Lecture 21: Reinforcement Learning
Assignment 6: Generative Models

Generative Adversarial Networks
Variational Autoencoders

Due on Wednesday, 12/9 11:59pm EST
So far: Supervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a \textit{function} to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.
So far: Unsupervised Learning

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden structure of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.
Today: Reinforcement Learning

Problems where an **agent** performs **actions** in **environment**, and receives **rewards**

Goal: Learn how to take actions that maximize reward
Overview

- What is reinforcement learning?
- Algorithms for reinforcement learning
 - Q-Learning
 - Policy Gradients
Overview

- What is reinforcement learning?
- Algorithms for reinforcement learning
 - Q-Learning
 - Policy Gradients

This is just a taste! Can easily teach entire courses on (deep) RL:
- UMich EECS 598-003
- Berkeley CS 285
- Stanford CS 234
- CMU 10-703
Reinforcement Learning

Environment

Agent
Reinforcement Learning

The agent sees a state; may be noisy or incomplete
Reinforcement Learning

Environment

State s_t Action a_t The agent makes an action based on what it sees

Agent
Reinforcement Learning

\[
\begin{align*}
\text{Environment} & \quad \downarrow \quad \text{Reward} \quad \downarrow \\
\text{State} & \quad s_t \quad \downarrow \quad \text{Action} \quad a_t \quad \uparrow \\
& \quad \downarrow \quad \text{Reward} \quad r_t \quad \downarrow \\
& \quad \text{Agent}
\end{align*}
\]

Reward tells the agent how well it is doing.
Reinforcement Learning

Environment → Environment

Agent learns

State: s_t → Action: a_t → Reward: r_t → Agent

Action causes change to environment
Reinforcement Learning

Environment

State s_t → Action a_t → Reward r_t → Agent

Process repeats

Environment

State s_{t+1} → Action a_{t+1} → Reward r_{t+1} → Agent
Example: Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity

Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright
Example: Robot Locomotion

Objective: Make the robot move forward

State: Angle, position, velocity of all joints

Action: Torques applied on joints

Reward: 1 at each time step upright + forward movement

Figure from: Schulman et al, “High-Dimensional Continuous Control Using Generalized Advantage Estimation”, ICLR 2016
Example: Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Example: Go

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: On last turn: 1 if you won, 0 if you lost
Reinforcement Learning vs Supervised Learning

Environment

State
s_t

Action
a_t

Reward
r_t

Agent

Environment

State
s_{t+1}

Action
a_{t+1}

Reward
r_{t+1}
Reinforcement Learning vs Supervised Learning

Why is RL different from normal supervised learning?
Reinforcement Learning vs Supervised Learning

Stochasticity: Rewards and state transitions may be random
Credit assignment: Reward r_t may not directly depend on action a_t.
Reinforcement Learning vs Supervised Learning

Nondifferentiable: Can’t backprop through world; can’t compute dr_t/da_t
Reinforcement Learning vs Supervised Learning

Nonstationary: What the agent experiences depends on how it acts
Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple \((S, A, R, P, \gamma)\)

- **S**: Set of possible states
- **A**: Set of possible actions
- **R**: Distribution of reward given (state, action) pair
- **P**: Transition probability: distribution over next state given (state, action)
- **\(\gamma\)**: Discount factor (tradeoff between future and present rewards)

Markov Property: The current state completely characterizes the state of the world. Rewards and next states depend only on current state, not history.
Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple \((S, A, R, P, \gamma)\)

- **S**: Set of possible states
- **A**: Set of possible actions
- **R**: Distribution of reward given (state, action) pair
- **P**: Transition probability: distribution over next state given (state, action)
- **\(\gamma\)**: Discount factor (tradeoff between future and present rewards)

Agent executes a **policy** \(\pi\) giving distribution of actions conditioned on states
Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple \((S, A, R, P, \gamma)\)

- **S**: Set of possible states
- **A**: Set of possible actions
- **R**: Distribution of reward given (state, action) pair
- **P**: Transition probability: distribution over next state given (state, action)
- **\(\gamma\)**: Discount factor (tradeoff between future and present rewards)

Agent executes a **policy** \(\pi\) giving distribution of actions conditioned on states

Goal: Find policy \(\pi^*\) that maximizes cumulative discounted reward: \(\sum_t \gamma^t r_t\)
Markov Decision Process (MDP)

- At time step $t=0$, environment samples initial state $s_0 \sim p(s_0)$
- Then, for $t=0$ until done:
 - Agent selects action $a_t \sim \pi(a \mid s_t)$
 - Environment samples reward $r_t \sim R(r \mid s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(s \mid s_t, a_t)$
 - Agent receives reward r_t and next state s_{t+1}
A simple MDP: Grid World

Actions:
1. Right
2. Left
3. Up
4. Down

States

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>★</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>★</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reward
Set a negative "reward" for each transition (e.g. \(r = -1 \))

Objective: Reach one of the terminal states in as few moves as possible
A simple MDP: Grid World

Bad policy

Optimal Policy
Finding Optimal Policies

Goal: Find the optimal policy π^* that maximizes (discounted) sum of rewards.
Finding Optimal Policies

Goal: Find the optimal policy π^* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards
Finding Optimal Policies

Goal: Find the optimal policy π^* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards

Solution: Maximize the expected sum of rewards

$$
\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid \pi \right]
$$

$$
s_0 \sim p(s_0) \quad a_t \sim \pi(a \mid s_t) \quad s_{t+1} \sim P(s \mid s_t, a_t)
$$
Value Function and Q Function

Following a policy π produces **sample trajectories** (or paths) $s_0, a_0, r_0, s_1, a_1, r_1, ...$
Value Function and Q Function

Following a policy π produces **sample trajectories** (or paths) $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$

How good is a state? The **value function** at state s, is the expected cumulative reward from following the policy from state s:

$$V^\pi(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, \pi \right]$$
Value Function and Q Function

Following a policy π produces sample trajectories (or paths) $s_0, a_0, r_0, s_1, a_1, r_1, ...$

How good is a state? The value function at state s, is the expected cumulative reward from following the policy from state s:

$$V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, \pi \right]$$

How good is a state-action pair? The Q function at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, a_0 = a, \pi \right]$$
Optimal Q-function: $Q^*(s, a)$ is the Q-function for the optimal policy π^*. It gives the max possible future reward when taking action a in state s:

$$Q^*(s, a) = \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, a_0 = a, \pi \right]$$
Bellman Equation

Optimal Q-function: $Q^*(s, a)$ is the Q-function for the optimal policy π^*
It gives the max possible future reward when taking action a in state s:

$$Q^*(s, a) = \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, a_0 = a, \pi \right]$$

Q^* encodes the optimal policy: $\pi^*(s) = \arg \max_{a'} Q(s, a')$
Optimal Q-function: $Q^*(s, a)$ is the Q-function for the optimal policy π^*

It gives the max possible future reward when taking action a in state s:

$$Q^*(s, a) = \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, a_0 = a, \pi \right]$$

Q^* encodes the optimal policy: $\pi^*(s) = \arg \max_{a'} Q(s, a')$

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$
Bellman Equation

Optimal Q-function: $Q^*(s, a)$ is the Q-function for the optimal policy π^*. It gives the max possible future reward when taking action a in state s:

$$Q^*(s, a) = \max \mathbb{E}_{\pi} \left[\sum_{t \geq 0} \gamma^t r_t \mid s_0 = s, a_0 = a, \pi \right]$$

Q^* encodes the optimal policy: $\pi^*(s) = \arg\max_{a'} Q(s, a')$

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r, s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Intuition: After taking action a in state s, we get reward r and move to a new state s'. After that, the max possible reward we can get is $\max_{a'} Q^*(s', a')$
Solving for the optimal policy: Value Iteration

Bellman Equation: \(Q^* \) satisfies the following recurrence relation:

\[
Q^*(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]
\]

Where \(r \sim R(s,a) \), \(s' \sim P(s,a) \)

Idea: If we find a function \(Q(s, a) \) that satisfies the Bellman Equation, then it must be \(Q^* \).
Solving for the optimal policy: Value Iteration

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Idea: If we find a function $Q(s, a)$ that satisfies the Bellman Equation, then it must be Q^*. Start with a random Q, and use the Bellman Equation as an update rule:

$$Q_{i+1}(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q_i(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$
Solving for the optimal policy: Value Iteration

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r, s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a)$, $s' \sim P(s, a)$

Idea: If we find a function $Q(s, a)$ that satisfies the Bellman Equation, then it must be Q^*. Start with a random Q, and use the Bellman Equation as an update rule:

$$Q_{i+1}(s, a) = \mathbb{E}_{r, s'} \left[r + \gamma \max_{a'} Q_i(s', a') \right]$$

Where $r \sim R(s, a)$, $s' \sim P(s, a)$

Amazing fact: Q_i converges to Q^* as $i \to \infty$
Solving for the optimal policy: Value Iteration

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Idea: If we find a function $Q(s, a)$ that satisfies the Bellman Equation, then it must be Q^*. Start with a random Q, and use the Bellman Equation as an update rule:

$$Q_{i+1}(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q_i(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Amazing fact: Q_i converges to Q^* as $i \to \infty$

Problem: Need to keep track of $Q(s, a)$ for all (state, action) pairs – impossible if infinite
Solving for the optimal policy: Value Iteration

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Idea: If we find a function $Q(s, a)$ that satisfies the Bellman Equation, then it must be Q^*. Start with a random Q, and use the Bellman Equation as an update rule:

$$Q_{i+1}(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q_i(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Amazing fact: Q_i converges to Q^* as $i \to \infty$

Problem: Need to keep track of $Q(s, a)$ for all (state, action) pairs – impossible if infinite

Solution: Approximate $Q(s, a)$ with a neural network, use Bellman Equation as loss!
Solving for the optimal policy: Deep Q-Learning

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Train a neural network (with weights θ) to approximate Q^*: $Q^*(s, a) \approx Q(s, a; \theta)$
Solving for the optimal policy: Deep Q-Learning

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Train a neural network (with weights θ) to approximate Q^*: $Q^*(s, a) \approx Q(s, a; \theta)$

Use the Bellman Equation to tell what Q should output for a given state and action:

$$y_{s,a,\theta} = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q(s', a'; \theta) \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$
Solving for the optimal policy: Deep Q-Learning

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r, s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Train a neural network (with weights θ) to approximate Q^*:

$$Q^*(s, a) \approx Q(s, a; \theta)$$

Use the Bellman Equation to tell what Q should output for a given state and action:

$$y_{s, a, \theta} = \mathbb{E}_{r, s'} \left[r + \gamma \max_{a'} Q(s', a'; \theta) \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Use this to define the loss for training Q:

$$L(s, a) = (Q(s, a; \theta) - y_{s, a, \theta})^2$$
Solving for the optimal policy: Deep Q-Learning

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Train a neural network (with weights θ) to approximate Q^*: $Q^*(s, a) \approx Q(s, a; \theta)$

Use the Bellman Equation to tell what Q should output for a given state and action:

$$y_{s,a,\theta} = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q(s', a'; \theta) \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Use this to define the loss for training Q: $L(s, a) = \left(Q(s, a; \theta) - y_{s,a,\theta} \right)^2$

Problem: Nonstationary! The “target” for $Q(s, a)$ depends on the current weights θ!
Solving for the optimal policy: Deep Q-Learning

Bellman Equation: Q^* satisfies the following recurrence relation:

$$Q^*(s, a) = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q^*(s', a') \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Train a neural network (with weights θ) to approximate Q^*: $Q^*(s, a) \approx Q(s, a; \theta)$

Use the Bellman Equation to tell what Q should output for a given state and action:

$$y_{s,a,\theta} = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q(s', a'; \theta) \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

Use this to define the loss for training Q: $L(s, a) = \left(Q(s, a; \theta) - y_{s,a,\theta} \right)^2$

Problem: Nonstationary! The “target” for $Q(s, a)$ depends on the current weights θ!

Problem: How to sample batches of data for training?
Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Case Study: Playing Atari Games

Network input: state s_t: 4x84x84 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

$Q(s, a; \theta)$
Neural network with weights θ

Network output:
Q-values for all actions

With 4 actions: last layer gives values
$Q(s_t, a_1), Q(s_t, a_2), Q(s_t, a_3), Q(s_t, a_4)$

Q-Learning

Q-Learning: Train network $Q_\theta(s, a)$ to estimate future rewards for every (state, action) pair.

Problem: For some problems this can be a hard function to learn. For some problems it is easier to learn a mapping from states to actions.
Q-Learning vs Policy Gradients

Q-Learning: Train network $Q_\theta(s, a)$ to estimate future rewards for every (state, action) pair.

Problem: For some problems this can be a hard function to learn. For some problems it is easier to learn a mapping from states to actions.

Policy Gradients: Train a network $\pi_\theta(a | s)$ that takes state as input, gives distribution over which action to take in that state.
Q-Learning vs Policy Gradients

Q-Learning: Train network $Q_\theta(s, a)$ to estimate future rewards for every (state, action) pair.

Problem: For some problems this can be a hard function to learn. For some problems it is easier to learn a mapping from states to actions.

Policy Gradients: Train a network $\pi_\theta(a \mid s)$ that takes state as input, gives distribution over which action to take in that state.

Objective function: Expected future rewards when following policy π_θ:

$$
J(\theta) = \mathbb{E}_{r \sim p_\theta} \left[\sum_{t \geq 0} \gamma^t r_t \right]
$$

Find the optimal policy by maximizing: $\theta^* = \arg \max_\theta J(\theta)$ (Use gradient ascent!)
Policy Gradients

Objective function: Expected future rewards when following policy π_θ:

$$J(\theta) = \mathbb{E}_{r \sim p_\theta} \left[\sum_{t \geq 0} \gamma^t r_t \right]$$

Find the optimal policy by maximizing: $\theta^* = \arg \max_{\theta} J(\theta)$ \hspace{1cm} \text{(Use gradient ascent!)}

Problem: Nondifferentiability! Don’t know how to compute $\frac{\partial J}{\partial \theta}$
Policy Gradients

Objective function: Expected future rewards when following policy π_θ:

$$J(\theta) = \mathbb{E}_{r \sim p_\theta} \left[\sum_{t \geq 0} \gamma^t r_t \right]$$

Find the optimal policy by maximizing: $\theta^* = \arg \max_\theta J(\theta)$ (Use gradient ascent!)

Problem: Nondifferentiability! Don’t know how to compute $\frac{\partial J}{\partial \theta}$

General formulation: $J(\theta) = \mathbb{E}_{x \sim p_\theta} [f(x)]$ Want to compute $\frac{\partial J}{\partial \theta}$
Policy Gradients: REINFORCE Algorithm

General formulation: \(J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)] \)
Want to compute \(\frac{\partial J}{\partial \theta} \)
Policy Gradients: REINFORCE Algorithm

General formulation: \(J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)] \)

Want to compute \(\frac{\partial J}{\partial \theta} \)

\[
\frac{\partial J}{\partial \theta} = \frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p_\theta}[f(x)] = \frac{\partial}{\partial \theta} \int_X p_\theta(x)f(x)dx
\]
Policy Gradients: REINFORCE Algorithm

General formulation: \[J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)] \] Want to compute \[\frac{\partial J}{\partial \theta} \]

\[
\frac{\partial J}{\partial \theta} = \frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p_\theta}[f(x)] = \frac{\partial}{\partial \theta} \int_x p_\theta(x)f(x)dx = \int_x f(x) \frac{\partial}{\partial \theta} p_\theta(x)dx
\]
Policy Gradients: REINFORCE Algorithm

General formulation: \(J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)] \)

Want to compute \(\frac{\partial J}{\partial \theta} \)

\[
\frac{\partial J}{\partial \theta} = \frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p_\theta}[f(x)] = \frac{\partial}{\partial \theta} \int_x p_\theta(x)f(x)dx = \int_x f(x) \frac{\partial}{\partial \theta} p_\theta(x)dx
\]

\[
\frac{\partial}{\partial \theta} \log p_\theta(x)
\]
Policy Gradients: REINFORCE Algorithm

General formulation: \(J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)] \)
Want to compute \(\frac{\partial J}{\partial \theta} \)

\[
\frac{\partial J}{\partial \theta} = \frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p_\theta}[f(x)] = \frac{\partial}{\partial \theta} \int_x p_\theta(x)f(x)dx = \int_x f(x) \frac{\partial}{\partial \theta} p_\theta(x)dx
\]

\[
\frac{\partial}{\partial \theta} \log p_\theta(x) = \frac{1}{p_\theta(x)} \frac{\partial}{\partial \theta} p_\theta(x)
\]
Policy Gradients: REINFORCE Algorithm

General formulation: \(J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)] \)
Want to compute \(\frac{\partial J}{\partial \theta} \)

\[
\frac{\partial J}{\partial \theta} = \frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p_\theta}[f(x)] = \frac{\partial}{\partial \theta} \int_X p_\theta(x)f(x)dx = \int_X f(x) \frac{\partial}{\partial \theta} p_\theta(x)dx
\]

\[
\frac{\partial}{\partial \theta} \log p_\theta(x) = \frac{1}{p_\theta(x)} \frac{\partial}{\partial \theta} p_\theta(x) \Rightarrow \frac{\partial}{\partial \theta} p_\theta(x) = p_\theta(x) \frac{\partial}{\partial \theta} \log p_\theta(x)
\]
Policy Gradients: REINFORCE Algorithm

General formulation: \(J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)] \)

Want to compute \(\frac{\partial J}{\partial \theta} \)

\[
\frac{\partial J}{\partial \theta} = \frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p_\theta}[f(x)] = \frac{\partial}{\partial \theta} \int_x p_\theta(x)f(x)dx = \int_x f(x) \frac{\partial}{\partial \theta} p_\theta(x)dx
\]

\[
\frac{\partial}{\partial \theta} \log p_\theta(x) = \frac{1}{p_\theta(x)} \frac{\partial}{\partial \theta} p_\theta(x) \Rightarrow \frac{\partial}{\partial \theta} p_\theta(x) = p_\theta(x) \frac{\partial}{\partial \theta} \log p_\theta(x)
\]

\[
\frac{\partial J}{\partial \theta} = \int_x f(x)p_\theta(x) \frac{\partial}{\partial \theta} \log p_\theta(x) \, dx
\]
Policy Gradients: REINFORCE Algorithm

General formulation: \(J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)] \)

Want to compute \(\frac{\partial J}{\partial \theta} \)

\[
\frac{\partial J}{\partial \theta} = \frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p_\theta}[f(x)] = \frac{\partial}{\partial \theta} \int_x p_\theta(x)f(x)dx = \int_x f(x) \frac{\partial}{\partial \theta} p_\theta(x)dx
\]

\[
\frac{\partial}{\partial \theta} \log p_\theta(x) = \frac{1}{p_\theta(x)} \frac{\partial}{\partial \theta} p_\theta(x) \Rightarrow \frac{\partial}{\partial \theta} p_\theta(x) = p_\theta(x) \frac{\partial}{\partial \theta} \log p_\theta(x)
\]

\[
\frac{\partial J}{\partial \theta} = \int_x f(x)p_\theta(x) \frac{\partial}{\partial \theta} \log p_\theta(x) \ dx = \mathbb{E}_{x \sim p_\theta} \left[f(x) \frac{\partial}{\partial \theta} \log p_\theta(x) \right]
\]

Approximate the expectation via sampling!
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta(a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta(x)$

$$p_\theta(x) = \prod_{t \geq 0} P(s_{t+1} \mid s_t, a_t)\pi_\theta(a_t \mid s_t)$$
Policy Gradients: REINFORCE Algorithm

Goal: Train a network \(\pi_\theta (a \mid s) \) that takes state as input, gives distribution over which action to take in that state

Define: Let \(x = (s_0, a_0, s_1, a_1, \ldots) \) be the sequence of states and actions we get when following policy \(\pi_\theta \). It’s random: \(x \sim p_\theta (x) \)

\[
p_\theta (x) = \prod_{t \geq 0} P(s_{t+1} \mid s_t, a_t) \pi_\theta (a_t \mid s_t) \Rightarrow \log p_\theta (x) = \sum_{t \geq 0} (\log P(s_{t+1} \mid s_t, a_t) + \log \pi_\theta (a_t \mid s_t))
\]
Policy Gradients: REINFORCE Algorithm

Goal: Train a network \(\pi_{\theta}(a \mid s) \) that takes state as input, gives distribution over which action to take in that state

Define: Let \(x = (s_0, a_0, s_1, a_1, \ldots) \) be the sequence of states and actions we get when following policy \(\pi_{\theta} \). It’s random: \(x \sim p_{\theta}(x) \)

\[
p_{\theta}(x) = \prod_{t \geq 0} P(s_{t+1} \mid s_t, a_t) \pi_{\theta}(a_t \mid s_t) \Rightarrow \log p_{\theta}(x) = \sum_{t \geq 0} (\log P(s_{t+1} \mid s_t, a_t) + \log \pi_{\theta}(a_t \mid s_t))
\]

Transition probabilities of environment. We can’t compute this.
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_{\theta}(a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_{θ}. It’s random: $x \sim p_{\theta}(x)$

$$p_{\theta}(x) = \prod_{t \geq 0} P(s_{t+1} \mid s_t, a_t)\pi_{\theta}(a_t \mid s_t) \Rightarrow \log p_{\theta}(x) = \sum_{t \geq 0} \left(\log P(s_{t+1} \mid s_t, a_t) + \log \pi_{\theta}(a_t \mid s_t) \right)$$

Transition probabilities of environment. We can’t compute this.
Action probabilities of policy. We can are learning this!
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta (a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, ...)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta(x)$

$$p_\theta(x) = \prod_{t \geq 0} P(s_{t+1} \mid s_t, a_t) \pi_\theta(a_t \mid s_t) \Rightarrow \log p_\theta(x) = \sum_{t \geq 0} (\log P(s_{t+1} \mid s_t, a_t) + \log \pi_\theta(a_t \mid s_t))$$

$$\frac{\partial}{\partial \theta} \log p_\theta(x)$$

Transition probabilities of environment. We can’t compute this. Action probabilities of policy. We can are learning this!
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta(a \mid s)$ that takes state as input, gives distribution over which action to take in that state.

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta(x)$.

$$p_\theta(x) = \prod_{t \geq 0} P(s_{t+1} \mid s_t, a_t)\pi_\theta(a_t \mid s_t) \Rightarrow \log p_\theta(x) = \sum_{t \geq 0} \left(\log P(s_{t+1} \mid s_t, a_t) + \log \pi_\theta(a_t \mid s_t) \right)$$

$$\frac{\partial}{\partial \theta} \log p_\theta(x) = \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta(a_t \mid s_t)$$

Transition probabilities of environment. We can’t compute this.
Action probabilities of policy. We can learn this!
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta (a \mid s)$ that takes state as input, gives distribution over which action to take in that state.

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta (x)$

$$\frac{\partial}{\partial \theta} \log p_\theta (x) = \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t)$$
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta (a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, ...)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta (x)$

Expected reward under π_θ:

$$J(\theta) = \mathbb{E}_{x \sim p_\theta} [f (x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta} \left[f (x) \frac{\partial}{\partial \theta} \log p_\theta (x) \right]$$

$$\frac{\partial}{\partial \theta} \log p_\theta (x) = \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t)$$
Policy Gradients: REINFORCE Algorithm

Goal: Train a network \(\pi_\theta (a \mid s) \) that takes state as input, gives distribution over which action to take in that state

Define: Let \(x = (s_0, a_0, s_1, a_1, \ldots) \) be the sequence of states and actions we get when following policy \(\pi_\theta \). It’s random: \(x \sim p_\theta (x) \)

Expected reward under \(\pi_\theta \):

\[
J(\theta) = \mathbb{E}_{x \sim p_\theta} [f(x)]
\]

\[
\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta} \left[f(x) \frac{\partial}{\partial \theta} \log p_\theta (x) \right] = \mathbb{E}_{x \sim p_\theta} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t) \right]
\]

\[
\frac{\partial}{\partial \theta} \log p_\theta (x) = \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t)
\]
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta (a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta (x)$

Expected reward under π_θ:

$$ J(\theta) = \mathbb{E}_{x \sim p_\theta} [f(x)] $$

$$ \frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t) \right] $$
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta (a \mid s)$ that takes state as input, gives distribution over which action to take in that state.

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta (x)$

Expected reward under π_θ:

$$J(\theta) = \mathbb{E}_{x \sim p_\theta} [f(x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t) \right]$$

Sequence of states and actions when following policy π_θ
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta (a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta (x)$

Expected reward under π_θ:

$$J(\theta) = \mathbb{E}_{x \sim p_\theta} [f(x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t) \right]$$

Reward we get from state sequence x
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_{\theta}(a \mid s)$ that takes state as input, gives distribution over which action to take in that state.

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_{θ}. It’s random: $x \sim p_{\theta}(x)$

Expected reward under π_{θ}:

$$J(\theta) = \mathbb{E}_{x \sim p_{\theta}}[f(x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_{\theta}} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_t \mid s_t) \right]$$

Gradient of predicted action scores with respect to model weights. Backprop through model π_{θ}!
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta (a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta (x)$

Expected reward under π_θ:

$$J(\theta) = \mathbb{E}_{x \sim p_\theta} [f(x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t | s_t) \right]$$
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta (a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, ...)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta (x)$

Expected reward under π_θ:

$$J(\theta) = \mathbb{E}_{x \sim p_\theta} [f(x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t) \right]$$

1. Initialize random weights θ
2. Collect trajectories x and rewards $f(x)$ using policy π_θ
3. Compute $dJ/d\theta$
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta (a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, ...)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta (x)$

Expected reward under π_θ:

$$J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t) \right]$$

1. Initialize random weights θ
2. Collect trajectories x and rewards $f(x)$ using policy π_θ
3. Compute $dJ/d\theta$
4. Gradient ascent step on θ
5. GOTO 2
Policy Gradients: REINFORCE Algorithm

Goal: Train a network $\pi_\theta(a \mid s)$ that takes state as input, gives distribution over which action to take in that state

Define: Let $x = (s_0, a_0, s_1, a_1, \ldots)$ be the sequence of states and actions we get when following policy π_θ. It’s random: $x \sim p_\theta(x)$

Expected reward under π_θ:

$$J(\theta) = \mathbb{E}_{x \sim p_\theta}[f(x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta}\left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta(a_t \mid s_t)\right]$$

Intuition:
When $f(x)$ is high: Increase the probability of the actions we took.
When $f(x)$ is low: Decrease the probability of the actions we took.
So far: Q-Learning and Policy Gradients

Q-Learning: Train network $Q_{\theta}(s, a)$ to estimate future rewards for every (state, action) pair. Use Bellman Equation to define loss function for training Q:

$$y_{s,a,\theta} = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q(s', a'; \theta) \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

$$L(s, a) = (Q(s, a; \theta) - y_{s,a,\theta})^2$$

Policy Gradients: Train a network $\pi_{\theta}(a \mid s)$ that takes state as input, gives distribution over which action to take in that state. Use REINFORCE Rule for computing gradients:

$$J(\theta) = \mathbb{E}_{x \sim p_{\theta}} [f(x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_{\theta}} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_t \mid s_t) \right]$$
So far: Q-Learning and Policy Gradients

Q-Learning: Train network $Q_\theta(s, a)$ to estimate future rewards for every (state, action) pair.

Use **Bellman Equation** to define loss function for training Q:

$$y_{s,a,\theta} = \mathbb{E}_{r,s'} \left[r + \gamma \max_{a'} Q(s', a'; \theta) \right]$$

Where $r \sim R(s, a), s' \sim P(s, a)$

$$L(s, a) = (Q(s, a; \theta) - y_{s,a,\theta})^2$$

Policy Gradients: Train a network $\pi_\theta(a \mid s)$ that takes state as input, gives distribution over which action to take in that state. Use **REINFORCE Rule** for computing gradients:

$$J(\theta) = \mathbb{E}_{x \sim p_\theta} [f(x)]$$

$$\frac{\partial J}{\partial \theta} = \mathbb{E}_{x \sim p_\theta} \left[f(x) \sum_{t \geq 0} \frac{\partial}{\partial \theta} \log \pi_\theta (a_t \mid s_t) \right]$$

Improving policy gradients: Add **baseline** to reduce variance of gradient estimator.
Other approaches

Actor-Critic: Train an *actor* that predicts actions (like policy gradient) and a *critic* that predicts the future rewards we get from taking those actions (like Q-Learning)

Other approaches

Actor-Critic: Train an *actor* that predicts actions (like policy gradient) and a *critic* that predicts the future rewards we get from taking those actions (like Q-Learning)

Model-Based: Learn a model of the world’s state transition function \(P(s_{t+1}|s_t, a_t) \) and then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a reward function that they seem to be optimizing, then use RL on that reward function

Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake

Other approaches

Actor-Critic: Train an *actor* that predicts actions (like policy gradient) and a *critic* that predicts the future rewards we get from taking those actions (like Q-Learning)

Model-Based: Learn a model of the world’s state transition function $P(s_{t+1}|s_t, a_t)$ and then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a function to imitate what they do (supervised learning approach)
Other approaches

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that predicts the future rewards we get from taking those actions (like Q-Learning)

Model-Based: Learn a model of the world’s state transition function \(P(s_{t+1}|s_t, a_t) \) and then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a reward function that they seem to be optimizing, then use RL on that reward function

Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake

Other approaches

Actor-Critic: Train an *actor* that predicts actions (like policy gradient) and a *critic* that predicts the future rewards we get from taking those actions (like Q-Learning)

Model-Based: Learn a model of the world’s state transition function $P(s_{t+1}|s_t, a_t)$ and then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a reward function that they seem to be optimizing, then use RL on that reward function

Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake

Case Study: Playing Games

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019
Case Study: Playing Games

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol

AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019
Case Study: Playing Games

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol

AlphaGo Zero: (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie

Alpha Zero: (December 2018)
- Generalized to other games: Chess and Shogi

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019
Case Study: Playing Games

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol

AlphaGo Zero: (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie

Alpha Zero: (December 2018)
- Generalized to other games: Chess and Shogi

MuZero: (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019
Case Study: Playing Games

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol

AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi

MuZero (November 2019)
- Plans through a learned model of the game

November 2019: Lee Sedol announces retirement

“With the debut of AI in Go games, I've realized that I'm not at the top even if I become the number one through frantic efforts”

“Even if I become the number one, there is an entity that cannot be defeated”

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

Quotes from: https://en.yna.co.kr/view/AEN20191127004800315
Image of Lee Sedol is licensed under CC BY 2.0
More Complex Games

StarCraft II: AlphaStar
(October 2019)

Dota 2: OpenAI Five (April 2019)
Dota 2 with Large Scale Deep Reinforcement Learning
Reinforcement Learning: Interacting With World

Normally we use RL to train **agents** that interact with a (noisy, nondifferentiable) **environment**
Reinforcement Learning: Stochastic Computation Graphs

Can also use RL to train neural networks with **nondifferentiable** components!
Can also use RL to train neural networks with **nondifferentiable** components!

Example: Small “routing” network sends image to one of K networks
Reinforcement Learning: Stochastic Computation Graphs

Can also use RL to train neural networks with **nondifferentiable** components!

Example: Small “routing” network sends image to one of \(K \) networks

Which network to use?

\[
P(\text{orange}) = 0.2 \\
P(\text{blue}) = 0.1 \\
P(\text{green}) = 0.7
\]
Reinforcement Learning: Stochastic Computation Graphs

Can also use RL to train neural networks with **nondifferentiable** components!

Example: Small “routing” network sends image to one of K networks

Which network to use?
- $P(\text{orange}) = 0.2$
- $P(\text{blue}) = 0.1$
- $P(\text{green}) = 0.7$

Sample:
- Green
Can also use RL to train neural networks with \textbf{nondifferentiable} components!

Example: Small “routing” network sends image to one of K networks

- $P(\text{orange}) = 0.2$
- $P(\text{blue}) = 0.1$
- $P(\text{green}) = 0.7$

Sample: Green

Loss

Reward = $-\text{loss}$
Reinforcement Learning: Stochastic Computation Graphs

Can also use RL to train neural networks with **nondifferentiable** components!

Example: Small “routing” network sends image to one of K networks

- CNN
- CNN
- CNN
- CNN

Which network to use?
- \(P(\text{orange}) = 0.2 \)
- \(P(\text{blue}) = 0.1 \)
- \(P(\text{green}) = 0.7 \)

Sample: **Green**

Loss

\[\text{Reward} = -\text{loss} \]
Recall: Image captioning with attention. At each timestep use a weighted combination of features from different spatial positions (Soft Attention)

Recall: Image captioning with attention. At each timestep use a weighted combination of features from different spatial positions (Soft Attention)

Hard Attention: At each timestep, select features from exactly one spatial location. Train with policy gradient.

Summary: Reinforcement Learning

RL trains **agents** that interact with an **environment** and learn to maximize **reward**

Q-Learning: Train network $Q_\theta(s, a)$ to estimate future rewards for every (state, action) pair. Use **Bellman Equation** to define loss function for training Q

Policy Gradients: Train a network $\pi_\theta(a \mid s)$ that takes state as input, gives distribution over which action to take in that state. Use **REINFORCE Rule** for computing gradients
Next Time:
Course Recap
Open Problems in Computer Vision