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Lecture 18:
Videos

Lecture 18 - 1
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Reminder: Assignment 5

Lecture 18 - 2

A5 released; due Monday November 16, 11:59pm EST

A5 covers object detection:
- Single-stage detectors
- Two-stage detectors
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Computer Vision Tasks: 2D Recognition

Lecture 18 - 3

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Last Time: 3D Shapes

Lecture 18 - 4

Predicting 3D Shapes 
from single image

Processing 3D 
input data

Input Image 3D Shape 3D Shape

Chair
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Last Time: 3D Shape Representations

Lecture 18 - 5

∞
∞
2

2
2

2

Depth 
Map

Voxel 
Grid

Implicit 
Surface

Pointcloud Mesh
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Today: Video = 2D + Time

Lecture 18 - 6

This image is CC0 public domain

A video is a sequence of images
4D tensor: T x 3 x H x W

(or 3 x T x H x W)

https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Example task: Video Classification

Lecture 18 - 7

Input video:
T x 3 x H x W

Running video is in the public domain

Swimming
Running
Jumping
Eating
Standing

https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain
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Example task: Video Classification

Lecture 18 - 8

Swimming
Running
Jumping
Eating
Standing

Dog
Cat
Fish
Truck

Images: Recognize objects

Videos: Recognize actions

Running video is in the public domain

https://commons.wikimedia.org/wiki/File:Running.gif
https://en.wikipedia.org/wiki/en:public_domain
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Problem: Videos are big!

Lecture 18 - 9

Input video:
T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video 
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute
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Problem: Videos are big!

Lecture 18 - 10

Input video:
T x 3 x H x W

Videos are ~30 frames per second (fps)

Size of uncompressed video 
(3 bytes per pixel):

SD (640 x 480): ~1.5 GB per minute
HD (1920 x 1080): ~10 GB per minute

Solution: Train on short clips: low 
fps and low spatial resolution
e.g. T = 16, H=W=112
(3.2 seconds at 5 fps, 588 KB)
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Training on Clips

Lecture 18 - 11

Raw video: Long, high FPS
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Training on Clips

Lecture 18 - 12

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS
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Training on Clips

Lecture 18 - 13

Raw video: Long, high FPS

Training: Train model to classify short clips with low FPS

Testing: Run model on different clips, average predictions
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Video Classification: Single-Frame CNN

Lecture 18 - 14

CNN

“Running”

Simple idea: train normal 2D CNN to classify video frames independently! 
(Average predicted probs at test-time)
Often a very strong baseline for video classification

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”

CNN

“Running”
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Video Classification: Late Fusion (with FC layers)

Lecture 18 - 15

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on 
each frame

Frame features
T x D x H’ x W’

Flatten

MLP

Class scores: C

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Run 2D CNN on each 
frame, concatenate 
features and feed to MLP

Clip features: TDH’W’

Intuition: Get high-level appearance 
of each frame, and combine them
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Video Classification: Late Fusion (with pooling)

Lecture 18 - 16

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on 
each frame

Frame features
T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C Run 2D CNN on each 
frame, pool features 
and feed to Linear

Intuition: Get high-level appearance 
of each frame, and combine them
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Video Classification: Late Fusion (with pooling)

Lecture 18 - 17

CNNCNNCNN CNN CNN CNN

Input:
T x 3 x H x W

2D CNN on 
each frame

Frame features
T x D x H’ x W’

Average Pool over space and time

Clip features: D
Linear

Class scores: C Run 2D CNN on each 
frame, pool features 
and feed to Linear

Intuition: Get high-level appearance 
of each frame, and combine them
Problem: Hard to compare low-level 
motion between frames
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Video Classification: Early Fusion

Lecture 18 - 18

2D CNN

Input:
T x 3 x H x W

Reshape:
3T x H x W

Class scores: C

Rest of the network 
is standard 2D CNN

Intuition: Compare frames with 
very first conv layer, after that 
normal 2D CNN

First 2D convolution collapses 
all temporal information:
Input: 3T x H x W
Output: D x H x W

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Video Classification: Early Fusion

Lecture 18 - 19

2D CNN

Input:
T x 3 x H x W

Reshape:
3T x H x W

Class scores: C

Rest of the network 
is standard 2D CNN

Intuition: Compare frames with 
very first conv layer, after that 
normal 2D CNN
Problem: One layer of temporal 
processing may not be enough!

First 2D convolution collapses 
all temporal information:
Input: 3T x H x W
Output: D x H x W

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Video Classification: 3D CNN

Lecture 18 - 20

3D CNN

Input:
3 x T x H x W

Class scores: C

Intuition: Use 3D versions of 
convolution and pooling to 
slowly fuse temporal information 
over the course of the network

Each layer in the network is a 
4D tensor: D x T x H x W
Use 3D conv and 3D pooling 
operations 

Ji et al, “3D Convolutional Neural Networks for Human Action Recognition”, TPAMI 2010 ; Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
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Early Fusion vs Late Fusion vs 3D CNN

Lecture 18 - 21

Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion
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Early Fusion vs Late Fusion vs 3D CNN

Lecture 18 - 22

Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion

Input

Conv(3x3)
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Early Fusion vs Late Fusion vs 3D CNN

Lecture 18 - 23

Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion

Input

Pool(4x4)

Conv(3x3)
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Early Fusion vs Late Fusion vs 3D CNN

Lecture 18 - 24

Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion

Input

Pool(4x4)

Conv(3x3)

Conv(3x3)

Build slowly in space
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Early Fusion vs Late Fusion vs 3D CNN

Lecture 18 - 25

Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Late 
Fusion

Input

Pool(4x4)

Conv(3x3)

Conv(3x3)

GlobalAvg

Build slowly in space,
All-at-once in time at end
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Early Fusion vs Late Fusion vs 3D CNN

Lecture 18 - 26

Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3*10->12) 12 x 64 x 64 20 x 3 x 3
Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6
Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3
Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6
Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Late 
Fusion

Early 
Fusion

3D CNN

Build slowly in space,
All-at-once in time at end

Build slowly in space,
All-at-once in time at start
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Early Fusion vs Late Fusion vs 3D CNN

Lecture 18 - 27

Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3*10->12) 12 x 64 x 64 20 x 3 x 3
Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6
Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3
Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6
Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Late 
Fusion

Early 
Fusion

3D CNN

Build slowly in space,
All-at-once in time at end

Build slowly in space,
All-at-once in time at start

(Small example architectures, 
in practice much bigger)

Build slowly in space,
Build slowly in time
”Slow Fusion”
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Early Fusion vs Late Fusion vs 3D CNN

Lecture 18 - 28

Layer
Size 
(C x T x H x W)

Receptive Field 
(T x H x W)

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3->12) 12 x 20 x 64 x 64 1 x 3 x 3
Pool2D(4x4) 12 x 20 x 16 x 16 1 x 6 x 6
Conv2D(3x3, 12->24) 24 x 20 x 16 x 16 1 x 14 x 14
GlobalAvgPool 24 x 1 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv2D(3x3, 3*10->12) 12 x 64 x 64 20 x 3 x 3
Pool2D(4x4) 12 x 16 x 16 20 x 6 x 6
Conv2D(3x3, 12->24) 24 x 16 x 16 20 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Input 3 x 20 x 64 x 64
Conv3D(3x3x3, 3->12) 12 x 20 x 64 x 64 3 x 3 x 3
Pool3D(4x4x4) 12 x 5 x 16 x 16 6 x 6 x 6
Conv3D(3x3x3, 12->24) 24 x 5 x 16 x 16 14 x 14 x 14
GlobalAvgPool 24 x 1 x 1 20 x 64 x 64

Late 
Fusion

Early 
Fusion

3D CNN

Build slowly in space,
All-at-once in time at end

Build slowly in space,
All-at-once in time at start

Build slowly in space,
Build slowly in time
”Slow Fusion”

What is the 
difference?
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 29

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x T x 3 x 3
Slide over x and y

T = 16

Cout different filters

Output: 
Cout x H x W
2D grid with Cout –dim 
feat at each point

W = 224

H = 224
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 30

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x T x 3 x 3
Slide over x and y

Cout different filters

Output: 
Cout x H x W
2D grid with Cout –dim 
feat at each point

W = 224

No temporal shift-invariance! Needs 
to learn separate filters for the same 
motion at different times in the clip
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 31

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Output: 
Cout x T x H x W
3D grid with Cout–dim 
feat at each point

W = 224

H = 224
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 32

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Output: 
Cout x T x H x W
3D grid with Cout–dim 
feat at each point

W = 224

H = 224

Temporal shift-invariant since 
each filter slides over time!
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2D Conv (Early Fusion) vs 3D Conv (3D CNN)

Lecture 18 - 33

Input:  Cin x T x H x W
(3D grid with Cin-dim 
feat at each point)

W = 224

H = 224

T = 16

Weight: 
Cout x Cin x 3 x 3 x 3
Slide over x and y

T = 3

Cout different filters

Temporal shift-invariant since 
each filter slides over time!

First-layer filters have shape 
3 (RGB) x 4 (frames) x 5 x 5 (space)
Can visualize as video clips!

Karpathy et al, “Large-scale Video Classification 
with Convolutional Neural Networks”, CVPR 2014
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Example Video Dataset: Sports-1M

Lecture 18 - 34

1 million YouTube videos 
annotated with labels for 
487 different types of sports

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Ground Truth
Correct prediction
Incorrect prediction
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77.7 76.8
78.7

80.2

84.4

72
74
76
78
80
82
84
86

Single
Frame

Early
Fusion

Late
Fusion

3D CNN C3D

Sports-1M Top-5 Accuracy

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014

Single Frame model 
works well – always 
try this first!

3D CNNs have 
improved a lot 
since 2014!

Early Fusion vs Late Fusion vs 3D CNN
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C3D: The VGG of 3D CNNs

Lecture 18 - 36

Layer Size
Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112
Pool1 (1x2x2) 64 x 16 x 56 x 56
Conv2 (3x3x3) 128 x 16 x 56 x 56
Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28
Conv3b (3x3x3) 256 x 8 x 28 x 28
Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14
Conv4b (3x3x3) 512 x 4 x 14 x 14
Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7
Conv5b (3x3x3) 512 x 2 x 7 x 7

Pool5 512 x 1 x 3 x 3
FC6 4096
FC7 4096
FC8 C

3D CNN that uses all 3x3x3 conv and 
2x2x2 pooling 
(except Pool1 which is 1x2x2)

Released model pretrained on Sports-
1M: Many people used this as a video 
feature extractor

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015
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C3D: The VGG of 3D CNNs

Lecture 18 - 37

Layer Size MFLOPs
Input 3 x 16 x 112 x 112

Conv1 (3x3x3) 64 x 16 x 112 x 112 1.04
Pool1 (1x2x2) 64 x 16 x 56 x 56
Conv2 (3x3x3) 128 x 16 x 56 x 56 11.10
Pool2 (2x2x2) 128 x 8 x 28 x 28

Conv3a (3x3x3) 256 x 8 x 28 x 28 5.55
Conv3b (3x3x3) 256 x 8 x 28 x 28 11.10
Pool3 (2x2x2) 256 x 4 x 14 x 14

Conv4a (3x3x3) 512 x 4 x 14 x 14 2.77
Conv4b (3x3x3) 512 x 4 x 14 x 14 5.55
Pool4 (2x2x2) 512 x 2 x 7 x 7

Conv5a (3x3x3) 512 x 2 x 7 x 7 0.69
Conv5b (3x3x3) 512 x 2 x 7 x 7 0.69

Pool5 512 x 1 x 3 x 3
FC6 4096 0.51
FC7 4096 0.45
FC8 C 0.05

3D CNN that uses all 3x3x3 conv and 
2x2x2 pooling 
(except Pool1 which is 1x2x2)

Released model pretrained on Sports-
1M: Many people used this as a video 
feature extractor

Problem: 3x3x3 conv is very expensive! 
AlexNet: 0.7 GFLOP
VGG-16: 13.6 GFLOP
C3D: 39.5 GFLOP (2.9x VGG!)

Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015
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77.7 76.8
78.7

80.2

84.4

72
74
76
78
80
82
84
86

Single
Frame

Early
Fusion

Late
Fusion

3D CNN C3D

Sports-1M Top-5 Accuracy

Karpathy et al, “Large-scale Video Classification with Convolutional Neural Networks”, CVPR 2014
Tran et al, “Learning Spatiotemporal Features with 3D Convolutional Networks”, ICCV 2015

Early Fusion vs Late Fusion vs 3D CNN
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Recognizing Actions from Motion

Lecture 18 - 39

Johansson, “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.

We can easily recognize actions using only motion information
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Measuring Motion: Optical Flow

Lecture 18 - 40

Image at frame t

Image at frame t+1

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
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Measuring Motion: Optical Flow

Lecture 18 - 41

Image at frame t

Image at frame t+1

Optical flow gives a displacement 
field F between images It and It+1

Tells where each pixel will 
move in the next frame:
F(x, y) = (dx, dy)
It+1(x+dx, y+dy) = It(x, y)

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
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Measuring Motion: Optical Flow

Lecture 18 - 42

Image at frame t

Image at frame t+1

Optical flow gives a displacement 
field F between images It and It+1

Tells where each pixel will 
move in the next frame:
F(x, y) = (dx, dy)
It+1(x+dx, y+dy) = It(x, y)

Horizontal flow dx

Vertical Flow dy
Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Optical Flow highlights 
local motion
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Separating Motion and Appearance: Two-Stream Networks

Lecture 18 - 43

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014

Input: Stack of optical flow:
[2*(T-1)] x H x W

Early fusion: First 2D conv 
processes all flow images

Input: Single Image
3 x H x W
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65.4

73

83.7
86.9 88

50
55
60
65
70
75
80
85
90

3D CNN Spatial only Temporal only Two-stream
(fuse by average)

Two-stream
(fuse by SVM)

Accuracy on UCF-101

Separating Motion and Appearance: Two-Stream Networks

Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
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Modeling long-term temporal structure

Lecture 18 - 45

First event Second event3D 
CNN

~5 seconds

So far all our temporal CNNs only model local 
motion between frames in very short clips of 
~2-5 seconds. What about long-term structure?

Time
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Modeling long-term temporal structure

Lecture 18 - 46

First event Second event3D 
CNN

~5 seconds

So far all our temporal CNNs only model local 
motion between frames in very short clips of 
~2-5 seconds. What about long-term structure?

Time

We know how to 
handle sequences! 
How about recurrent 
networks?
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Modeling long-term temporal structure

Lecture 18 - 47

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)
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Modeling long-term temporal structure

Lecture 18 - 48

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Process local features using recurrent network (e.g. LSTM)
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Modeling long-term temporal structure

Lecture 18 - 49

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Process local features using recurrent network (e.g. LSTM)
Many to one: One output at end of video
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Modeling long-term temporal structure

Lecture 18 - 50

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Process local features using recurrent network (e.g. LSTM)
Many to many: one output per video frame
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Modeling long-term temporal structure

Lecture 18 - 51

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Process local features using recurrent network (e.g. LSTM)
Many to many: one output per video frame

Baccouche et al, "Sequential Deep Learning 
for Human Action Recognition”, 2011

Used 3D CNNs and LSTMs in 
2011! Way ahead of its time
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Modeling long-term temporal structure

Lecture 18 - 52

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Process local features using recurrent network (e.g. LSTM)
Many to many: one output per video frame

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015
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Modeling long-term temporal structure

Lecture 18 - 53

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Sometimes don’t backprop to CNN to save memory; 
pretrain and use it as a feature extractor

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015
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Modeling long-term temporal structure

Lecture 18 - 54

CNN

Time

CNN CNN CNN CNN

Extract 
features 

with CNN 
(2D or 3D)

Inside CNN: Each value a function of a fixed temporal window (local temporal structure)
Inside RNN: Each vector is a function of all previous vectors (global temporal structure)

Can we merge both approaches?

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015
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Recall: Multi-layer RNN

Lecture 18 - 55

time

depth x0 x1 x2 x3 x4 x5 x6

h2
0 h2

1 h2
2 h2

3 h2
4 h2

5 h2
6

y0 y1 y2 y3 y4 y5 y6

h1
0 h1

1 h1
2 h1

3 h1
4 h1

5 h1
6

Three-layer RNN

h3
0 h3

1 h3
2 h3

3 h3
4 h3

5 h3
6

We can use a 
similar structure to 
process videos!
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Recurrent Convolutional Network

Lecture 18 - 56

2D conv 2D conv 2D conv 2D conv

Layer 2

Layer 1

Layer 3
Entire network 
uses 2D feature 
maps: C x H x W 

Each depends on 
two inputs:
1. Same layer, 
previous timestep
2. Prev layer, same 
timestep

Use different 
weights at each 
layer, share weights 
across time

Ballas et al, “Delving Deeper into 
Convolutional Networks for Learning 
Video Representations”, ICLR 2016
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Recurrent Convolutional Network

Lecture 18 - 57

Input features:
C x H x W

Output features:
C x H x W

2D Conv

Normal 2D CNN:
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Recurrent Convolutional Network

Lecture 18 - 58

Features for layer L, 
timestep t

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

new state old state

some function
with parameters W

Recall: Recurrent Network

RNN-like 
recurrence

Features from layer L-1, 
timestep t

Features from layer L, 
timestep t-1
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Recurrent Convolutional Network

Lecture 18 - 59

Features from layer L-1, 
timestep t

Features for layer L, 
timestep t

Features from layer L, 
timestep t-1

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

Recall: Vanilla RNN

ℎ!"# = tanh(𝑊$ℎ! +𝑊%𝑥)
Replace all matrix multiply 
with 2D convolution!

2D Conv

2D Conv

𝑊!

𝑊"

+ tanh
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Recurrent Convolutional Network

Lecture 18 - 60

Features from layer L-1, 
timestep t

Features for layer L, 
timestep t

Features from layer L, 
timestep t-1

Ballas et al, “Delving Deeper into Convolutional Networks for Learning Video Representations”, ICLR 2016

Can do similar transform for 
other RNN variants (GRU, LSTM)

2D Conv

2D Conv

𝑊!

𝑊"

+ tanh

Recall: GRU
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Modeling long-term temporal structure

Lecture 18 - 61

CNN

Time

CNN
Recurrent

CNN
CNN: finite 

temporal extent
(convolutional)

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

Recurrent
CNN

RNN: Infinite 
temporal extent
(fully-connected)

Time

Recurrent CNN: Infinite 
temporal extent
(convolutional)

Ballas et al, “Delving Deeper into Convolutional Networks 
for Learning Video Representations”, ICLR 2016
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Modeling long-term temporal structure

Lecture 18 - 62

CNN

Time

CNN
Recurrent

CNN
CNN: finite 

temporal extent
(convolutional)

Baccouche et al, "Sequential Deep Learning for Human Action Recognition”, 2011
Donahue et al, “Long-term recurrent convolutional networks for visual recognition and description”, CVPR 2015

Recurrent
CNN

RNN: Infinite 
temporal extent
(fully-connected)

Time

Recurrent CNN: Infinite 
temporal extent
(convolutional)

Ballas et al, “Delving Deeper into Convolutional Networks 
for Learning Video Representations”, ICLR 2016

Problem: RNNs are slow for long 
sequences (can’t be parallelized)
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Recall: Different ways of processing sequences

Lecture 18 - 63

x1 x2 x3

y1 y2 y3

x4

y4

x1 x2 x3 x4

y1 y2 y3 y4

Recurrent Neural Network 1D Convolution

Works on Ordered Sequences
(+) Good at long sequences: After one 
RNN layer, hT ”sees” the whole 
sequence
(-) Not parallelizable: need to 
compute hidden states sequentially
In video: CNN+RNN, or recurrent CNN

Works on Multidimensional Grids
(-) Bad at long sequences: Need to 
stack many conv layers for outputs 
to “see” the whole sequence
(+) Highly parallel: Each output can 
be computed in parallel
In video: 3D convolution
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Recall: Different ways of processing sequences

Lecture 18 - 64

x1 x2 x3

y1 y2 y3

x4

y4

x1 x2 x3 x4

y1 y2 y3 y4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After one 
RNN layer, hT ”sees” the whole 
sequence
(-) Not parallelizable: need to 
compute hidden states sequentially
In video: CNN+RNN, or recurrent CNN

Works on Multidimensional Grids
(-) Bad at long sequences: Need to 
stack many conv layers for outputs 
to “see” the whole sequence
(+) Highly parallel: Each output can 
be computed in parallel
In video: 3D convolution

Works on Sets of Vectors
(-) Good at long sequences: after one 
self-attention layer, each output 
“sees” all inputs!
(+) Highly parallel: Each output can 
be computed in parallel
(-) Very memory intensive
In video: ????



Justin Johnson November 9, 2020

Recall: Self-Attention

Lecture 18 - 65

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Input: Set of vectors x1, ..., xN

Keys, Queries, Values: Project each x to a 
key, query, and value using linear layer

Affinity matrix: Compare each pair of x, 
(using scaled dot-product between keys 
and values) and normalize using softmax

Output: Weighted sum of values, with 
weights given by affinity matrix

Features in 3D CNN: C x T x H x W
Interpret as a set of THW vectors of dim C
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Spatio-Temporal Self-Attention (Nonlocal Block)

Lecture 18 - 66

3D 
CNN

Features: 
C x T x H x W

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip



Justin Johnson November 9, 2020

Spatio-Temporal Self-Attention (Nonlocal Block)

Lecture 18 - 67

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

Lecture 18 - 68

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

Lecture 18 - 69

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

Lecture 18 - 70

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

C x T x H x W

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

Lecture 18 - 71

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

+

C x T x H x W

Residual Connection

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

Lecture 18 - 72

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

+

C x T x H x W

Nonlocal Block

Residual Connection

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Input clip
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Spatio-Temporal Self-Attention (Nonlocal Block)

Lecture 18 - 73

Input clip

3D 
CNN

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

+

C x T x H x W

Residual Connection

1x1x1 Conv

Wang et al, “Non-local neural networks”, CVPR 2018

Trick: Initialize last conv to 0, then entire block 
computes identity. Can insert into existing 3D CNNs

Nonlocal Block In practice, actually insert BatchNorm layer after 
final conv, and initialize scale parameter of BN 
layer to 0 rather than setting conv weight to 0
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Spatio-Temporal Self-Attention (Nonlocal Block)

Lecture 18 - 74

Input clip

3D CNN

Wang et al, “Non-local neural networks”, CVPR 2018

Nonlocal Block

Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

+
C x T x H x W

Residual Connection

1x1x1 Conv

3D CNN 3D CNN
Features: 
C x T x H x W

Queries:
C’ x T x H x W

Keys:
C’ x T x H x W

Values:
C’ x T x H x W

1x1x1 Conv

1x1x1 Conv

x

Transpose

softmax

Attention Weights
(THW) x (THW)

x

C’ x T x H x W

1x1x1 Conv

+
C x T x H x W

Residual Connection

1x1x1 Conv

Running

We can add nonlocal blocks into existing 3D CNN architectures.
But what is the best 3D CNN architecture?

Nonlocal Block
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Inflating 2D Networks to 3D (I3D)

Lecture 18 - 75

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version



Justin Johnson November 9, 2020

Inflating 2D Networks to 3D (I3D)

Lecture 18 - 76

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Previous layer

3x3 
Conv

1x1 
Conv

3x3 
MaxPool

Concatenate

1x1 
Conv

1x1 
Conv

5x5 
Conv

1x1 
Conv

Inception Block: Original

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version
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Inflating 2D Networks to 3D (I3D)

Lecture 18 - 77

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Previous layer

3x3x3 
Conv

1x1x1 
Conv

3x3x3 
MaxPool

Concatenate

1x1x1 
Conv

1x1x1 
Conv

5x5x5 
Conv

1x1x1 
Conv

Inception Block: Inflated

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version
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Inflating 2D Networks to 3D (I3D)

Lecture 18 - 78

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to 
initialize 3D conv: copy Kt times in 
space and divide by Kt
This gives the same result as 2D 
conv given “constant” video input

2D conv kernel:
Cin x Kh x Kw

3D conv kernel:
Cin x Kt x Kh x Kw

Input:
3 x H x W

Input:
3 x Kt x H x W

Copy kernel 
Kt times, 
divide by Kt

Output:
H x W

Output:
1 x H x W

Duplicate input 
Kt times

Output is 
the same!

Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017
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Inflating 2D Networks to 3D (I3D)

Lecture 18 - 79

There has been a lot of work on architectures for images. 
Can we reuse image architectures for video?

Idea: take a 2D CNN architecture.

Replace each 2D Kh x Kw conv/pool 
layer with a 3D Kt x Kh x Kw version

Can use weights of 2D conv to 
initialize 3D conv: copy Kt times in 
space and divide by Kt
This gives the same result as 2D 
conv given “constant” video input

57.9
53.9

62.8

68.4
71.6

62.2 63.3
65.6

71.1
74.2

40

45

50

55

60

65

70

75

80

Per-frame CNN CNN+LSTM Two-stream
CNN

Inflated CNN Two-stream
inflated CNN

Top-1 Accuracy on Kinetics-400

Train from scratch Pretrain on ImageNet
Carreira and Zisserman, “Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset”, CVPR 2017 All using Inception CNN
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Visualizing Video Models

Lecture 18 - 80

Image

Flow

Forward: Compute class score

Backward: Compute gradient

”weightlifting” 
score

Figure credit: Simonyan and Zisserman, “Two-stream convolutional networks for action recognition in videos”, NeurIPS 2014
Feichtenhofer et al, “What have we learned from deep representations for action recognition?”, CVPR 2018
Feichtenhofer et al, “Deep insights into convolutional networks for video recognition?”, IJCV 2019. 

Add a term to encourage spatially 
smooth flow; tune penalty to pick 
out “slow” vs “fast” motion
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Can you guess the action?

Lecture 18 - 81

Fast motion appearance

Appearance “Slow” motion “Fast” motion

Feichtenhofer et al, “What have we learned from deep 
representations for action recognition?”, CVPR 2018
Feichtenhofer et al, “Deep insights into convolutional 
networks for video recognition?”, IJCV 2019. 
Slide credit: Christoph Feichtenhofers
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Can you guess the action?   Weightlifting 

Lecture 18 - 82

Fast motion appearance

Appearance “Slow” motion “Fast” motion

Feichtenhofer et al, “What have we learned from deep 
representations for action recognition?”, CVPR 2018
Feichtenhofer et al, “Deep insights into convolutional 
networks for video recognition?”, IJCV 2019. 
Slide credit: Christoph Feichtenhofer

”Bar Shaking” “Push overhead”
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Can you guess the action?

Lecture 18 - 83

Fast motion appearance

Appearance “Slow” motion “Fast” motion

”Bar Shaking” “Push overhead”Fast motion appearance
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Can you guess the action?   Apply Eye Makeup 

Lecture 18 - 84

Fast motion appearance

Appearance “Slow” motion “Fast” motion

”Bar Shaking” “Push overhead”Fast motion appearance
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Treating time and space differently: SlowFast Networks

Lecture 18 - 85

Fast pathway

Slow pathway
Time

Channels

Space

prediction

C
C

C

αT
αT

αT βC
βC

βC

T
T

T

Slow

Fast

Lightweight (< 20% of compute)

Low framerate

High framerate
Lateral   connections

β = 1/8
e.g. α = 8

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Slide credit: Christoph Feichtenhofer
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• Dimensions are
• Strides are {temporal, spatial2} 
• The backbone is ResNet-50
• Residual blocks are shown by brackets
• Non-degenerate temporal filters are 

underlined
• Here the speed ratio is α = 8 and the 

channel ratio is β = 1/8
• Orange numbers mark fewer channels, 

for the Fast pathway
• Green numbers mark higher temporal 

resolution of the Fast pathway
• No temporal pooling is performed 

throughout the hierarchy

Feichtenhofer et al, “SlowFast Networks for Video Recognition”, ICCV 2019
Slide credit: Christoph Feichtenhofer

Treating time and space differently: SlowFast Networks



Justin Johnson November 9, 2020

So far: Classify short clips

Lecture 18 - 88

Swimming
Running
Jumping
Eating
Standing

Videos: Recognize actions
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Temporal Action Localization

Lecture 18 - 89

Running Jumping

Given a long untrimmed video sequence, identify 
frames corresponding to different actions

Chao et al, ” Rethinking the Faster R-CNN Architecture for Temporal Action Localization”, CVPR 2018

Can use architecture similar to Faster R-CNN: 
first generate temporal proposals then classify
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Spatio-Temporal Detection

Lecture 18 - 90

Given a long untrimmed video, detect all the people in space 
and time and classify the activities they are performing
Some examples from AVA Dataset:

Gu et al, “AVA: A Video Dataset of Spatio-temporally Localized Atomic Visual Actions”, CVPR 2018
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Recap: Video Models

Lecture 18 - 91

Many video models:
Single-frame CNN (Try this first!)
Late fusion
Early fusion
3D CNN / C3D
Two-stream networks
CNN + RNN
Convolutional RNN
Spatio-temporal self-attention
SlowFast networks (current SoTA)
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Next time:
Generative Models, part 1

Lecture 18 - 92


