
Justin Johnson November 11, 2020

Lecture 19:
Generative Models, Part 1

Lecture 19 - 1

Justin Johnson November 11, 2020

Reminder: Assignment 5

Lecture 19 - 2

A5 released; due Monday November 16, 11:59pm EST

A5 covers object detection:
- Single-stage detectors
- Two-stage detectors

Justin Johnson November 11, 2020

Midterm Grades Released
• Midterm grades released on Gradescope
• Mean score: 77.5 (std 12.3)

• If you think there was an error in grading your exam, submit a regrade
request via Gradescope by Tuesday, November 17
• After all regrades are finalized, we’ll copy the final exam grades over

to Canvas

Lecture 19 - 3

Justin Johnson November 11, 2020

Last Time: Videos

Lecture 19 - 4

Many video models:
Single-frame CNN (Try this first!)
Late fusion
Early fusion
3D CNN / C3D
Two-stream networks
CNN + RNN
Convolutional RNN
Spatio-temporal self-attention
SlowFast networks (current SoTA)

Justin Johnson November 11, 2020

Today:
Generative Models, Part 1

Lecture 19 - 5

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 6

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 7

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

DOG, DOG, CAT
This image is CC0 public domain

Object Detection

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 8

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Semantic Segmentation

GRASS, CAT, TREE, SKY

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 9

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Image captioning

A cat sitting on a
suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 10

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 11

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Clustering
(e.g. K-Means)

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 12

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Dimensionality Reduction
(e.g. Principal Components Analysis)

This image from Matthias Scholz is CC0 public domain

3D 2D

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 13

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Feature Learning
(e.g. autoencoders)

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 14

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Density Estimation

Images left and right are CC0 public domain

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson November 11, 2020

Supervised vs Unsupervised Learning

Lecture 19 - 15

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression,
object detection, semantic
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 16

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y) Cat

Data: x

Label: y

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 17

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y) Cat

Data: x

Label: y
!
!
𝑝 𝑥 𝑑𝑥 = 1

Probability Recap:

Density Function
p(x) assigns a positive
number to each possible
x; higher numbers mean
x is more likely

Density functions are
normalized:

Different values of x
compete for density

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 18

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Data: x

!
!
𝑝 𝑥 𝑑𝑥 = 1

Density Function
p(x) assigns a positive number
to each possible x; higher
numbers mean x is more likely

Density functions
are normalized:

Different values of x
compete for density

P(cat|.)

P(dog|.)

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 19

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

P(cat|.)

P(dog|.)

P(cat|)

P(dog|)

Discriminative model: the possible labels for
each input ”compete” for probability mass.
But no competition between images

Dog image is CC0 Public Domain

https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 20

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

P(cat|)
P(dog|)

Discriminative model: No way for the model
to handle unreasonable inputs; it must give
label distributions for all images

Monkey image is CC0 Public Domain

P(cat|)

P(dog|)

https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 21

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

P(cat|)
P(dog|)

Discriminative model: No way for the model
to handle unreasonable inputs; it must give
label distributions for all images

P(cat|)
P(dog|)

Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 22

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Generative model: All possible images compete
with each other for probability mass

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P()

P()

P()
P()

…

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 23

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Generative model: All possible images compete
with each other for probability mass

Requires deep image understanding! Is a dog more likely to
sit or stand? How about 3-legged dog vs 3-armed monkey?

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P()

P()

P()
P()

…

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 24

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Generative model: All possible images compete
with each other for probability mass

Model can “reject” unreasonable inputs by
assigning them small values

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P()

P()

P()
P()

…

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 25

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Conditional Generative Model: Each possible
label induces a competition among all images

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(|cat) P(|cat)

P(|cat)

P(|cat)

…
P(|dog) P(|dog)

P(|dog)
P(|dog)

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 26

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Justin Johnson November 11, 2020

Discriminative vs Generative Models

Lecture 19 - 27

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

We can build a conditional generative
model from other components!

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

Conditional
Generative Model

Discriminative Model

Prior over labels

(Unconditional)
Generative Model

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/

Justin Johnson November 11, 2020

What can we do with a discriminative model?

Lecture 19 - 28

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Assign labels to data
Feature learning (with labels)

Justin Johnson November 11, 2020

What can we do with a generative model?

Lecture 19 - 29

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data

Justin Johnson November 11, 2020

What can we do with a generative model?

Lecture 19 - 30

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability
distribution p(x)

Conditional Generative
Model: Learn p(x|y)

Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data

Assign labels, while rejecting outliers!
Generate new data conditioned on input labels

Justin Johnson November 11, 2020

Taxonomy of Generative Models

Lecture 19 - 31

Generative models

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Justin Johnson November 11, 2020

Taxonomy of Generative Models

Lecture 19 - 32

Generative models

Explicit density Implicit density

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Model does not explicitly
compute p(x), but can
sample from p(x)

Model can
compute p(x)

Justin Johnson November 11, 2020

Taxonomy of Generative Models

Lecture 19 - 33

Generative models

Explicit density Implicit density

Tractable density Approximate density

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow
- Ffjord

Model does not explicitly
compute p(x), but can
sample from p(x)

Model can
compute p(x)

Can compute
approximation to p(x)

Justin Johnson November 11, 2020

Taxonomy of Generative Models

Lecture 19 - 34

Generative models

Explicit density Implicit density

Tractable density Approximate density

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow
- Ffjord

Model does not explicitly
compute p(x), but can
sample from p(x)

Model can
compute p(x)

Can compute
approximation to p(x)

Justin Johnson November 11, 2020

Taxonomy of Generative Models

Lecture 19 - 35

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow
- Ffjord

Model does not explicitly
compute p(x), but can
sample from p(x)

Model can
compute p(x)

Can compute
approximation to p(x)

Justin Johnson November 11, 2020

Taxonomy of Generative Models

Lecture 19 - 36

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow
- Ffjord

Model does not explicitly
compute p(x), but can
sample from p(x)

Model can
compute p(x)

Can compute
approximation to p(x)

We will talk
about these

Justin Johnson November 11, 2020

Autoregressive models

Lecture 19 - 37

Justin Johnson November 11, 2020

Explicit Density Estimation

Lecture 19 - 38

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Justin Johnson November 11, 2020

Explicit Density Estimation

Lecture 19 - 39

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(#), 𝑥(%), … 𝑥 & , train the model by solving:

Maximize probability of training data
(Maximum likelihood estimation)𝑊∗ = argmax

(
2

)
𝑝(𝑥))

Justin Johnson November 11, 2020

Explicit Density Estimation

Lecture 19 - 40

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(#), 𝑥(%), … 𝑥 & , train the model by solving:

Maximize probability of training data
(Maximum likelihood estimation)𝑊∗ = argmax

(
2

)
𝑝(𝑥))

= argmax
*

∑) log 𝑝(𝑥)) Log trick to exchange product for sum

Justin Johnson November 11, 2020

Explicit Density Estimation

Lecture 19 - 41

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(#), 𝑥(%), … 𝑥 & , train the model by solving:

Maximize probability of training data
(Maximum likelihood estimation)𝑊∗ = argmax

(
2

)
𝑝(𝑥))

= argmax
*

∑) log 𝑝(𝑥))

= argmax
*

∑) log 𝑓(𝑥) ,𝑊)

Log trick to exchange product for sum

This will be our loss function!
Train with gradient descent

Justin Johnson November 11, 2020

Explicit Density: Autoregressive Models

Lecture 19 - 42

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥!, 𝑥", 𝑥#, … , 𝑥$
Assume x consists of
multiple subparts:

Justin Johnson November 11, 2020

Explicit Density: Autoregressive Models

Lecture 19 - 43

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥!, 𝑥", 𝑥#, … , 𝑥$
Assume x consists of
multiple subparts:

𝑝 𝑥 = 𝑝 𝑥!, 𝑥", 𝑥#, … , 𝑥$
= 𝑝 𝑥! 𝑝 𝑥" 𝑥!)𝑝 𝑥# 𝑥!, 𝑥")…

Break down probability
using the chain rule:

Justin Johnson November 11, 2020

Explicit Density: Autoregressive Models

Lecture 19 - 44

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥!, 𝑥", 𝑥#, … , 𝑥$
Assume x consists of
multiple subparts:

𝑝 𝑥 = 𝑝 𝑥!, 𝑥", 𝑥#, … , 𝑥$
= 𝑝 𝑥! 𝑝 𝑥" 𝑥!)𝑝 𝑥# 𝑥!, 𝑥")…
= ∏%&!

$ 𝑝 𝑥% 𝑥!, … , 𝑥%'!)

Break down probability
using the chain rule:

Probability of the next subpart
given all the previous subparts

Justin Johnson November 11, 2020

Explicit Density: Autoregressive Models

Lecture 19 - 45

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥!, 𝑥", 𝑥#, … , 𝑥$
Assume x consists of
multiple subparts:

𝑝 𝑥 = 𝑝 𝑥!, 𝑥", 𝑥#, … , 𝑥$
= 𝑝 𝑥! 𝑝 𝑥" 𝑥!)𝑝 𝑥# 𝑥!, 𝑥")…
= ∏%&!

$ 𝑝 𝑥% 𝑥!, … , 𝑥%'!)

Break down probability
using the chain rule:

Probability of the next subpart
given all the previous subparts

x0

h1

p(x1)

x1

h2

p(x2)

x2

h3

p(x3)

x3

h4

p(x4) We’ve already
seen this!
Language
modeling with
an RNN!

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 46

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 47

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 48

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 49

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 50

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 51

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 52

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 53

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Each pixel depends implicity on all pixels above
and to the left:

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 54

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Each pixel depends implicity on all pixels above
and to the left:

Justin Johnson November 11, 2020

PixelRNN

Lecture 19 - 55

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at
the upper left corner

Compute a hidden state for each pixel that
depends on hidden states and RGB values from
the left and from above (LSTM recurrence)

ℎ!,# = 𝑓(ℎ!$%,#, ℎ!,#$%,𝑊)

At each pixel, predict red, then blue, then green:
softmax over [0, 1, …, 255]

Each pixel depends implicity on all pixels above
and to the left:

Problem: Very slow during both
training and testing; N x N image
requires 2N-1 sequential steps

Justin Johnson November 11, 2020

PixelCNN

Lecture 19 - 56

Still generate image pixels starting from corner

Dependency on previous pixels now modeled
using a CNN over context region

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016

Justin Johnson November 11, 2020

PixelCNN

Lecture 19 - 57

Still generate image pixels starting from corner

Dependency on previous pixels now modeled
using a CNN over context region

Training: maximize likelihood of training images

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016

Softmax loss
at each pixel

Justin Johnson November 11, 2020

PixelCNN

Lecture 19 - 58

Still generate image pixels starting from corner

Dependency on previous pixels now modeled
using a CNN over context region

Training: maximize likelihood of training images

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016

Softmax loss
at each pixel

Training is faster than PixelRNN
(can parallelize convolutions since context
region values known from training images)

Generation must still proceed sequentially
=> still slow

Justin Johnson November 11, 2020

PixelRNN: Generated Samples

Lecture 19 - 59

32x32 CIFAR-10 32x32 ImageNet
Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Justin Johnson November 11, 2020

Autoregressive Models: PixelRNN and PixelCNN

Lecture 19 - 60

Improving PixelCNN performance
- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 (PixelCNN++)

Pros:
- Can explicitly compute likelihood p(x)
- Explicit likelihood of training data

gives good evaluation metric
- Good samples

Con:
- Sequential generation => slow

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 61

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 62

PixelRNN / PixelCNN explicitly parameterizes density function with a neural
network, so we can train to maximize likelihood of training data:

Variational Autoencoders (VAE) define an intractable density that we
cannot explicitly compute or optimize

But we will be able to directly optimize a lower bound on the density

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 63

Justin Johnson November 11, 2020

(Regular, non-variational) Autoencoders

Lecture 19 - 64

Unsupervised method for learning feature vectors from raw data x, without any labels

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful
information (maybe object identities,
properties, scene type, etc) that we
can use for downstream tasks

Input Data

Justin Johnson November 11, 2020

(Regular, non-variational) Autoencoders

Lecture 19 - 65

Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful
information (maybe object identities,
properties, scene type, etc) that we
can use for downstream tasks
But we can’t observe features!

Input Data

Justin Johnson November 11, 2020

(Regular, non-variational) Autoencoders

Lecture 19 - 66

Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Idea: Use the features to reconstruct the input data with a decoder
“Autoencoding” = encoding itself

Decoder

Reconstructed
input data

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Input Data

Justin Johnson November 11, 2020

(Regular, non-variational) Autoencoders

Lecture 19 - 67

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data.

Decoder

Reconstructed
input data

Loss Function

'𝑥 − 𝑥 !
!

Input Data

Does not use any
labels! Just raw data!

Justin Johnson November 11, 2020

(Regular, non-variational) Autoencoders

Lecture 19 - 68

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data.

Decoder

Reconstructed
input data

Loss Function

'𝑥 − 𝑥 !
!

Input Data

Does not use any
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers

Justin Johnson November 11, 2020

(Regular, non-variational) Autoencoders

Lecture 19 - 69

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data.

Decoder

Reconstructed
input data

Loss Function

'𝑥 − 𝑥 !
!

Input Data

Does not use any
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers

Features need to be
lower dimensional
than the data

Justin Johnson November 11, 2020

(Regular, non-variational) Autoencoders

Lecture 19 - 70

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Decoder

Reconstructed
input data

After training,
throw away decoder

Justin Johnson November 11, 2020

(Regular, non-variational) Autoencoders

Lecture 19 - 71

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Classifier

Predicted Label

Loss function
(Softmax, etc)

Fine-tune
encoder
jointly with
classifier

Encoder can be
used to initialize a
supervised model

plane
dog deer

bird
truck

Train for final task
(sometimes with

small data)

Justin Johnson November 11, 2020

(Regular, non-variational) Autoencoders

Lecture 19 - 72

Encoder

Input data

Features

Autoencoders learn latent features for data without any labels!
Can use features to initialize a supervised model
Not probabilistic: No way to sample new data from learned model

Decoder

Reconstructed
input data

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 73

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 74

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 75

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 76

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z
from prior

Sample from
conditional

After training, sample new data like this: Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 77

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z
from prior

Sample from
conditional

After training, sample new data like this: Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Assume simple prior p(z), e.g. Gaussian

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 78

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z
from prior

Sample from
conditional

After training, sample new data like this: Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 79

Sample z
from prior

Sample from
conditional

Intuition: x is an image, z is latent
factors used to generate x:
attributes, orientation, etc.

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 80

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

If we could observe the z for each x, then
could train a conditional generative model
p(x|z)

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 81

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝" 𝑥 = !𝑝" 𝑥, 𝑧 𝑑𝑧 = !𝑝" 𝑥 𝑧 𝑝" 𝑧 𝑑𝑧

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 82

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝" 𝑥 = !𝑝" 𝑥, 𝑧 𝑑𝑧 = !𝑝" 𝑥 𝑧 𝑝" 𝑧 𝑑𝑧

Ok, can compute this with decoder network

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 83

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝" 𝑥 = !𝑝" 𝑥, 𝑧 𝑑𝑧 = !𝑝" 𝑥 𝑧 𝑝" 𝑧 𝑑𝑧

Ok, we assumed Gaussian prior for z

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 84

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝" 𝑥 = !𝑝" 𝑥, 𝑧 𝑑𝑧 = !𝑝" 𝑥 𝑧 𝑝" 𝑧 𝑑𝑧

Problem: Impossible to integrate over all z!

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 85

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

𝑝" 𝑥 =
𝑝" 𝑥 𝑧)𝑝" 𝑧
𝑝" 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 86

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, compute with
decoder network

𝑝" 𝑥 =
𝑝" 𝑥 𝑧)𝑝" 𝑧
𝑝" 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 87

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, we assumed
Gaussian prior

𝑝" 𝑥 =
𝑝" 𝑥 𝑧)𝑝" 𝑧
𝑝" 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 88

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Problem: No way
to compute this!𝑝" 𝑥 =

𝑝" 𝑥 𝑧)𝑝" 𝑧
𝑝" 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 89

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝" 𝑥 =
𝑝" 𝑥 𝑧)𝑝" 𝑧
𝑝" 𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Solution: Train
another network

(encoder) that learns
𝑞! 𝑧 𝑥) ≈ 𝑝" 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 90

Sample z
from prior

Sample from
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝" 𝑥 =
𝑝" 𝑥 𝑧)𝑝" 𝑧
𝑝" 𝑧 𝑥)

≈
𝑝" 𝑥 𝑧)𝑝" 𝑧
𝑞# 𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Use encoder to compute 𝑞) 𝑧 𝑥) ≈ 𝑝* 𝑧 𝑥)

Assume training data 𝑥 &
&'%
(

is
generated from unobserved (latent)
representation z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 91

𝑝" 𝑥 | 𝑧 = 𝑁(𝜇$|& , Σ$|&) 𝑞# 𝑧 | 𝑥 = 𝑁(𝜇&|$, Σ&|$)

Decoder network inputs
latent code z, gives
distribution over data x

Encoder network inputs
data x, gives distribution
over latent codes z

If we can ensure that
𝑞# 𝑧 𝑥) ≈ 𝑝" 𝑧 𝑥),

then we can approximate

𝑝" 𝑥 ≈
𝑝" 𝑥 𝑧)𝑝(𝑧)
𝑞# 𝑧 𝑥)

Idea: Jointly train both
encoder and decoder

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 92

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥)

Bayes’ Rule

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 93

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

Multiply top and bottom by qΦ(z|x)

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 94

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

= log 𝑝(𝑥 𝑧 − log
𝑞) 𝑧|𝑥
𝑝(𝑧) + log

𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

Split up using rules for logarithms

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 95

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

= log 𝑝(𝑥 𝑧 − log
𝑞) 𝑧|𝑥
𝑝(𝑧) + log

𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

c

c

c

Split up using rules for logarithms

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 96

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

= log 𝑝(𝑥 𝑧 − log
𝑞) 𝑧|𝑥
𝑝(𝑧) + log

𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

log 𝑝(𝑥 = 𝐸*~,'(*|/) log 𝑝((𝑥)
We can wrap in an
expectation since it
doesn’t depend on z

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 97

log 𝑝(𝑥 = 𝐸*~,'(*|/) log 𝑝((𝑥)
We can wrap in an
expectation since it
doesn’t depend on z

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 98

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)

Data reconstruction

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 99

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)
KL divergence between prior, and
samples from the encoder network

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 100

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)
KL divergence between encoder
and posterior of decoder

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 101

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)
KL is >= 0, so dropping this term gives a
lower bound on the data likelihood:

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 102

log 𝑝((𝑥) = log
𝑝(𝑥 𝑧)𝑝(𝑧)
𝑝(𝑧 𝑥) = log

𝑝(𝑥 𝑧 𝑝 𝑧 𝑞)(𝑧|𝑥)
𝑝(𝑧 𝑥 𝑞)(𝑧|𝑥)

= 𝐸*[log 𝑝((𝑥|𝑧)] − 𝐸* log
𝑞) 𝑧 𝑥
𝑝 𝑧

+ 𝐸* log
𝑞)(𝑧|𝑥)
𝑝((𝑧|𝑥)

= 𝐸(~*+((|-)[log 𝑝.(𝑥|𝑧)] − 𝐷/0 𝑞1 𝑧 𝑥 , 𝑝 𝑧 + 𝐷/0(𝑞1 𝑧 𝑥 , 𝑝. 𝑧 𝑥)

log 𝑝+ 𝑥 ≥ 𝐸,~.!(,|0)[log 𝑝+(𝑥|𝑧)] − 𝐷12 𝑞3 𝑧 𝑥 , 𝑝 𝑧

Justin Johnson November 11, 2020

Variational Autoencoders

Lecture 19 - 103

log 𝑝+ 𝑥 ≥𝐸,~.!(,|0)[log 𝑝+(𝑥|𝑧)] − 𝐷12 𝑞3 𝑧 𝑥 , 𝑝 𝑧

Jointly train encoder q and decoder p to maximize
the variational lower bound on the data likelihood

𝑝" 𝑥 | 𝑧 = 𝑁(𝜇$|& , Σ$|&)𝑞# 𝑧 | 𝑥 = 𝑁(𝜇&|$, Σ&|$)
Encoder Network Decoder Network

Justin Johnson November 11, 2020

Next Time:
Generative Models, part 2

More Variational Autoencoders,
Generative Adversarial Networks

Lecture 19 - 104

