18

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Justin Johnson November 30, 2020

Reinforcement Learning vs Supervised Learning

Lecture 21 - 19

Dataset

Input
xt

Prediction
yt

Model

Loss
Lt

Dataset

Model

Loss
Lt+1

Input
xt+t

Prediction
yt+1

Why is RL different from normal supervised learning?

Justin Johnson November 30, 2020

Reinforcement Learning vs Supervised Learning

Lecture 21 - 20

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Stochasticity: Rewards and state transitions may be random

Justin Johnson November 30, 2020

Reinforcement Learning vs Supervised Learning

Lecture 21 - 21

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Credit assignment: Reward rt may not directly depend on action at

Justin Johnson November 30, 2020

Reinforcement Learning vs Supervised Learning

Lecture 21 - 22

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Nondifferentiable: Can’t backprop through world; can’t compute drt/dat

Justin Johnson November 30, 2020

Reinforcement Learning vs Supervised Learning

Lecture 21 - 23

Environment

State
st

Action
at

Agent

Reward
rt

Environment

State
st+1

Action
at+1

Agent

Reward
rt+1

Nonstationary: What the agent experiences depends on how it acts

Justin Johnson November 30, 2020

Markov Decision Process (MDP)

Lecture 21 - 24

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Markov Property: The current state completely characterizes the state of the
world. Rewards and next states depend only on current state, not history.

Justin Johnson November 30, 2020

Markov Decision Process (MDP)

Lecture 21 - 25

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Agent executes a policy 𝜋 giving distribution of actions conditioned on states

Justin Johnson November 30, 2020

Markov Decision Process (MDP)

Lecture 21 - 26

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Agent executes a policy 𝜋 giving distribution of actions conditioned on states
Goal: Find policy 𝜋* that maximizes cumulative discounted reward: ∑! 𝛾!𝑟!

Justin Johnson November 30, 2020

Markov Decision Process (MDP)

Lecture 21 - 27

- At time step t=0, environment samples initial state 𝑠! ~ 𝑝(𝑠!)
- Then, for t=0 until done:
- Agent selects action 𝑎" ~ 𝜋 𝑎 𝑠")
- Environment samples reward 𝑟" ~ 𝑅 𝑟 𝑠", 𝑎")
- Environment samples next state 𝑠"#$ ~ 𝑃 𝑠 | 𝑠", 𝑎"
- Agent receives reward rt and next state st+1

Justin Johnson November 30, 2020

A simple MDP: Grid World

Lecture 21 - 28

★

★

States Reward

Set a negative
“reward” for

each transition
(e.g. r = -1)

Actions:

1. Right

2. Left

3. Up

4. Down

Objective: Reach one of the terminal states in as few moves as possible

Justin Johnson November 30, 2020

A simple MDP: Grid World

Lecture 21 - 29

★

★

Bad policy

★

★

Optimal Policy

Justin Johnson November 30, 2020

Finding Optimal Policies

Lecture 21 - 30

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

Justin Johnson November 30, 2020

Finding Optimal Policies

Lecture 21 - 31

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards

Justin Johnson November 30, 2020

Finding Optimal Policies

Lecture 21 - 32

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards

Solution: Maximize the expected sum of rewards

𝜋∗ = argmax
#

𝔼 ,
!$%

𝛾! 𝑟! | 𝜋
𝑠% ~ 𝑝 𝑠%
𝑎! ~ 𝜋 𝑎 | 𝑠!
𝑠!&' ~ 𝑃 𝑠 | 𝑠! , 𝑎!

Justin Johnson November 30, 2020

Value Function and Q Function

Lecture 21 - 33

Following a policy 𝜋 produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

Justin Johnson November 30, 2020

Value Function and Q Function

Lecture 21 - 34

Following a policy 𝜋 produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state? The value function at state s, is the expected cumulative reward
from following the policy from state s:

𝑉! 𝑠 = 𝔼 &
"#$

𝛾" 𝑟" | 𝑠$ = 𝑠, 𝜋

Justin Johnson November 30, 2020

Value Function and Q Function

Lecture 21 - 35

Following a policy 𝜋 produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state? The value function at state s, is the expected cumulative reward
from following the policy from state s:

𝑉! 𝑠 = 𝔼 &
"#$

𝛾" 𝑟" | 𝑠$ = 𝑠, 𝜋

How good is a state-action pair? The Q function at state s and action a, is the expected
cumulative reward from taking action a in state s and then following the policy:

𝑄! 𝑠, 𝑎 = 𝔼 &
"#$

𝛾" 𝑟" | 𝑠$ = 𝑠, 𝑎$ = 𝑎, 𝜋

Justin Johnson November 30, 2020

Bellman Equation

Lecture 21 - 36

Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Justin Johnson November 30, 2020

Bellman Equation

Lecture 21 - 37

Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmax
&'

𝑄(𝑠, 𝑎')

Justin Johnson November 30, 2020

Bellman Equation

Lecture 21 - 38

Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmax
&'

𝑄(𝑠, 𝑎')

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Justin Johnson November 30, 2020

Bellman Equation

Lecture 21 - 39

Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
"

𝔼 +
#$%

𝛾#𝑟# | 𝑠% = 𝑠, 𝑎% = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmax
&'

𝑄(𝑠, 𝑎')

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Intuition: After taking action a in state s, we get reward r and move to a new
state s’. After that, the max possible reward we can get is max

&'
𝑄∗ 𝑠', 𝑎′

Justin Johnson November 30, 2020

Solving for the optimal policy: Value Iteration

Lecture 21 - 40

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Justin Johnson November 30, 2020

Solving for the optimal policy: Value Iteration

Lecture 21 - 41

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Justin Johnson November 30, 2020

Solving for the optimal policy: Value Iteration

Lecture 21 - 42

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞

Justin Johnson November 30, 2020

Solving for the optimal policy: Value Iteration

Lecture 21 - 43

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
Problem: Need to keep track of Q(s, a) for all (state, action) pairs – impossible if infinite

Justin Johnson November 30, 2020

Solving for the optimal policy: Value Iteration

Lecture 21 - 44

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄+,- 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄+ 𝑠', 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
Problem: Need to keep track of Q(s, a) for all (state, action) pairs – impossible if infinite
Solution: Approximate Q(s, a) with a neural network, use Bellman Equation as loss!

Justin Johnson November 30, 2020

Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 45

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Justin Johnson November 30, 2020

Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 46

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Justin Johnson November 30, 2020

Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 47

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Use this to define the loss for training Q: 𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Justin Johnson November 30, 2020

Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 48

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Use this to define the loss for training Q: 𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights θ!

Justin Johnson November 30, 2020

Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 49

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄∗ 𝑠', 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

Use this to define the loss for training Q: 𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights θ!
Problem: How to sample batches of data for training?

Justin Johnson November 30, 2020

Case Study: Playing Atari Games

Lecture 21 - 50

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013

Justin Johnson November 30, 2020

Case Study: Playing Atari Games

Lecture 21 - 51

Network input: state st: 4x84x84 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

FC-256

FC-A (Q-values)

Conv(4->16, 8x8, stride 4)

Conv(16->32, 4x4, stride 2)

𝑄 𝑠, 𝑎; 𝜃
Neural network
with weights θ

Network output:
Q-values for all actions With 4 actions: last

layer gives values
Q(st, a1), Q(st, a2),
Q(st, a3), Q(st,a4)

Mnih et al, “Playing Atari with Deep Reinforcement
Learning”, NeurIPS Deep Learning Workshop, 2013

Justin Johnson November 30, 2020Lecture 21 - 52

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Justin Johnson November 30, 2020

Q-Learning

Lecture 21 - 53

Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Justin Johnson November 30, 2020

Q-Learning vs Policy Gradients

Lecture 21 - 54

Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over
which action to take in that state

Justin Johnson November 30, 2020

Q-Learning vs Policy Gradients

Lecture 21 - 55

Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over
which action to take in that state

Objective function: Expected future rewards when following policy 𝜋.:

𝐽 𝜃 = 𝔼(~1! +
#$%

𝛾# 𝑟#

Find the optimal policy by maximizing: 𝜃∗ = argmax
.
𝐽 𝜃 (Use gradient ascent!)

Justin Johnson November 30, 2020

Policy Gradients

Lecture 21 - 56

Objective function: Expected future rewards when following policy 𝜋.:

𝐽 𝜃 = 𝔼(~1! +
#$%

𝛾# 𝑟#

Find the optimal policy by maximizing: 𝜃∗ = argmax
.
𝐽 𝜃 (Use gradient ascent!)

Problem: Nondifferentiability! Don’t know how to compute ()
(*

Justin Johnson November 30, 2020

Policy Gradients

Lecture 21 - 57

Objective function: Expected future rewards when following policy 𝜋.:

𝐽 𝜃 = 𝔼(~1! +
#$%

𝛾# 𝑟#

Find the optimal policy by maximizing: 𝜃∗ = argmax
.
𝐽 𝜃 (Use gradient ascent!)

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

Problem: Nondifferentiability! Don’t know how to compute ()
(*

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 58

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 59

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 60

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 61

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 62

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 63

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 64

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

𝜕𝐽
𝜕𝜃

= 9
.
𝑓 𝑥 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 𝑑𝑥 = 𝔼+~-% 𝑓 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 65

General formulation: 𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥 Want to compute ()
(*

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼+~-% 𝑓 𝑥 =

𝜕
𝜕𝜃
9
.
𝑝* 𝑥 𝑓 𝑥 𝑑𝑥 = 9

.
𝑓 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 =

1
𝑝* 𝑥

𝜕
𝜕𝜃
𝑝* 𝑥 ⇒

𝜕
𝜕𝜃
𝑝* 𝑥 = 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

𝜕𝐽
𝜕𝜃

= 9
.
𝑓 𝑥 𝑝* 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥 𝑑𝑥 = 𝔼+~-% 𝑓 𝑥

𝜕
𝜕𝜃
log 𝑝* 𝑥

Approximate the expectation via sampling!

Justin Johnson November 30, 2020

𝑝. 𝑥 =D
#$%

𝑃 𝑠#,-| 𝑠#, 𝑎# 𝜋. 𝑎# | 𝑠# ⇒ log 𝑝.(𝑥) =+
#$%

log 𝑃 𝑠#,-|𝑠#, 𝑎# + log 𝜋. 𝑎#|𝑠#

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 66

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 67

𝑝. 𝑥 =D
#$%

𝑃 𝑠#,-| 𝑠#, 𝑎# 𝜋. 𝑎# | 𝑠# ⇒ log 𝑝.(𝑥) =+
#$%

log 𝑃 𝑠#,-|𝑠#, 𝑎# + log 𝜋. 𝑎#|𝑠#

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 68

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities
of environment. We
can’t compute this.

𝑝. 𝑥 =D
#$%

𝑃 𝑠#,-| 𝑠#, 𝑎# 𝜋. 𝑎# | 𝑠# ⇒ log 𝑝.(𝑥) =+
#$%

log 𝑃 𝑠#,-|𝑠#, 𝑎# + log 𝜋. 𝑎#|𝑠#

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 69

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities
of environment. We
can’t compute this.

Action probabilities
of policy. We can
are learning this!

𝑝. 𝑥 =D
#$%

𝑃 𝑠#,-| 𝑠#, 𝑎# 𝜋. 𝑎# | 𝑠# ⇒ log 𝑝.(𝑥) =+
#$%

log 𝑃 𝑠#,-|𝑠#, 𝑎# + log 𝜋. 𝑎#|𝑠#

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 70

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities
of environment. We
can’t compute this.

Action probabilities
of policy. We can
are learning this!

𝜕
𝜕𝜃

log 𝑝! 𝑥 =6
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

𝑝. 𝑥 =D
#$%

𝑃 𝑠#,-| 𝑠#, 𝑎# 𝜋. 𝑎# | 𝑠# ⇒ log 𝑝.(𝑥) =+
#$%

log 𝑃 𝑠#,-|𝑠#, 𝑎# + log 𝜋. 𝑎#|𝑠#

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 71

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Transition probabilities
of environment. We
can’t compute this.

Action probabilities
of policy. We can
are learning this!

𝜕
𝜕𝜃

log 𝑝! 𝑥 =6
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

𝑝. 𝑥 =D
#$%

𝑃 𝑠#,-| 𝑠#, 𝑎# 𝜋. 𝑎# | 𝑠# ⇒ log 𝑝.(𝑥) =+
#$%

log 𝑃 𝑠#,-|𝑠#, 𝑎# + log 𝜋. 𝑎#|𝑠#

Justin Johnson November 30, 2020

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 72

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

𝜕
𝜕𝜃

log 𝑝! 𝑥 =6
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥
𝜕
𝜕𝜃
log 𝑝* 𝑥 = 𝔼+~-% 𝑓 𝑥 ,

!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 73

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

𝜕
𝜕𝜃

log 𝑝! 𝑥 =6
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥
𝜕
𝜕𝜃
log 𝑝* 𝑥 = 𝔼+~-% 𝑓 𝑥 ,

!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 74

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

𝜕
𝜕𝜃

log 𝑝! 𝑥 =6
"#$

𝜕
𝜕𝜃

log 𝜋! 𝑎"|𝑠"

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 75

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼𝒙~𝒑𝜽 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 76

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Sequence of states
and actions when
following policy 𝝅𝜽

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝒇 𝒙 ,
!$%

𝜕
𝜕𝜃
log 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 77

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Reward we get from
state sequence x

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝝏
𝝏𝜽

𝒍𝒐𝒈𝝅𝜽 𝒂𝒕|𝒔𝒕

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 78

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Gradient of predicted
action scores with
respect to model
weights. Backprop
through model 𝝅𝜽!

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 79

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

1. Initialize random weights θ
2. Collect trajectories x and

rewards f(x) using policy 𝜋!
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 80

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

1. Initialize random weights θ
2. Collect trajectories x and

rewards f(x) using policy 𝜋!
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 81

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

1. Initialize random weights θ
2. Collect trajectories x and

rewards f(x) using policy 𝜋!
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2

Justin Johnson November 30, 2020

Expected reward under 𝜋*:
𝐽 𝜃 = 𝔼+~-% 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼+~-% 𝑓 𝑥 ,
!$%

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋* 𝑎!|𝑠!

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 82

Goal: Train a network 𝜋* 𝑎 𝑠) that takes state as input,
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠%, 𝑎%, 𝑠', 𝑎', … be the sequence of states and
actions we get when following policy 𝜋*. It’s random: 𝑥~𝑝* 𝑥

Intuition:
When f(x) is high: Increase the
probability of the actions we took.
When f(x) is low: Decrease the
probability of the actions we took.

Justin Johnson November 30, 2020

So far: Q-Learning and Policy Gradients

Lecture 21 - 83

Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃) Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over
which action to take in that state. Use REINFORCE Rule for computing gradients:

𝐽 𝜃 = 𝔼%~'! 𝑓 𝑥 ()
(!
= 𝔼%~'! 𝑓 𝑥 ∑"#$

(
(!
𝑙𝑜𝑔 𝜋! 𝑎"|𝑠"

Justin Johnson November 30, 2020

So far: Q-Learning and Policy Gradients

Lecture 21 - 84

Q-Learning: Train network 𝑄. 𝑠, 𝑎 to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

𝑦*,&,. = 𝔼(,*' 𝑟 + 𝛾max&' 𝑄(𝑠', 𝑎'; 𝜃) Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠'~𝑃 𝑠, 𝑎

𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦*,&,.
/

Policy Gradients: Train a network 𝜋. 𝑎 𝑠) that takes state as input, gives distribution over
which action to take in that state. Use REINFORCE Rule for computing gradients:

𝐽 𝜃 = 𝔼%~'! 𝑓 𝑥 ()
(!
= 𝔼%~'! 𝑓 𝑥 ∑"#$

(
(!
𝑙𝑜𝑔 𝜋! 𝑎"|𝑠"

Improving policy gradients: Add baseline to reduce variance of gradient estimator

Justin Johnson November 30, 2020

Other approaches

Lecture 21 - 85

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

Justin Johnson November 30, 2020

Other approaches

Lecture 21 - 86

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

Justin Johnson November 30, 2020

Other approaches

Lecture 21 - 87

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

Justin Johnson November 30, 2020

Other approaches

Lecture 21 - 88

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

Justin Johnson November 30, 2020

Other approaches

Lecture 21 - 89

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠#,-|𝑠#, 𝑎#) and
then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016

Justin Johnson November 30, 2020

Case Study: Playing Games

Lecture 21 - 90

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 30, 2020

Case Study: Playing Games

Lecture 21 - 91

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 30, 2020

Case Study: Playing Games

Lecture 21 - 92

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 30, 2020

Case Study: Playing Games

Lecture 21 - 93

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 30, 2020

Case Study: Playing Games

Lecture 21 - 94

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

November 2019: Lee Sedol
announces retirement

“With the debut of AI
in Go games, I've
realized that I'm not at
the top even if I
become the number
one through frantic
efforts”
“Even if I become the
number one, there is
an entity that cannot
be defeated”

Quotes from: https://en.yna.co.kr/view/AEN20191127004800315
Image of Lee Sedol is licensed under CC BY 2.0

https://en.yna.co.kr/view/AEN20191127004800315
https://commons.wikimedia.org/wiki/File:Lee_Se-Dol_-_2016_(cropped).jpg
https://creativecommons.org/licenses/by/2.0/deed.en

Justin Johnson November 30, 2020

More Complex Games

Lecture 21 - 95

StarCraft II: AlphaStar
(October 2019)
Vinyals et al, “Grandmaster
level in StarCraft II using
multi-agent reinforcement
learning”, Science 2018

Dota 2: OpenAI Five (April 2019)
Dota 2 with Large Scale Deep
Reinforcement Learning
https://arxiv.org/abs/1912.06680

https://arxiv.org/abs/1912.06680

Justin Johnson November 30, 2020

Reinforcement Learning: Interacting With World

Lecture 21 - 96

Ac#on

Reward

Agent Environment

Normally we use RL to train
agents that interact with a (noisy,
nondifferentiable) environment

Justin Johnson November 30, 2020

Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 97

Can also use RL to train neural networks with nondifferentiable components!

Justin Johnson November 30, 2020

Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 98

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN

Justin Johnson November 30, 2020

Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 99

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN

Which network
to use?
P(orange) = 0.2
P(blue) = 0.1
P(green) = 0.7

Justin Johnson November 30, 2020

Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 100

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN

Which network
to use?
P(orange) = 0.2
P(blue) = 0.1
P(green) = 0.7

Sample:
Green

Justin Johnson November 30, 2020

Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 101

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN

Which network
to use?
P(orange) = 0.2
P(blue) = 0.1
P(green) = 0.7

Sample:
Green

Loss
Reward = -loss

Justin Johnson November 30, 2020

Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 102

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN

Which network
to use?
P(orange) = 0.2
P(blue) = 0.1
P(green) = 0.7

Sample:
Green

Loss
Reward = -loss

Update routing net with policy gradient

Justin Johnson November 30, 2020

Stochastic Computation Graphs: Attention

Lecture 21 - 103

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Recall: Image captioning with attention. At each timestep use a
weighted combination of features from different spatial positions

(Soft Attention)

Justin Johnson November 30, 2020

Stochastic Computation Graphs: Attention

Lecture 21 - 104

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Recall: Image captioning with attention. At each timestep use a
weighted combination of features from different spatial positions

(Soft Attention)

Hard Attention: At each timestep, select features from exactly one
spatial location. Train with policy gradient.

Justin Johnson November 30, 2020

Summary: Reinforcement Learning

Lecture 21 - 105

Ac#on

Reward

Agent Environment

RL trains agents that interact
with an environment and
learn to maximize reward

Q-Learning: Train network 𝑄! 𝑠, 𝑎 to
estimate future rewards for every
(state, action) pair. Use Bellman
Equation to define loss function for
training Q

Policy Gradients: Train a network
𝜋! 𝑎 𝑠) that takes state as input,
gives distribution over which action to
take in that state. Use REINFORCE Rule
for computing gradients

Justin Johnson November 30, 2020

Next Time:
Course Recap

Open Problems in Computer Vision

Lecture 21 - 106

