Lecture 21:
Reinforcement Learning
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Assignment 6: Generative Models

Generative Adversarial Networks
Variational Autoencoders

Due on Wednesday, 12/9 11:59pm EST
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So far: Supervised Learning

Supervised Learning

Classification

Data: (x, y)

X is data, y is label

Goal: Learn a function to map x ->vy

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

This image is CCO public domain
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https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

So far: Unsupervised Learning

Unsupervised Learning Foat ] :
eature Learning

(e.g. autoencoders)
Data: x

Reconstructed data
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Just data, no labels! L2 Loss function:
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structure of the data nput data } Encoder: 4-iayer conv
Decoder Decoder: 4-layer upconv
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Today: Reinforcement Learning

Problems where an Agent Environment
agent performs actions ﬂ
in environment, and E‘ ~ @F
receives rewards —
M A
Goal: Learn how to =y
take actions that ggl
maximize reward Reward

Earth photo is in the public domain
Robot image is in the public domain

Justin Johnson Lecture 21 -5 November 30, 2020


https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg

Overview

- What is reinforcement learning?

- Algorithms for reinforcement learning
- Q-Learning
- Policy Gradients
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Overview

- What is reinforcement learning?

- Algorithms for reinforcement learning
- Q-Learning
- Policy Gradients

This is just a taste! Can easily teach entire courses on (deep) RL:
- UMich EECS 598-003

- Berkeley CS 285

- Stanford CS 234

- CMU 10-703
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https://ece.engin.umich.edu/wp-content/uploads/2020/03/EECS_598_Reinforcement.pdf
http://rail.eecs.berkeley.edu/deeprlcourse/
http://web.stanford.edu/class/cs234/index.html
https://cmudeeprl.github.io/703website/

Reinforcement Learning

Environment
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Reinforcement Learning

Environment

State The agent sees a state; may
St be noisy or incomplete
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Reinforcement Learning

Environment

State ] Action| The makes an action
St ay based on what it sees
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Reinforcement Learning

Environment

State l Actionl Reward Reward tells the agent
St ay re J how well it is doing
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Reinforcement Learning
Action causes change

to environment

Environment — Environment

State l Actionl Reward
St dy Iy

Agent learns
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Reinforcement Learning Process repeats

Environment — Environment —
State l Actionl Reward State I Action[ Reward
St d¢ Iy St+1 disq )
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Example: Cart-Pole Problem

Objective: Balance a pole
on top of a movable cart

State: angle, angular speed,
position, horizontal velocity

Action: horizontal force
applied on the cart

M F
Reward: 1 at each time
J77777777777777777777777777777 step if the pole is upright

CCO public domain
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https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Example: Robot Locomotion

Figure from: Schulman et al, “High-Dimensional Continuous
Control Using Generalized Advantage Estimation”, ICLR 2016

Justin Johnson

Lecture 21 - 15

Objective: Make the
robot move forward

State: Angle, position,
velocity of all joints

Action: Torques applied
on joints

Reward: 1 at each time
step upright + forward
movement

November 30, 2020



Example: Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurlPS Deep Learning Workshop, 2013
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Example: Go

A BCDEFGH )] KLMNUOPOQRST

-
o

[y
o

o IS ; o Objective: Win the game!
s | @TOTO ‘e X

#7e ” State: Position of all pieces
P ii

" o Action: Where to put the

8 8 next piece down

: _ & - P

: /\\ ) ,_ :

4 I ()/)8‘ 4 Reward: On last turn: 1 if

> TOT| , you won, 0 if you lost

A BCDEFGH )] KLMNUOPOQRST

This image is CCO public domain
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Reinforcement Learning vs Supervised Learning

Environment — Environment —
State l Actionl Reward State I Action[ Reward
St d I v St+1 di+1 M41 v
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Reinforcement Learning vs Supervised Learning

Dataset — Dataset —
nput ] Predictionl Loss Inputl Predictionl Loss
X Yt Lt v Xet Yis1 I-t+1 v

Why is RL different from normal supervised learning?
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State l Actionl Reward State I Action[ Reward
St d I v St+1 di+1 M41 v

Stochasticity: Rewards and state transitions may be random
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Reinforcement Learning vs Supervised Learning

Environment — Environment —
State Reward State I Action[
St S| St+1 di+1

Credit assighment: Reward r, may not directly depend on action a,

Justin Johnson Lecture 21 - 21 November 30, 2020



Reinforcement Learning vs Supervised Learning

Environment — Environment —
State l Actionl Reward State I Action[ Reward
St d I v St+1 di+1 M41 v

Nondifferentiable: Can’t backprop through world; can’t compute dr,/da,
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Reinforcement Learning vs Supervised Learning

Environment Environment —
State Reward Action Reward
St S| di+1 LTS
— —p

Nonstationary: What the agent experiences depends on how it acts
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Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (S5, 4,R,P,y)

S: Set of possible states

A: Set of possible actions

R: Distribution of reward given (state, action) pair

P: Transition probability: distribution over next state given (state, action)

y: Discount factor (tradeoff between future and present rewards)

Markov Property: The current state completely characterizes the state of the
world. Rewards and next states depend only on current state, not history.
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Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (S5, 4,R,P,y)

S: Set of possible states
A: Set of possible actions

R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)

y: Discount factor (tradeoff between future and present rewards)

Agent executes a policy i giving distribution of actions conditioned on states
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Markov Decision Process (MDP)

Mathematical formalization of the RL problem: A tuple (S5, 4,R,P,y)

S: Set of possible states
A: Set of possible actions

R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)

y: Discount factor (tradeoff between future and present rewards)

Agent executes a policy i giving distribution of actions conditioned on states
Goal: Find policy T that maximizes cumulative discounted reward: Zt )/t‘rt
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Markov Decision Process (MDP)

- At time step t=0, environment samples initial state sq ~ p(sp)
- Then, for t=0 until done:

Agent selects action a; ~ w(a | s;)
Environment samples reward 1 ~ R(r | s¢, a;)

Environment samples next state s;.1 ~ P(s | ¢, a;)
Agent receives reward r, and next state s, ,

Justin Johnson Lecture 21 - 27
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A simple MDP: Grid World

Actions: States Reward
1. Right
* Set a negative
2. LEft 7, ”
* reward” for
3. Up each transition
4. Down (e.g. 7 =-1)

Objective: Reach one of the terminal states in as few moves as possible
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A simple MDP: Grid World

Bad policy Optimal Policy
. EIEAE: ol K
00 e B
1 1 $ 1 S U SO |
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Finding Optimal Policies

Goal: Find the optimal policy T that maximizes (discounted) sum of rewards.
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Finding Optimal Policies

Goal: Find the optimal policy T that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards
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Finding Optimal Policies

Goal: Find the optimal policy T that maximizes (discounted) sum of rewards.
Problem: Lots of randomness! Initial state, transition probabilities, rewards

Solution: Maximize the expected sum of rewards

p(so)
m* = arg max E zy e | a, ~m(a|s;)
T
-120 St+1 ~ P(s | st ar)
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Value Function and Q Function

Following a policy m produces sample trajectories (or paths) s, ag, g, S1, a1, 1, -
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Value Function and Q Function

Following a policy m produces sample trajectories (or paths) s, ag, g, S1, a1, 1, -

How good is a state? The value function at state s, is the expected cumulative reward
from following the policy from state s:

VT(s) = E Z)/trt | S = s, 7

Lt=0
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Value Function and Q Function

Following a policy m produces sample trajectories (or paths) s, ag, g, S1, a1, 1, -

How good is a state? The value function at state s, is the expected cumulative reward
from following the policy from state s:

VT(s) = E zyrt|50—5ﬂ

Lt=0

How good is a state-action pair? The Q function at state s and action a, is the expected
cumulative reward from taking action a in state s and then following the policy:

Q"(s,@) =E|) y'relso =50 =an

Lt=20
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Bellman Equation

Optimal Q-function: Q’(s, a) is the Q-function for the optimal policy 7°
It gives the max possible future reward when taking action a in state s:

t _ _
2)/ | s =s,a0=am
t=0

Q*(s,a) = max E
T
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Bellman Equation

Optimal Q-function: Q’(s, a) is the Q-function for the optimal policy 7°
It gives the max possible future reward when taking action a in state s:

t _ _
2)/ | s =s,a0=am

t=0
Q* encodes the optimal policy: m*(s) = argmax Q(s,a’)
al

Q*(s,a) = max E
T
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Bellman Equation

Optimal Q-function: Q’(s, a) is the Q-function for the optimal policy 7°
It gives the max possible future reward when taking action a in state s:

t _ _
2)/ | s =s,a0=am

t=0
Q* encodes the optimal policy: m*(s) = argmax Q(s,a’)
al

Q*(s,a) = max E
T

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al’
Where r~R(s,a),s ~P(s, a)
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Bellman Equation

Optimal Q-function: Q’(s, a) is the Q-function for the optimal policy 7°
It gives the max possible future reward when taking action a in state s:

t _ _
2)/ | s =s,a0=am

t=0
Q* encodes the optimal policy: m*(s) = argmax Q(s,a’)
al

Q*(s,a) = max E
T

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al’
Where r~R(s,a),s ~P(s, a)

Intuition: After taking action a in state s, we get reward r and move to a new
state s’. After that, the max possible reward we can get is max Q*(s’, a’)
al
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Solving for the optimal policy: Value Iteration

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
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Solving for the optimal policy: Value Iteration

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
Start with a random Q, and use the Bellman Equation as an update rule:

Qi+1(S; Cl) — IE‘l”,Sl [7" + 14 n}lalx Qi(S’; a,)]
Where r~R(s,a),s'~P(s, a)
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Solving for the optimal policy: Value Iteration

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
Start with a random Q, and use the Bellman Equation as an update rule:

Qi+1(S; Cl) — IE‘l”,Sl [7" + 14 n}lalx Qi(S’; a,)]
Where r~R(s,a),s'~P(s, a)

Amazing fact: Q, convergesto Q" asi — o
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Solving for the optimal policy: Value Iteration

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
Start with a random Q, and use the Bellman Equation as an update rule:

Qi+1(s,a) = Ey [r +y max Q(s’, a’)]
Where r~R(s,a),s'~P(s, a)

Amazing fact: Q, convergesto Q" asi — o
Problem: Need to keep track of Q(s, a) for all (state, action) pairs — impossible if infinite
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Solving for the optimal policy: Value Iteration

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q"
Start with a random Q, and use the Bellman Equation as an update rule:

Qi+1(s,a) = Ey [r +y max Q(s’, a’)]
Where r~R(s,a),s'~P(s, a)

Amazing fact: Q, convergesto Q" asi — o
Problem: Need to keep track of Q(s, a) for all (state, action) pairs — impossible if infinite
Solution: Approximate Q(s, a) with a neural network, use Bellman Equation as loss!
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Solving for the optimal policy: Deep Q-Learning

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +y max Q*(s’,a’) ]
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)

Use the Bellman Equation to tell what Q should output for a given state and action:

Vsa,0 = IEr,st [T Ty n}lalx Q(S’» a’; 0)]
Where r~R(s,a),s'~P(s,a)

Justin Johnson Lecture 21 - 46 November 30, 2020



Solving for the optimal policy: Deep Q-Learning

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)

Use the Bellman Equation to tell what Q should output for a given state and action:

Vsa,0 = IEr,st [T Ty n}lalx Q(S’» a’; 9)]
Where r~R(s,a),s'~P(s,a)

Use this to define the loss for training Q: L(s,a) = (Q(s, a;8) — ys,a,9)2
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Solving for the optimal policy: Deep Q-Learning
Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +y max Q*(s’,a’) ]
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)

Use the Bellman Equation to tell what Q should output for a given state and action:

Vsa,0 = IEr,st [T Ty n}lalx Q(S’» a’; 0)]
Where r~R(s,a),s'~P(s,a)

2
Use this to define the loss for training Q:  L(s,a) = (Q(s, & 0) — Ysa0)
Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights 0!
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Solving for the optimal policy: Deep Q-Learning

Bellman Equation: Q" satisfies the following recurrence relation:
Q*(s,a) = E,g [r +ymaxQ*(s’,a’) ]
al
Where r~R(s,a),s'~P(s,a)

Train a neural network (with weights 8) to approximate Q™: Q*(s,a) = Q(s,a; 0)

Use the Bellman Equation to tell what Q should output for a given state and action:
Vs,a,0 = Ergr [T Ty max Q(s',a’; 0)]
a
Where r~R(s,a),s'~P(s,a)

2
Use this to define the loss for training Q:  L(s,a) = (Q(s, & 0) — Ysa0)
Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights 0!
Problem: How to sample batches of data for training?
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Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurlPS Deep Learning Workshop, 2013
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Mnih et al, “Playing Atari with Deep Reinforcement
Learning”, NeurlPS Deep Learning Workshop, 2013

Case Study: Playing Atari Games

Network output:

Q-values for all actions With 4 actions: last
Q(s,a;0) -
FC-A (Q-values) layer gives values
Neural network
Wlth WEIghtS e Q(Stl al)l Q(Str aZ);
Q(s, as), Q(s,a,)

L= == L] L= == L] L= == L] L= == L]

Network input: state s,: 4x84x84 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)
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https://www.youtube.com/watch?v=V1eYniJORnk
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

Q-Learning

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions
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Q-Learning vs Policy Gradients

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network mg(a | s) that takes state as input, gives distribution over
which action to take in that state

Justin Johnson Lecture 21 - 54 November 30, 2020



Q-Learning vs Policy Gradients

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network mg(a | s) that takes state as input, gives distribution over
which action to take in that state

Objective function: Expected future rewards when following policy mg:

J(0) = Er~p9 [2 Vt Tt ]

t=0

Find the optimal policy by maximizing: 6* = arg m@ax](@)
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Policy Gradients

Objective function: Expected future rewards when following policy mg:

J(0) = IEr~p9 lE Vt Tt ]

t=0

Find the optimal policy by maximizing: 8* = arg mgx](@) (Use gradient ascent!)

Problem: Nondifferentiability! Don’t know how to compute g—é
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Policy Gradients

Objective function: Expected future rewards when following policy mg:

J(0) = ]ET'NPQ lE Vt Tt ]

t=0

Find the optimal policy by maximizing: 6* = arg mgx](@)

Problem: Nondifferentiability! Don’t know how to compute g—é

d]

General formulation: J(6) = E,., [f(x)] Wantto compute 0
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute Z_é
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute 9

00
9 0

a6~ 99

0
Eepg F 0] = 5 | po(Of()dx
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute 9

00
d d 0 0
L = B[] = o J poCoreade= | £e0Jpacods
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute 9

00
d d 0 0
L = B[] = o J poCoreade= | £e0Jpacods

d
%108 pg (x)
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute Z_é
a] 0 9, 0
5= 5 Benalf @1 = 35 | paGFGx = | G Z5meCIa
0 0
%log po(x) = > () 06 po (x)

Justin Johnson Lecture 21 - 62 November 30, 2020



Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute g—é
0 0 9, 0
L = B[] = o J poCoreade= | £e0Jpacods
0 d 0
Y —logpg(x) = () 96 po(x) = 55 Pe (x) = pg (X) 10gP9 (x)
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute g_é
a] 0 9, 0
5= 5 Benalf @1 = 35 | paGFGx = | G Z5meCIa

0 1 0 0 0
—1] — _ — —1]
EY: nge(x) pe(x) PY: Pe(x) = PY: Pe(x) Pe(x) PY: nge(x)

0 0
5= | £ Tl0gpo) d
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Policy Gradients: REINFORCE Algorithm

General formulation: J(6) = E,., [f(x)] Wantto compute Z_é
0 0 0
o = el = 35 [ pCOrCIE= [ 700 SppoCs

d 1 o0 d 0
08108299(96) = )aepe(x) agpe(x) —Pe(x) IOgPQ(X)

5= | F00ws00 Jl0pu() dx = By, [£(0)37l08 RGO

Approximate the expectation via sampling!
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po() = | | PCsesal sadma(ac |50

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po() = | [ P(seial se.admo(ar | 5) = logpe(x) = ) (log P(stralse, ar) +logmo(arlse)
t=0 t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

pe(x) = HP(St+1| s, ag)mg(ag | s¢) = logpe(x) = 2(108P(5t+1|5t» at) +logmg(at|se))
t=0 t=0
Transition probabilities
of environment. We
can’t compute this.
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

pe(x) = HP(St+1| S, ag)mg(as | s¢) = logpg(x) = 2(108P(5t+1|5t» ar) +logmg(aslse))
t=0 t=0
Transition probabilities Action probabilities
of environment. We of policy. We can
can’t compute this. are learning this!
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po(x) = HP(St+1| Se, ap)mg(as | s¢) = logpg(x) = 2(108P(5t+1|5t» ar) +logmg(ac|s;))

t=0 t=0
Transition probabilities Action probabilities
%log Po (x) " of environment. We of policy. We can
can’t compute this. are learning this!
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

po(x) = HP(St+1| Se, ap)mg(as | s¢) = logpg(x) = 2(108P(5t+1|5t» ar) +logmg(ac|s;))
t=0 t>0

Transition probabilities Action probabilities
Y: = logpg(x) = z %log g (at|St) of environment. We of policy. We can
t=0 can’t compute this. are learning this!
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

0

d
%108196 (x) = %108 g (ag|se)

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y: 660 logpg(x) = z %log mg(a;|s;)
J(6) = x~p9[f<x>]

aJ

% Ex-pg f(X) 108P9(x)
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y: 660 logpg(x) = Z@log mg(a;|s;)

J(6) = x~p9[f<x>] |

aJ

% x~p9 f(x) lngg (x) x~pg f(x)z logn@ (atlst)
t>0 i
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y:

J(8) = Exp,lf (x)]

; _
% = Eyp, f(x) z log g (ac|se)

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y:

J(8) = Exp,ylf (x)]

; _
% — E f(x) 2 —logmg(a|se)

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y:

J(8) = IEvap_g [f (x)]

]

% — IEvapg _log g (atlst)

a0

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Expected reward under 1y:

J(8) = IEvap_g [f (x)]

d]
90 — IEvapg f(x) 2
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

1. Initialize random weights O
Expected reward under 1g: 5

J(8) = x~p9 [f (o))

; _
% = Ex~p, f(x) z log me(at|st)

t=0
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)
1. Initialize random weights 6

Expected reward under 7p: 2. Collect trajectories x and
J(0) = IEvap_g [f (x)] _ rewards f(x) using policy g
d] 0 3. Compute dJ/d6

90 = Ex-p, f(x) ; ET) log me(a|st)

Justin Johnson Lecture 21 - 80 November 30, 2020



Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)
1. Initialize random weights 6

Expected reward under my: 2. Collect trajectories x and
J(0) = IEvap_g [f (x)] _ rewards f(x) using policy g
d] 0 3. Compute dJ/d6
% = IExNPQ f(X) z % log g (Clt|5t) 4. Gradient ascent step on 6

: t=0 1 5. GOTO 2
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Policy Gradients: REINFORCE Algorithm

Goal: Train a network gy (a | s) that takes state as input,
gives distribution over which action to take in that state

Define: Let x = (¢, ag, S1, a4, ... ) be the sequence of states and
actions we get when following policy mg. It’s random: x~pg(x)

Intuition:

Expected reward under my: When f(x) is high: Increase the
J (@) = IEXNP@ [f(x)] probability of the actions we took.
0] - P 1 When f(x) is low: Decrease the

_ robability of the actions we took.
BV IEvapg f(X) z —log g (atlst) P y
00 e 00

u > _
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So far: Q-Learning and Policy Gradients

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

Vsad = Erg [r + ymaxQ(s’,a’; 9)] Where r~R(s,a),s'~P(s,a)
al
2
L(s,a) = (Q(s,a;0) — Ys40)

Policy Gradients: Train a network mg(a | s) that takes state as input, gives distribution over
which action to take in that state. Use REINFORCE Rule for computing gradients:

J(6) = Exepy[f ()] 2 = Eypy |f(6) Teso 35 10g mo (aclsy))|
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So far: Q-Learning and Policy Gradients

Q-Learning: Train network Qg (s, a) to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

Vsad = Erg [r + ymaxQ(s’,a’; 9)] Where r~R(s,a),s'~P(s,a)
al
2
L(s,a) = (Q(s,a;0) — Ys40)

Policy Gradients: Train a network mg(a | s) that takes state as input, gives distribution over
which action to take in that state. Use REINFORCE Rule for computing gradients:

J(6) = Exepy[f ()] 2 = Eypy |f(6) Teso 35 10g mo (aclsy))|

Improving policy gradients: Add baseline to reduce variance of gradient estimator
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Other approaches

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)

Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016
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Other approaches

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)

Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function P(s;41|S¢, a¢) and
then use planning through the model to make decisions
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Other approaches

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)

Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function P(s;41|S¢, a¢) and
then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)
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Other approaches

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)

Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function P(s;41|S¢, a¢) and
then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function

Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000
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Other approaches

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that
predicts the future rewards we get from taking those actions (like Q-Learning)

Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al,
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function P(s;41|S¢, a¢) and
then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function

Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake

Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurlPS 2016
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Case Study: Playing Games

AlphaGo: (January 2016) ABCDEFGHJKLMNOPQRST

19 19
. : e
- Used imitation learning + tree search + RL S p s
. . \_/ N \%
- Beat 18-time world champion Lee Sedol e @O0 16
14 . 14
13 13
12 12
11 o 11
10 10
9 9
8 8
7 7
c OOS—1@ 6
5 () D, 5
4 ¥ (- 4
3 (5 C 3
2 () 2
1 1

A B CDEVF GH J] KLMNUOPIQRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image  CC0 public domain
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https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Case Study: Playing Games

AlphaGo: (January 2016) ABCDEFGHJKLMNOPQRST

- Used imitation learning + tree search + RL v S C o
- Beat 18-time world champion Lee Sedol o T @TOTO )9 e
AlphaGo Zero (October 2017) 14— 14
- Simplified version of AlphaGo e e
- No longer using imitation learning 10 b 10
- Beat (at the time) #1 ranked Ke Jie . .
: I 2
g Sl S< ;
: oit SRee I

A B CDEVF GH J] KLMNUOPIQRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image  CC0 public domain
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Case Study: Playing Games

AlphaGo: (January 2016) ABCDEFGHJKLMNOPQRST

- Used imitation learning + tree search + RL - e C .
- Beat 18-time world champion Lee Sedol e @O0 )9 16
AlphaGo Zero (October 2017) 14— 14
- Simplified version of AlphaGo 1 =
- No longer using imitation learning 4 i
- Beat (at the time) #1 ranked Ke Jie . .
Alpha Zero (December 2018) . c ’
' : 5 I .

- Generalized to other games: Chess and Shogi ; I /{}68: °
; \ L ;

A B CDEVF GH J] KLMNUOPIQRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image  CC0 public domain

Justin Johnson Lecture 21 - 92 November 30, 2020


https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Case Study: Playing Games

AlphaGo: (January 2016) ABCDEFGHJKLMNOPQRST

- Used imitation learning + tree search + RL o S P o
- Beat 18-time world champion Lee Sedol e * \)9 e
AlphaGo Zero (October 2017) 14— 14
- Simplified version of AlphaGo e e
- No longer using imitation learning 10 b 10
- Beat (at the time) #1 ranked Ke Jie . .
Alpha Zero (December 2018) . C .
- Generalized to other games: Chess and Shogi ; ®, e! @ ;
MuZero (November 2019) : (JDA CS&‘ :
- Plans through a learned model of the game 1 1

A B CDEVF GH J] KLMNUOPIQRST

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018

Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019 This image  CC0 public domain
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Case Study: Playing Games November 2019: Lee Sedol

AIphaGo: (January 2016) announces retirement

- Used imitation learning + tree search + RL

- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)

- Simplified version of AlphaGo

- No longer using imitation learning

- Beat (at the time) #1 ranked Ke Jie

Alpha Zero (December 2018)

- Generalized to other games: Chess and Shogi
MuZero (November 2019)

- Plans through a learned model of the game

“With the debut of Al
» in Go games, I've
realized that I'm not at
the top even if |
become the number
one through frantic
efforts”
“Even if | become the
number one, there is
an entity that cannot
be defeated”

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016

Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017

Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

Quotes from: https://en.yna.co.kr/view/AEN20191127004800315
Image of Lee Sedol is licensed under CC BY 2.0
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https://en.yna.co.kr/view/AEN20191127004800315
https://commons.wikimedia.org/wiki/File:Lee_Se-Dol_-_2016_(cropped).jpg
https://creativecommons.org/licenses/by/2.0/deed.en

More Complex Games

StarCraft Il: AlphaStar

(October 2019) Dota 2: OpenAl Five (April 2019)
Vinyals et al, “Grandmaster Dota 2 with Large Scale Deep
level in StarCraft Il using Reinforcement Learning
multi-agent reinforcement https://arxiv.org/abs/1912.06680

learning”, Science 2018
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https://arxiv.org/abs/1912.06680

Reinforcement Learning: Interacting With World

7 Aion N\

Environment

Normally we use RL to train
agents that interact with a (noisy,
nondifferentiable) environment
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Reinforcement Learning: Stochastic Computation Graphs

Can also use RL to train neural networks with nondifferentiable components!
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Reinforcement Learning: Stochastic Computation Graphs

Can also use RL to train neural networks with nondifferentiable components!

Ill

Example: Small “routing” network sends image to one of K networks

CNN
\
CNN e
—

CNN
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Reinforcement Learning: Stochastic Computation Graphs
Can also use RL to train neural networks with nondifferentiable components!

Example: Small “routing” network sends image to one of K networks

Which network CNN
T to use?
/ .

P(green) = 0.7

CNN
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Reinforcement Learning: Stochastic Computation Graphs
Can also use RL to train neural networks with nondifferentiable components!

Example: Small “routing” network sends image to one of K networks

Which network CI
T touse? sample:
CNN | P(orange)=0.2 '
P(blue) = 0.1 Green |CNN
/

P(green) = 0.7

CNN
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Reinforcement Learning: Stochastic Computation Graphs

Can also use RL to train neural networks with nondifferentiable components!

Ill

Example: Smal

/

CNN

\

Which network
to use?

P(blue) = 0.1
P(green) = 0.7

Sample:
Green

routing” network sends image to one of K networks

CNN

CNN

CNN Loss
Reward = -loss

Justin Johnson
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Reinforcement Learning: Stochastic Computation Graphs

Can also use RL to train neural networks with nondifferentiable components!

Example: Smal

Justin Johnson

Ill

routing” network sends image to one of K networks

CNN

Update routing net with policy gradient

Which network
to use?

P(blue) = 0.1
P(green) = 0.7

Sample:
Green

CNN

CNN

CNN Loss
Reward = -loss

Lecture 21 - 102
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Stochastic Computation Graphs: Attention

Recall: Image captioning with attention. At each timestep use a
weighted combination of features from different spatial positions

(Soft Attention)

bird flying over body

s o[vlwln]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

of

-

water

L.
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Stochastic Computation Graphs: Attention

Recall: Image captioning with attention. At each timestep use a
weighted combination of features from different spatial positions
(Soft Attention)

bird flying over 7 a bod){ of ) water .
Hard Attention: At each timestep, select features from exactly one
spatial location. Train with policy gradient.

g

L3

.

>~

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Summary: Reinforcement Learning

RL trains agents that interact Q-Learning: Train network Qy (s, a) to
with an environment and estimate future rewards for every
learn to maximize reward (state, action) pair. Use Bellman
Equation to define loss function for
/AC“O”\ training Q

Environment

Policy Gradients: Train a network

g (a | s) that takes state as input,
gives distribution over which action to
take in that state. Use REINFORCE Rule
for computing gradients
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Next Time:
Course Recap
Open Problems in Computer Vision
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