Lecture 12:
Recurrent Neural Networks
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Reminder: A3 was due on Friday 10/9
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Reminder: Midterm

* Monday, October 19
* Will be online via https://crabster.org/

* Exam is 90 minutes
* You can take it any time in a 24-hour window

* We will have 3-4 “on-call” periods during the 24-hour window where
GSlIs will answer questions within ~15 minutes

* Open note
* True / False, multiple choice, short answer

* For short answer questions requiring math, either write LaTeX or
upload an image with handwritten math
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Assignment 4

- Assignment 4 is released:
https://web.eecs.umich.edu/~justincj/teaching/eec
s498/FA2020/assisnment4.html

- Due Friday October 30, 11:59pm EDT

- Two weeks from Friday! Feel free to start after
midterm

- Lots of fun topics:

- PyTorch Autograd

- Recurrent networks

- Attention

- Network visualization: saliency maps,
adversarial examples, feature inversion

- Artistic style transfer
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https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/assignment4.html

Last Time: Training Neural Networks

1.0ne time setup
Activation functions, data preprocessing, weight
initialization, regularization
2.Training dynamics
Learning rate schedules;
hyperparameter optimization
3.After training
Model ensembles, transfer learning,
large-batch training
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So far: “Feedforward” Neural Networks

one to one

\ e.g. Image classification

Image -> Label
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Recurrent Neural Networks: Process Sequences

one to one one to many
i Pt
! !

\ e.g. Image Captioning:
Image -> sequence of words
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one
! Pt !
! ! Pt

\ e.g. Video classification:
Sequence of images -> label

Justin Johnson Lecture 12 - 8 October 12, 2020



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many
! Pt ! Pt
! ! Pt Pt

e.g. Machine Translation: /
Sequence of words -> Sequence of words
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Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

e.g. Per-frame video classification: /
Sequence of images -> Sequence of labels
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Sequential Processing of Non-Sequential Data

Classify images by taking
a series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
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Sequential Processing of Non-Sequential Data

Generate images one piece at a time!
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Sequential Processing of Non-Sequential Data

4 »

Integrate with oil
paint simulator — at

each timestep output ‘ ‘ » ‘

a hew stroke

L T

Ganin et al, “Synthesizing Programs for Images using Reinforced Adversarial Learning”, ICML 2018
https://twitter.com/yaroslav_ganin/status/1180120687131926528
Reproduced with permission
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https://twitter.com/yaroslav_ganin/status/1180120687131926528

Recurrent Neural Networks

Key idea: RNNs have an
“internal state” that is
updated as a sequence
is processed
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Recurrent Neural Networks

We can process a sequence of vectors x by

y applying a recurrence formula at every time step:
he = fw(he—1, x¢)

new state / old state input vector at

some time step

some function
with parameters W
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Notice: the same function and

Recurrent Neural Networks the same set of parameters

are used at every time step.

We can process a sequence of vectors x by

y applying a recurrence formula at every time step:
he = fw(he—1, x¢)

new state / old state input vector at

some time step

some function
with parameters W
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(Vanilla) Recurrent Neural Networks

The state consists of a single “hidden” vector h:
Y he = fw(he—q, X¢)

m> ht = tanh(Whhht_l -+ thxt ~+ bh)

|
YVt = Whyht + by

X

Sometimes called a “Vanilla RNN” or an
“Elman RNN” after Prof. Jeffrey Elman
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RNN Computational Graph

Initial hidden state
Either set to all O,
Or learn it

ho
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RNN Computational Graph
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RNN Computational Graph
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RNN Computational Graph
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RNN Computational Graph

Re-use the same weight matrix at every time-step
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RNN Computational Graph (Many to Many)

Y1

Y

Y3

o £,
W/ -

Justin Johnson
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Y1
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RNN Computational Graph (Many to Many)

Y1

Y3

Y1

o £,
W/ -

Justin Johnson

> Ll y2 g L2
fw " ha fw
X5 X3
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RNN Computational Graph (Many to Many) L

/'
Y1 " Ly Y> 1L Y3 1 L3 YT 1L
ho fW > hl fW > hz fW h3 — ‘e — hT
X4 X X3
W
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RNN Computational Graph (Many to One)

Y
ho fW > hl fW > hz fW h3 — ‘e — hT
X1 X2 X3
W
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RNN Computational Graph (One to Many)

Y1 Y2 Y3 Y1
ho fW > hl fW > hz fW h3 — ‘e — hT
X
W
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Sequence to Sequence (seg2seq)
(Many to one) + (One to many)

Many to one: Encode input
sequence in a single vector

ho 1 fw hy fw — h; fw — hs — —hr |—
' X X X
W, 1 2 3

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Sequence to Sequence (seg2seq)
One to many: Produce
(Many to One) + (One to many) output sequence from

single input vector
Many to one: Encode input

sequence in a single vector Vi Y
y 4&
hO > fW hl > fW _"hz > fW _"h?, — "t hT - fW hl > fW _"hz g fW —
W, X1 X2 X3 W,

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Example: Language Modeling

Given characters 1, 2, ..., t-1,
model predicts character t

Training sequence: “"hello”

Vocabulary: [h, e, |, 0]

Justin Johnson

input layer

input chars:

Lecture 12 - 30

Sl =

O |loo-o

= |lo~0coO
< losoo
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Example: Language Modeling

Given characters 1, 2, ..., t-1,
model predicts character t

0.3 1.0 0.1 -0.3
h; = tanh(Whhht_l —+ Wmhfl?t) hidden layer | -0.1 0.3 05 ="109
0.9 0.1 0.3 0.7

Y
\4

Training sequence: “"hello”

input layer

0. [Sfe=Na —»
=[S

1
0
0
0
“h”

Vocabulary: [h, e, |, o] oUehers
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Example: Language Modeling

. target chars: ‘€’ il “I” “0”
Given characters 1, 2, ..., t-1, — — — =
model predicts character t output layer | 22 > e i

4.1 1.2 -1.1 2.2
[ A R 2"
0.3 1.0 0.1 -0.3
h; = tanh(Whhht_l - tha:t) hidden layer | -0.1 ~ 0.3 05 """ 09
0.9 0.1 -0.3 07
[ R B 2
° . L ) 1 0 0 0

Training sequence: “hello putiyer | O 3 : :

0 0 0 0
Vocabl“ary: [h) €, l) O] input chars:  “h” “@” | “I7
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Example: Language Modeling ©iven "h" predict “e”

o,

target chars:| ‘e’

Given characters 1, 2, ..., t-1,

05 0.1 0.2
model predicts character t output ayer e 02 il
12 -1.1 2.2
T e
1.0 01 -0.3
ht - tanh(Whhht_l - tha:t) hidden layer 0.3 >~ -0.5 AL 0.9
0.1 0.3 0.7
1w
I L ) 0 0 0
Training sequence: “hello e 3 : :
0 0 0
Vocabl“ary: [h) €, l) O] input chars “@” | “I7
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lll”

Example; Language |\/|Ode|mg Given “he”, predict

Vocabulary: [h, e, |, 0]

input chars:} “h”

. target chars: ‘€’ I “0”
Given characters 1, 2, ..., t-1, - =
model predicts character t output layer 2 il
1.1 2.2
T TW_hy
0.1 -0.3
ht o tanh(Whhht_l —+ tha:t) hidden layer -0.5 rm 0.9
0.3 07
T TW_xh
. . ” ” 0 0
Training sequence: “hello otiaver : :
0 0
i -
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Example; Language |\/|Ode|mg Given “hel”, predict

Given characters 1, 2, ..., t-1,
model predicts character t

hi = tanh(Wprhi—1 + Wapat)

Training sequence: “"hello”

Vocabulary: [h, e, |, 0]

Justin Johnson

((I”

target chars: ‘€’

output layer

hidden layer

input layer

input chars:} “h”
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Example: Language Modeling ©iven "hell’, predict “o”

Given characters 1, 2, ..., t-1,
model predicts character t

hi = tanh(Wprhi—1 + Wapat)

Training sequence: “"hello”

Vocabulary: [h, e, |, 0]

Justin Johnson

target chars: ‘€’

output layer

hidden layer

input layer

input chars:} “h”
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Example: Language Modeling

At test-time, generate new
text: sample characters one
at a time, feed back to model

Training sequence: “"hello”

Vocabulary: [h, e, |, 0]

Justin Johnson Lecture 12 - 37

Sample

Softmax

output layer

hidden layer

input layer

input chars:

o

e
)

.03
13
.00
.84

?

1.0
2.2
-3.0
4.1

|

0.3
-0.1
0.9

1
0
0
0
Hh”
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Example: Language Modeling

At test-time, generate new
text: sample characters one
at a time, feed back to model

Training sequence: “"hello”

Vocabulary: [h, e, |, 0]

Justin Johnson Lecture 12 -

Sample

Softmax

output layer

hidden layer

input layer

input chars:

l(e/\
!

.03
13
.00
.84

-3.0

1.0
2.2

4.1

0.3

-0.1
0.9

=

OO -~0

CD-
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Example: Language Modeling e/\ Y

Sample ¢ »

.03 .25

, Softmax | os

At test-time, generate new ‘; --"T°
text: sample characters one 10 05
. output layer e o
at a time, feed back to model ar| | |12
0.3 1.0

hidden layer | -0.1 > 0.3

0.9 0.1

Training sequence: “hello” i 0
input layer 8 (1)

. 0 0

Vocabulary: [h, e, |, 0] e :
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Example: Language Modeling e/\ W [\ ‘0

Sample ¢ 3, % 4

.03 .25 A1 A1

, Softmax | 00 os p 08

At test-time, generate new 8¢ --‘;0 -0: -7:

text: sample characters one 10 05 0. 02

. output layer _%% -(‘)I?) ?g :(1)?

at a time, feed back to model a1 12 A1 22
R

viciden ayer (RN | SRR | S Inn R

0.9 0.1 -0.3 0.7
T : ” ’) T T T TW—Xh

Training sequence: “hello i 0 0 0

input layer 0 1 0 0

0 0 1 1

. 0 0 0 0

Vocabulary: [h, e, |, 0] W - L b Ll
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Example: Language Modeling ’ W [\ §

embedding layer

e 0
Sample 3 3 $ 3
So far: encode inputs P o p po
' Softmax | o || |5 || & || |5
as one-hot-vector 84 50 03 75
i i i i
1.0 0.5 0.1 0.2
- o - output layer %% (ﬁ) El)g 2)513
(Wqp Wip Wig Wyg) [1] 0 [wyy 4{ 1{ '1{ TW h
(W1 Woy Wo3 Wig) [0] = [wy -
. T rA- - 03 1.0 0.1 |wlhn! -0-3
_W31 W32 W33 W14_ O _W31 hiddgn layer | -0.1 > 0.3 > -0.5 —F— 0.9
O 0.9 0.1 -0.3 07
. . . - . W_xh
Matrix multiply with a one-hot vector just I l I I o
extracts a column from the weight matrix. input ayer | 0 i : 0
Often extract this into a separate 0 0 0 0
input chars:  “h” “@” ajs e
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Example: Language Modeling

target chars: ‘e’ e “7 “0”
. 1.0 0.5 0.1 0.2
SO fa I. enCOde |npUtS output layer _%% 3?(’) (1)2 :(1)?
4.1 1.2 -1.1 2.2
as one-hot-vector
T T T Wy
nidden layer | 0.1 |—| 03 —|-05 ["=" 00
(Wqq Wip Wiz Wog| [1) W11 0:3 0: 'i'3 0:
:W21 W22 W23 W14j :Oj = _W21_ .03 .25 11 11
(W31 W3y W33 Wiy] [0 Wy P p 8 o8
O .84 .50 .03 .03
. . . - . W xh
Matrix multiply with a one-hot vector just I l l I —
extracts a column from the weight matrix. input layer | 0 t 0 0
Often extract this into a separate 0 0 0 0
input chars:  “nh” “e” Al I

embedding layer
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Forward through entire sequence to

BaCkprOpagatiOﬂ Th rough T|me compute loss, then backward through

entire sequence to compute gradient

\ 4
\4
\4
\4
\4
\4
\ 4
\ 4
\4
\4
\4
\4
\4
\4
\4
\4
\4
\4
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Forward through entire sequence to

BaCkprOpagatiOﬂ Th rough T|me compute loss, then backward through

entire sequence to compute gradient

Problem: Takes a lot of

Loss
memory for Ion% \\

\ 4
\4
\4
\4
\4
\4
\ 4
\ 4
\4
\4
\4
\4
\4
\4
\4
\4
\4
\4
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Truncated Backpropagation Through Time

Loss

t
//( / \ \\ Run forward and backward
through chunks of the sequence

instead of whole sequence
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Truncated Backpropagation Through Time

/

Loss

TN

I I \

Justin Johnson

Lecture 12 - 46

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller number
of steps
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Truncated Backpropagation Through Time

Loss

/1IN

[ I \
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min-char-rnn.py: 112 lines of Python

Minimal character-level vanilla RNN model. Written by Andrej Karpathy (@karpathy)

BSD License

import numpy as np

data = en('input.txt', 'r').read()

chars = list(set(data))

data_size, vocab_size = len(data), len(chars)

print 'data has %d characters, %d unique.' % (data_size, vocab_size)

char_to_ix = { ch:i for i,ch in umerate(chars) }
ix_to_char = { i:ch for i,ch in enumerate(chars) }

seq_length = 2

hidden_size = 100
learning_rate =

wxh = np.random.randn(hidden_size, vocab_size)*0.01
whh = np.random.randn(hidden_size, hidden_size)*0.01
why = np.random.randn(vocab_size, hidden_size)*e.e1
bh = np.zeros((hidden_size, 1))
by = np.zeros((vocab_size, 1))

un(inputs, targets, hprev):

inputs, targets are both list of integers.
hprev is Hx1 array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state

xs, hs, ys, ps = {}, {}, {3, O
hs[-1] = np.copy(hprev)
loss = @

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size,1))
xs[t][inputs[t]] = 1

hs[t] = np.tanh(np.dot(wxh, xs[t]) + np.dot(whh, hs[t-1]) + bh)

ys[t] = np.dot(why, hs[t]) + by
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))
loss += -np.log(ps[t][targets[t],e])

dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh),
dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[e])
for t in reversed(xrai len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1
dwhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(why.T, dy) + dhnext
dhraw = (1 - hs[t] * hs[t]) * dh
dbh += dhraw
dwxh np.dot(dhraw, xs[t].T)
dwhh += np.dot(dhraw, hs[t-1].T)
dhnext = np.dot(whh.T, dhraw)
for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam)
return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]

Justin Johnson

def sample(h, seed_ix, n):
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
x = np.zeros((vocab_size, 1))
x[seed_ix] = 1
ixes = []
for t in xrange(n):
h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)
y np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())
X = np.zeros((vocab_size, 1))
x[ix] = 1
ixes.append(ix)
return ixes

n,p=9o, 0

mwxh, mwWhh, mwWhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)

mbh, mby = np.zeros_like(bh), np.zeros_like(by)
smooth_loss = -np.log(1l.0/vocab_size)*seq_length
while True:

if p+seg_length+1 >= (data) or n == @:

hprev = np.zeros((hidden_size, 1))

p=0
inputs = [char_to_ix[ch] for ch in data[p:p+seg_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 100
sample_ix = sample(hprev, inputs[e], 200)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n----' % (txt, )

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets,

smooth_loss = smooth_loss + loss

if n % 100 ©: print 'iter

001

d, loss: %f' % (n, smooth_loss)

for param, dparam, mem in zip([wxh, whh, why, bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[mwxh, mwhh, mwhy, mbh, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + 1e-8)

+= seq_length
n+=1

©

(https://gist.github.com/karp

athy/d4dee566867f8291f086
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https://gist.github.com/karpathy/d4dee566867f8291f086

THE SONNETS

by William Shakespeare y

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, —_—
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held: X
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.
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tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

at first:
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fi ] tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at rirst: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

l train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

Lecture 12 - 51 October 12, 2020

Justin Johnson



fi ] tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at rirst: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

l train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.
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fi ] tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at rirst: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

l train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
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PANDARUS:

Alas, I think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Justin Johnson

Lecture 12 - 54

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.
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The Stacks Project: Open-Source Algebraic Geometry Textbook

2 The Stacks Project
home about tagsexplained taglookup browse search bibliography recentcomments blog add slogans
Browse chapters Parts
1. Preliminaries
Part Chapter online TeXsource view pdf 2. Schemes
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex()  pdf > 4. Algebraic Spaces
: ‘ . 5. Topics in Geometry
2. Conventions onI!ne tex()  pdf » 6. Deformation Theory
3. SetTheory online tex()  pdf > 7. Algebraic Stacks
4. Categories online tex()  pdf > 8. Miscellany
5. Topology onI!ne tex() pdf > Statistics
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex()  pdf > The Stacks project now consists of
8. Stacks online tex() pdf > o 455910 lines of code
9. Fields online tex() pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex() pdf > o 2366 sections

Latex source /

http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License
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For @, -, . where L,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=UxxUxxU
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 7?7 and the fact that

any U affine, see Morphisms, Lemma 7?. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

= U U; Xs; U;
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,2’, s” € S’ such that Ox ;» = O, ., is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(z’/S")
and we win. a
To prove study we see that F|y is a covering of A”, and 7; is an object of Fx /s for

i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

A7® _ e -—1
M*=1 ®Spcc(k) OS» =y -F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S)7y ¢, (Sch/S) fppy

and

V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example ?7. It may
replace S by X paces,étale Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??7. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim |X| (by the formal open covering X and a single map Proj x(A) =
Spec(B) over U compatible with the complex

Set(A) = T'(X,O0x.0y)-

When in this case of to show that Q@ — Cz;x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a

closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,_, ,, Ui be the scheme X over
S at the schemes X; — X and U = lim; Xj. O

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx;g. Set I =
J1 CZI]. Since I™ C I™ are nonzero over igp < p is a subset of T, 00 A, works.

Lemma 0.3. In Situation ??7. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (?7). On the
other hand, by Lemma ?? we see that

D(Ox+) = Ox(D)

where K is an F-algebra where 4,4, is a scheme over S. a
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Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Ooy = Ox(£)

Proof. This is an algebraic space with the composition of sheaves F on Xz, we
have

Ox (F) = {morphy xo, (G,F)}
where G defines an isomorphism F — F of O-modules. O
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma 77, O
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: XY a9Ya3YaY xxY o X
be a morphism of algebraic spaces over S and Y .

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of

finite type.

O

This since F € F and = € G the diagram

S —

|

§ Ox:
gor, I \

=a ——a X
Spec(Ky) Mor gets d(O,\»'\,/&.g)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

e Oy is a sheaf of rings.

0

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. O

Proof. This is clear that G is a finite presentation, see Lemmas ?7.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz — Fz -UOx,0.) — Ox,0x,(0%,)
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. a

If F is a finite direct sum Ox, is a closed immersion, see Lemma 7?. This is a
A
sequence of F is a similar morphism.

Justin Johnson

Lecture 12 -57

October 12, 2020




O This repository

torvalds / linux

Linux kermel source tree

520,037 commits 1 branch

Explore Gist Blog Help &l varpathy +. & |

420 releases

¥

@ Watch. 3,711 * Star 23,054 Y Fork 9,141

<
8,039 contributors Code

-master- linux/+

Bl v oo

Merge branch ‘drm-fixes’ of giti/people.freedesktop.org/~airledlinux

m torvalds authored 9 hours ago

Documentation Merge gitJ/igit kemel.org/pub/scmAinux/ke
arch Merge branch %86-urgent-for-linus’ of git

block

crypto Mergs

» !
drivers Merge branch ‘drm-fixes’ of
firmware firmwarafihex2fw.c: restore missing def
fs vis: read i@ hand y N
inciude Merge branch ‘perf-urgent-for-linus’ of g
init L FIX e ression oY supp g ( WVICEeSsS W
- (¥ '
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Pull requests
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U

atest commit 4b1706927d i+
Fulse
J gay
f a y ol
Graphs
y cay

= Gy HTTPS clone URL
M X 9 ++ 0 f ithut ’ f:.
it ' You can clone with HTTPS,
" SRR SSH, or Subversion. ®
3 S Oay i
. a day & Clone in Desktop
’ iset | ih ag <> Download ZIP
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static void do_command(struct seq file *m, void *v)

{

i:t(::::::; = 32 << (cmd[2] & 0x80); Generated
C code

cmd = (int)(int state ® (in_8(&ch->ch flags) & Cmd) ? 2 : 1);
else
seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & 0x00000000fff£f£f£f£f8) & 0x000000f) << 8;
if (count == 0)
sub(pid, ppc md.kexec handle, 0x20000000);
pipe_set bytes(i, 0);

subsystem info = &of changes[PAGE SIZE];
rek _controls(offset, idx, &soffset);

control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq_puts(s, “policy ");
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static void stat PC_SEC _ read mostly offsetof(struct seq argsqueue, \
pC>[1]);

static void
os prefix(unsigned long sys)

{

PUT PARAM RAID(2, sel) = get state state();
set pid sum((unsigned long)state, current state str(),
(unsigned long)-1->1r full; low;
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Searching for Interpretable Hidden Units

\ 4
\ 4
\ 4
\4
\4
\4
\ 4
\ 4
\ 4
\4
\ 4
\4
\ 4
\4
\4
\4
\4
\4

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for Interpretable Hidden Units

{ltr—eid_trﬂno"rei-tlt-i firom Wser-space
it packLstring(W@lid *mbufp, sBzelt NEEWEN, s¥ize_: e

= = ;—n))
’
urrently plem@nted tring Ffilelds X
e ngestyalid Jth '

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for Interpretable Hidden Units

"

guote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for Interpretable Hidden Units

Cell sensitive to position in line:

The sole importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block its path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
who were with the French transport, all--carried on by vis inertiae- -
pressed forward into boats and into the ice-covered water and did not,

surrender.

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for Interpretable Hidden Units

(pending, mask);

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for Interpretable Hidden Units

Cell that turns on inside comments and quotes:

quote/comment cell

| ——

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Searching for Interpretable Hidden Units

#ifdef CONFIG_AUDITSYSCALL
static i1inline int audit _match_class_bits(int class, u32 *"mask)
{
imtias
1 (classesclass )i
for (1 = ©0; 1 < AUDIT_BITMASK_SIZE; i++)
if (mask[i] & classes[class][1i])
return 0;
} 4
return 1;
}

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
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Example: Image Captioning

“straw” “hat” END

START “straw” “hat”

Mao et al, “Explain Images with Multimodal Recurrent Neural Networks”, NeurlPS 2014 Deep Learning and Representation Workshop
Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating Image Descriptions”, CVPR 2015

Vinyals et al, "Show and Tell: A Neural Image Caption Generator”, CVPR 2015
Donahue et al, “Long-term Recurrent Convolutional Networks for Visual Recognition and Description”, CVPR 2015

Chen and Zitnick, “Learning a Recurrent Visual Representation for Image Caption Generation”, CVPR 2015
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Example: Image Captioning

“straw” “hat” Recurrent
Neural
Network

START “Straw" Mhat"

Convolutional Neural Network
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|

image

This image is CCO public domain

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

FC-10Q0
sofiax

Transfer learning: Take
CNN trained on ImageNet,
chop off last layer
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https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CCO public domain

. image <

J

conv-64
conv-64

maxpool

conv-128

conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512 x0

maxpool

FC-4096

FC-4096 Q7
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https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

|

image

This image is CCO public domain

conv-64
conv-64

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

Before:
ht — tanh(Whhht_l + thxt + bh)

Now:
tanh(Whhht_l + thxt + Wihv + bh)
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https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CCO public domain

| image | *

conv-64

conv-64

maxpool
Sample
— f word and
CcoO to
conv-256 ht = tanh(Whhht_l + thxt ~+ bh) Py

conv-256 I n p u t

maxpool

conv-128

conv-128

Before:

conv-512

conv-512 N ow: “
maxpool tanh(Whhht—l + thxt + Wihv + bh)

conv-512

conv-512

maxpool

FC-4096
FC-4096
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|

image

This image is CCO public domain

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

Justin Johnson

Before:
ht — tanh(Whhht_l + thxt + bh)

Now:
tanh(Whhht_l + thxt + Wihv + bh)
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input
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https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CCO public domain

| image | *

conv-64

conv-64

maxpool

Sample
Before: f f f~ word and
maxpool

copy to
Lonv2o8 ht — tanh(Whhht_l + thxt + bh) : by
conv-256 Input

maxpool

conv-128

conv-128

>
o
A 4
-
[N
A 4
>
N

conv-512

conv-512 N ow: “ “ “
maxpool tanh(Whhht—l + thxt + Wihv + bh)

conv-512

conv-512 x1 X2

maxpool

FC-4096
FC-4096
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This image is CCO public domain

. image | *

conv-64

conv-64

maxpool

v Vi v2 3 | Sample
Before: i i i word and
maxpool

copy to
Lonv2o8 ht — tanh(Whhht_l + thxt + bh) : by
conv-256 3 INpu t

conv-128

conv-128

>
o
A 4
-
[N
A 4
>
N
\ 4

maxpool

conv-512

conv-512 NOW: “ “ “ “
maxpool tanh(Whhht—l + thxt + Wihv + bh)

conv-512

conv-512 x1 X2 x3

maxpool

FC-4096
FC-4096
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|

image

This image is CCO public domain

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096

Before:
ht — tanh(Whhht_l + thxt + bh)

Now:
tanh(Whhht_l + thxt + Wihv + bh)

Stop after sampling <END> token
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7
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https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

neuraltalk2
CCO Public domain: cat
suitcase, cat tree, dog, bear, surfers

Image Captioning: Example Results

A cat sitting on a suitcase A cat is sitting on a tree A dog is running in the grass A white teddy bear sitting in
on the floor branch with a frisbee the grass

Two people walking on the A tennis player in action on Two giraffes standing in a A man riding a dirt bike on a
beach with surfboards the court grassy field dirt track
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https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Captions generated using neuraltalk2
All images are CCO Public domain: fur coat,
handstand, spider web, baseball

Image Captioning: Failure Cases

e A bird is perched on a
b tree branch
, .

A Wman is holding a cat
in her hand

A manina
baseball uniform
throwing a ball

A woman standing on a beach
holding a surfboard

A person holding a computer
mouse on a desk
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https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Vanilla RNN Gradient Flow

ht — tanh(Whhht_l + thxt + bh)

W tanh ’
= tanh (Whh th) ( L= 1) + bh
h, ; ‘ stack —» h, Xt

L P = tanh (W (h)tc_l) + bh)

| t
Xy

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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Vanilla RNN Gradient Flow

Backpropagation from
h, to h,; multiplies by W
(actually W, ,,7)

ht — tanh(Whhht_l + thxt + bh)

h,_
l L = tanh (Whh th) ( t 1) + bh
h, i~ ~ stack — h, " Xt
S I y = tanh (W ( ;;1) + bh)

Bengio et al, “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, ICML 2013
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Vanilla RNN Gradient Flow

e I 4 I e ™\
Wﬂgﬁ tanh W—> - tanh W—> - tanh W—> - tanh
ol ol ol
-1 > stack —> —T—» stack —> —T—» stack —> —T—» stack —>
h0<— T hl“ T T h2<— T T h3“ T T h4
N | J N | J N | J N | J
X1 Xy X3 X4

Computing gradient of
h, involves many
factors of W

(and repeated tanh)
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Vanilla RNN Gradient Flow

/ ) (" ) (" )
Wﬂgﬁ tanh W—> - tanh W—> - tanh W—> - tanh
hO:—> stack —_> h1:—> stack ‘ L—_» hZ:—> stack ‘ L—_» h3:—> stack ‘ L—_» h4
N | J N T J N T J N T J
X1 X X3 X4

Largest singular value > 1:

Computing gradient of Exploding gradients

h, involves many
factors of W

L t singul lue < 1:
(and repeated tanh) argest singular value

Vanishing gradients
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Vanilla RNN Gradient Flow

/ R e R / N
Wﬂgﬁ tanh W— - tanh W— - tanh W— - tanh
L L L L L L
hO:_> stack —_> h1:—> stack L—_» hZ:—> stack L—_» h3:—> stack L—_» h4
" | J " T J " T J " T J
Xl X2 X3 X4
: . Largest singular value > 1: Gradient clipping: Scale
Computing gradient of . . — Y . .
) Exploding gradients gradient if its norm is too big
h, involves many
factors of W . grad_norm = np.sum(grad * grad)
(and repeated tanh) Largest singular value < 1: if grad_norm > threshold:
P Vanishing gradients grad *= (threshold / grad_norm)
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Vanilla RNN Gradient Flow

/ ) (" ) (" )
Wﬂgﬁ tanh W—> - tanh W—> - tanh W—> - tanh
hO:—> stack —_> h1:—> stack ‘ L—_» hZ:—> stack ‘ L—_» h3:—> stack ‘ L—_» h4
N | J N T J N T J N T J
X1 X X3 X4

Largest singular value > 1:

Computing gradient of Exploding gradients

h, involves many
factors of W
(and repeated tanh)

Largest singular value < 1:

T ) — Change RNN architecture!
Vanishing gradients
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Long Short Term Memory (LSTM)

Vanilla RNN

h, = tanh (W i1 + by,
X

t

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
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Long Short Term Memory (LSTM)

Vanilla RNN LSTM
h, = tanh (W (h;—l) + bh) / ]‘f g .
P )2 Yoz en
0; o Xy
\gt tanh
e =ft Oco1+i O g
h, = o, ® tanh(c,)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
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Long Short Term Memor

Vanilla RNN

v (LSTM)

LSTM

h, = tanh (W i1 + by,
X

t

Two vectors at each timestep:
Cell state: ¢, € R? —

04 o
\gt tanh
¢t =ft Oce—1+1i O gt
h, = o, ® tanh(c,)

YR
(5 )t

Xt

Hidden state: h, € RE —

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997
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Long Short Term Memory (LSTM)

Vanilla RNN LSTM

h,_ L o
ht=tanh(W(t1)+bh) /t

. o )=\ o () o)

/ Ot g "
Compute four “gates” per timestep: \gt tanh
Input gate:it ERY (¢, = f, O ¢y + i O gy

. wH
Forget gate: f, € RH h, = o, © tanh(c,)

Output gate: o, € R

“Gate?” gate: g, € R¥

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Xt
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Long Short Term Memory (LSTM)

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell

Input vector (x) g: Gate gate (?), How much to write to cell
X sigmoid |— | i
o, Lt o
h sigmoid |— | f ft | [ o ( (ht—l) )
W o = o W X, + by,
Previous sigmoid |—— | 0 J¢ tanh
hidden ¢t =ft Oco1 +i O g¢
state (h) tanh | — g hy; = o; O tanh(c;)
4h x 2h 4h 4*h
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Long Short Term Memory (LSTM)

a N

Ct-]_ > @I —_— -‘|: —_— Ct

~ f

— | v it 0}

W—>C“>__> _,::O tanh ft _ 0) (W (ht—l) n b )
& l 0; o Xt h
ht ] > stack i Jt tanh
ack || 5 bO —— h —— |
L t ) = Oc1+itOge
hy = oy O tanh(c;)
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Long Short Term Memory (LSTM): Gradient Flow

-

~

Cr1 ’ ?: j—
~ f
W_'Q_:;:,::@ t;nh
h, 1 N stack | 5 : i htj
Xt

Backpropagation from c,
to c.; only elementwise
multiplication by f, no
matrix multiply by W

" o
(2 )
Ot 0) xt
Jt tanh
¢t =ft OcC—1+it O gt
hy = oy O tanh(c;)
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Long Short Term Memory (LSTM): Gradient Flow

Uninterrupted gradient flow!

a N\ a N\ a N\
Co- P ——Cp YT ¢ ——Cy P ¢ ——C3
; ‘ l T ‘ l T ‘ l
oL oL oL
W ?Lg_l_,@ tz1nh W ?’Lg_l_,@ tz1nh W ?’Lg_l_,@ tz1nh
—T—» stack —T—» stack —T—» stack
\___f O °—~h7y—~ Wy ro———e=h7~ \___ v O h7
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Long Short Term Memory (LSTM): Gradient Flow

Uninterrupted gradient flow!

O O
204——:C4< =?<_—> <_—>C<——=C"< =?<_—>

. . | o] K0 CO] ICO < 1%
< BX < | PX < | PX P< P< < | X
Similar to BN BIEL BIE 0
51E | BLe BlBls BlBloBlBl FIEL BB ELE LS 5 s BIBLOBIBLS BIBL I ElE
1 1 1 < H 1 1 . 1 1 1
o S BIEIBIBIBIBICT B[P EIEE N[O >0 2<>2 4»2 S o =
[ o

=1 = EIEl EIE =kl =
ReSNet! ollel Bl Rl B
N

eXg
eXe
A eXe
eXg
oXg
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TeT
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Long Short Term Memory (LSTM): Gradient Flow

Uninterrupted gradient flow!

H
|
O

!
|
(@)

v
—h
O ———— +
<—
0
v
—h
O ———— +
<—
N
v
—h
O ———— +
<—

>
| >
| >
>
B
1
B
D
B

In between: Highway Networks

ICO)
Simil Sl G E SRR NS 1kl | LK | Kl
imilarto LI LI EENEENEEL EE L TEEEELEEL LEE g = F Ce, W)
2| E | Ele BlBls BIBIs BIBls EIE I ELE LS ELE L o»: >0 B} Bls BIBIs BIBI S| L] E
| C B BRI EBIE BIEI B EIET EIEI -~ EIEl BIEI BIB ElBlE
ResN - = HGoWy) +(1—g0) O
esNet! IRl RIR RIR FPlE BE B IRl RIR RIR Yt th (X, h t Xt
N

Srivastava et al, “Highway Networks”, ICML DL Workshop 2015
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Single-Layer RNNs

h, = tanh (W -1 + by,
X

t

LST M: Yo| |V1 Y2 |Y3 Ya| |Ys A
Lt 0) } } . . . .
ft — o (W ht—l 1+ b ) t"o h, h, hs ha hs he
0, o Xy h SN O |y
J¢ tanh

e =ft Oco1 +1: O g; oI (Xa X2 (X5 (Xl %S| Xe

h; = o, O® tanh(c;) :
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_ denth t Two-layer RNN: Pass hidden
Muti |ayer RNNS P states from one RNN as inputs
to another RNN
hi_
hf — tanh W ;_1 + bf; Yo Y1 Y2 Y3 Ya Ys Ye
t £
LSTM: h2o—th2,— I h2—H 2 Iz —4hz |l
. f
(i) o rr ot
£ £
ft _ o hy_4 v hig— ht—H hi—tht—thi,—dhi i b,
v w -1 +bh
Ot o h; . . . . . . .
\ g/ tanh
ggt b b . P Y Xo X1 X2 X3 Xq Xs Xe
e = ff Oceo1 +ir O gy
£ __ 1 £
h;y = o; © tanh(ct) i

Justin Johnson Lecture 12 - 98 October 12, 2020



Three-layer RNN

MUt”ayer RNNSs Yo Ivi| (V2 |vs| Yo |Vs| |V
ht RN
hi = tanh [ W ;:1 + b}, o gfhy— B 35— — i,
hi
LSTM: h2o—th2,— I h2—H 2 Iz —4hz |l
. f
(i) o rrror 1T
£ £
ft _ 0) W ht—l n bf hl, hi, ht, hi, hl—s hi hic
0f o hi? " AN
\ ? / tanh
ggt P b . P P Xo X1 X2 X3 Xa X5 X6
e = ff Oceo1 +ir O gy
£ _ P £
h;y = o; © tanh(ct) i
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Other RNN Variants

Gated Recurrent Unit (GRU)

Cho et al “Learning phrase representations
using RNN encoder-decoder for statistical
machine translation”, 2014

re = 0(Werxe + Wypheq + by)
zy = 0(Wyzxy + Whzhe—1 + b,)
he = tanh(Wypxe + Whp(rr O he—q) + by)
hy =2 Oheog +(1—2) O Ry
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10,000 architectures with evolutionary search:

Other RNN Variants Jozefowicz et al, “An empirical exploration of

recurrent network architectures”, ICML 2015

. MUTI:
Gated Recurrent Unit (GRU)
" . . z = sigm(Wgx,+by)
Cho et al “Learning phrase representations S ool = T
using RNN encoder-decoder for statistical hesr = tanh(Win(r © hy) + tanh(ze) + by) © 2
machine translation”, 2014 F o=
— MUT2:
1y = o(Wyrxe + Wirhe_q + by) T
z = sigm(Wex, + Wighy + b,
Zt — O-(szxt + thht_l + bZ) r = sigm(x; + Wy hy +5b;)
7 hes1 = tanh(Wian(r @ he) + Wenze + bn) © 2
hy = tanh(W,px¢ + Wy (rr O he—q1) + bp) S
h’t — Zt @ ht—l + (1 o Zt) @ ht MUT3:
z = sigm(Wex, + Wy, tanh(hy) + b,)
r = sigm(Weze + Wihe + b;)
hepr = tmh(nm,( D he) + Wenze +by) © 2

_+.

0 (1-2)
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RNN Architectures: Neural Architecture Search

Learned Archi:cecture

elem_mult

identity

Zoph and Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
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Ssummary

RNNs allow a lot of flexibility in architecture design
Vanilla RNNs are simple but don’t work very well
Common to use LSTM or GRU: additive interactions improve gradient flow
Backward flow of gradients in RNN can explode or vanish.

Exploding is controlled with gradient clipping.

Vanishing is controlled with additive interactions (LSTM)
Better/simpler architectures are a hot topic of current research
Better understanding (both theoretical and empirical) is needed.
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Next Time: Attention
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