
Justin Johnson October 5, 2020

Lecture 10:
Training Neural Networks

(Part 1)

Lecture 1 - 1

Justin Johnson October 5, 2020

Reminder: A3

• Due Friday, October 9

Lecture 10 - 2

Justin Johnson October 5, 2020

Midterm Exam

Lecture 10 - 3

We are still working out details! Will share more on Wednesday

- Will (most likely) be online via https://crabster.org/
- Material up to Lecture 13 is fair game
- Mostly conceptual questions, no coding
- Some combination of:

- True / False
- Multiple choice
- Short answer (math on paper)

- If you need accommodations, send your SSD letter to me

https://crabster.org/

Justin Johnson October 5, 2020

Last Time: Hardware and Software

Lecture 10 - 4

CPU GPU TPU

Static Graphs vs
Dynamic Graphs

PyTorch vs
TensorFlow

Justin Johnson October 5, 2020

Overview

Lecture 10 - 5

1.One time setup
Activation functions, data preprocessing, weight
initialization, regularization

2.Training dynamics
Learning rate schedules; large-batch training;
hyperparameter optimization

3.After training
Model ensembles, transfer learning

Justin Johnson October 5, 2020

Overview

Lecture 10 - 6

1.One time setup
Activation functions, data preprocessing, weight
initialization, regularization

2.Training dynamics
Learning rate schedules; large-batch training;
hyperparameter optimization

3.After training
Model ensembles, transfer learning

Today

Next time

Justin Johnson October 5, 2020

Activation Functions

Lecture 10 - 7

Justin Johnson October 5, 2020

Activation Functions

Lecture 10 - 8

Justin Johnson October 5, 2020

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Justin Johnson October 5, 2020

Activation Functions: Sigmoid

Lecture 10 - 10

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

𝜎 𝑥 =
1

1 + 𝑒!"

Justin Johnson October 5, 2020

Activation Functions: Sigmoid

Lecture 10 - 11

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients

𝜎 𝑥 =
1

1 + 𝑒!"

Justin Johnson October 5, 2020

Activation Functions: Sigmoid

Lecture 10 - 12

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

Justin Johnson October 5, 2020

Activation Functions: Sigmoid

Lecture 10 - 13

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients

𝜎 𝑥 =
1

1 + 𝑒!"

Justin Johnson October 5, 2020

Activation Functions: Sigmoid

Lecture 10 - 14

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered

𝜎 𝑥 =
1

1 + 𝑒!"

Justin Johnson October 5, 2020Lecture 10 - 15

Consider what happens when
nonlinearity is always positive

What can we say about the gradients on 𝑤 ℓ ?

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ

ℎ!
(ℓ) is the 𝑖th element of the hidden layer at

layer ℓ (before activation)
𝑤 ℓ , b ℓ are the weights and bias of layer ℓ

Justin Johnson October 5, 2020Lecture 10 - 16

What can we say about the gradients on 𝑤 ℓ ?

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ

ℎ!
(ℓ) is the 𝑖th element of the hidden layer at

layer ℓ (before activation)
𝑤 ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when
nonlinearity is always positive

Justin Johnson October 5, 2020Lecture 10 - 17

What can we say about the gradients on 𝑤 ℓ ?
Always all positive or all negative :(

hypothetical
optimal w
vector

allowed
gradient
update
directions

allowed
gradient
update
directions

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ

ℎ!
(ℓ) is the 𝑖th element of the hidden layer at

layer ℓ (before activation)
𝑤 ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when
nonlinearity is always positive

Justin Johnson October 5, 2020Lecture 10 - 18

What can we say about the gradients on 𝑤 ℓ ?
Always all positive or all negative :(
(For a single element! Minibatches help)

hypothetical
optimal w
vector

allowed
gradient
update
directions

allowed
gradient
update
directions

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ

ℎ!
(ℓ) is the 𝑖th element of the hidden layer at

layer ℓ (before activation)
𝑤 ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when
nonlinearity is always positive

Justin Johnson October 5, 2020

Activation Functions: Sigmoid

Lecture 10 - 19

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered

𝜎 𝑥 =
1

1 + 𝑒!"

Justin Johnson October 5, 2020

Activation Functions: Sigmoid

Lecture 10 - 20

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have

nice interpretation as a saturating
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. exp() is a bit compute expensive

𝜎 𝑥 =
1

1 + 𝑒!"

Justin Johnson October 5, 2020

Activation Functions: Tanh

Lecture 10 - 21

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

Justin Johnson October 5, 2020

Activation Functions: ReLU

Lecture 10 - 22

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

Justin Johnson October 5, 2020

Activation Functions: ReLU

Lecture 10 - 23

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

Justin Johnson October 5, 2020

Activation Functions: ReLU

Lecture 10 - 24

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

Justin Johnson October 5, 2020

Activation Functions: ReLU

Lecture 10 - 25

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

Justin Johnson October 5, 2020Lecture 10 - 26

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

Justin Johnson October 5, 2020Lecture 10 - 27

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

=> Sometimes initialize ReLU
neurons with slightly positive
biases (e.g. 0.01)

Justin Johnson October 5, 2020

Activation Functions: Leaky ReLU

Lecture 10 - 28

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

Leaky ReLU
𝑓 𝑥 = max 𝛼𝑥, 𝑥
𝛼 is a hyperparameter,
often 𝛼 = 0.1

Justin Johnson October 5, 2020

Activation Functions: Leaky ReLU

Lecture 10 - 29

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013
He et al, “Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification”, ICCV 2015

Leaky ReLU
𝑓 𝑥 = max 𝛼𝑥, 𝑥
𝛼 is a hyperparameter,
often 𝛼 = 0.1

Parametric ReLU (PReLU)
𝑓 𝑥 = max 𝛼𝑥, 𝑥
𝛼 is learned via backprop

Justin Johnson October 5, 2020

Activation Functions: Exponential Linear Unit (ELU)

Lecture 10 - 30

(Default alpha=1)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime

compared with Leaky ReLU
adds some robustness to noise

- Computation requires exp()𝑓 𝑥 = -
𝑥 𝑖𝑓 𝑥 > 0

𝛼 𝑒" − 1 𝑖𝑓 𝑥 ≤ 0

Justin Johnson October 5, 2020

Activation Functions: Scaled Exponential Linear Unit (SELU)

Lecture 10 - 31

𝛼 = 1.6732632423543772848170429916717
𝜆 = 1.0507009873554804934193349852946

- Scaled version of ELU that
works better for deep networks

- “Self-Normalizing” property;
can train deep SELU networks
without BatchNorm

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

𝑠𝑒𝑙𝑢 𝑥 = -
𝜆𝑥 𝑖𝑓 𝑥 > 0

𝜆𝛼 𝑒" − 1 𝑖𝑓 𝑥 ≤ 0

Justin Johnson October 5, 2020

Activation Functions: Scaled Exponential Linear Unit (SELU)

Lecture 10 - 32

- Scaled version of ELU that
works better for deep networks

- “Self-Normalizing” property;
can train deep SELU networks
without BatchNorm

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

Derivation takes
91 pages of math
in appendix…

𝛼 = 1.6732632423543772848170429916717
𝜆 = 1.0507009873554804934193349852946

Justin Johnson October 5, 2020

Activation Functions: Gaussian Error Linear Unit (GELU)

Lecture 10 - 33

𝑋~𝑁 0, 1
𝑔𝑒𝑙𝑢 𝑥 = 𝑥𝑃 𝑋 ≤ 𝑥 =

𝑥
2
1 + erf 𝑥/√2

≈ 𝑥𝜎 1.702𝑥 Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

- Idea: Multiply input by 0 or 1
at random; large values more
likely to be multiplied by 1,
small values more likely to be
multiplied by 0
(data-dependent dropout)

- Take expectation over
randomness

- Very common in Transformers
(BERT, GPT, GPT-2, GPT-3)

Justin Johnson October 5, 2020Lecture 10 - 34

93.8

95.3

94.8

94.2

95.6

94.7

94.1

95.1

94.594.6
94.9

94.7

94.1 94.1
94.4

93
93.2

93.9
94.3

95.5

94.894.7

95.5

94.8

90

91

92

93

94

95

96

ResNet Wide ResNet DenseNet

Accuracy on CIFAR10
ReLU Leaky ReLU Parametric ReLU Softplus ELU SELU GELU Swish

Ramachandran et al, “Searching for
activation functions”, ICLR Workshop 2018

Justin Johnson October 5, 2020

Activation Functions: Summary

Lecture 10 - 35

- Don’t think too hard. Just use ReLU
- Try out Leaky ReLU / ELU / SELU / GELU

if you need to squeeze that last 0.1%
- Don’t use sigmoid or tanh

Justin Johnson October 5, 2020

Data Preprocessing

Lecture 10 - 36

Justin Johnson October 5, 2020

Data Preprocessing

Lecture 10 - 37

(Assume X [NxD] is data matrix,
each example in a row)

Justin Johnson October 5, 2020

Remember: Consider what happens when the
input to a neuron is always positive...

Lecture 10 - 38

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical
optimal w
vector

allowed
gradient
update
directions

allowed
gradient
update
directions

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ

Justin Johnson October 5, 2020

Data Preprocessing

Lecture 10 - 39

(Assume X [NxD] is data matrix,
each example in a row)

Justin Johnson October 5, 2020

Data Preprocessing

Lecture 10 - 40

In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

(covariance matrix is
the identity matrix)

Justin Johnson October 5, 2020

Data Preprocessing

Lecture 10 - 41

Before normalization: classification
loss very sensitive to changes in
weight matrix; hard to optimize

After normalization: less sensitive to
small changes in weights; easier to
optimize

Justin Johnson October 5, 2020

Data Preprocessing for Images

Lecture 10 - 42

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Divide by per-channel std (e.g. ResNet)

(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to
do PCA or
whitening

Justin Johnson October 5, 2020

Weight Initialization

Lecture 10 - 43

Justin Johnson October 5, 2020

Weight Initialization

Lecture 10 - 44

Q: What happens if we
initialize all W=0, b=0?

Justin Johnson October 5, 2020

Weight Initialization

Lecture 10 - 45

Q: What happens if we
initialize all W=0, b=0?

A: All outputs are 0, all
gradients are the same!
No “symmetry breaking”

Justin Johnson October 5, 2020

Weight Initialization

Lecture 10 - 46

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)

Justin Johnson October 5, 2020

Weight Initialization

Lecture 10 - 47

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)

Works ~okay for small networks, but
problems with deeper networks.

Justin Johnson October 5, 2020

Weight Initialization: Activation Statistics

Lecture 10 - 48

Forward pass for a 6-layer
net with hidden size 4096

Justin Johnson October 5, 2020

Weight Initialization: Activation Statistics

Lecture 10 - 49

Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero for
deeper network layers

Q: What do the gradients
dL/dW look like?

Justin Johnson October 5, 2020

Weight Initialization: Activation Statistics

Lecture 10 - 50

Forward pass for a 6-layer
net with hidden size 4096

All activations tend to zero for
deeper network layers

Q: What do the gradients
dL/dW look like?

A: All zero, no learning =(

Justin Johnson October 5, 2020

Weight Initialization: Activation Statistics

Lecture 10 - 51

Increase std of initial weights
from 0.01 to 0.05

Justin Johnson October 5, 2020

Weight Initialization: Activation Statistics

Lecture 10 - 52

Increase std of initial weights
from 0.01 to 0.05

All activations saturate

Q: What do the gradients look
like?

Justin Johnson October 5, 2020

Weight Initialization: Activation Statistics

Lecture 10 - 53

Increase std of initial weights
from 0.01 to 0.05

All activations saturate

Q: What do the gradients look
like?

A: Local gradients all zero, no
learning =(

Justin Johnson October 5, 2020

Weight Initialization: Xavier Initialization

Lecture 10 - 54

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Justin Johnson October 5, 2020

Weight Initialization: Xavier Initialization

Lecture 10 - 55

“Just right”: Activations are
nicely scaled for all layers!

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Justin Johnson October 5, 2020

Weight Initialization: Xavier Initialization

Lecture 10 - 56

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
kernel_size2 * input_channels

“Xavier” initialization:
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Justin Johnson October 5, 2020

Weight Initialization: Xavier Initialization

Lecture 10 - 57

“Xavier” initialization:
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi) [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2) [Assume x, w independent]

= Din * Var(xi) * Var(wi) [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$

Justin Johnson October 5, 2020

Weight Initialization: Xavier Initialization

Lecture 10 - 58

“Xavier” initialization:
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi) [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2) [Assume x, w independent]

= Din * Var(xi) * Var(wi) [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$

Justin Johnson October 5, 2020

Weight Initialization: Xavier Initialization

Lecture 10 - 59

“Xavier” initialization:
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi) [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2) [Assume x, w independent]

= Din * Var(xi) * Var(wi) [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$

Justin Johnson October 5, 2020

Weight Initialization: Xavier Initialization

Lecture 10 - 60

“Xavier” initialization:
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi) [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2) [Assume x, w independent]

= Din * Var(xi) * Var(wi) [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$

Justin Johnson October 5, 2020

Weight Initialization: Xavier Initialization

Lecture 10 - 61

“Xavier” initialization:
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi) [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2) [Assume x, w independent]

= Din * Var(xi) * Var(wi) [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$

Justin Johnson October 5, 2020

Weight Initialization: What about ReLU?

Lecture 10 - 62

Change from tanh to ReLU

Justin Johnson October 5, 2020

Weight Initialization: What about ReLU?

Lecture 10 - 63

Xavier assumes zero centered
activation function

Activations collapse to zero
again, no learning =(

Change from tanh to ReLU

Justin Johnson October 5, 2020

Weight Initialization: Kaiming / MSRA Initialization

Lecture 10 - 64

”Just right” – activations nicely
scaled for all layers

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Justin Johnson October 5, 2020

Weight Initialization: Residual Networks

Lecture 10 - 65

relu

Residual Block

conv

conv

F(x) + x

F(x)

relu

X

If we initialize with MSRA: then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x) – variance grows
with each block!

Justin Johnson October 5, 2020

Weight Initialization: Residual Networks

Lecture 10 - 66

relu

Residual Block

conv

conv

F(x) + x

F(x)

relu

X

If we initialize with MSRA:
then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x)
variance grows with each block!

Solution: Initialize first conv with
MSRA, initialize second conv to
zero. Then Var(x + F(x)) = Var(x)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019

Justin Johnson October 5, 2020

Proper initialization is an active area of research

Lecture 10 - 67

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

Justin Johnson October 5, 2020

Now your model is training … but it overfits!

Lecture 10 - 68

Regularization

Justin Johnson October 5, 2020

Regularization: Add term to the loss

Lecture 10 - 69

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)

Justin Johnson October 5, 2020

Regularization: Dropout

Lecture 10 - 70

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Justin Johnson October 5, 2020

Regularization: Dropout

Lecture 10 - 71

Example forward
pass with a 3-layer
network using
dropout

Justin Johnson October 5, 2020

Regularization: Dropout

Lecture 10 - 72

Forces the network to have a redundant
representation; Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous
look

X

X

X

cat
score
cat
score

Justin Johnson October 5, 2020

Regularization: Dropout

Lecture 10 - 73

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...

Justin Johnson October 5, 2020

Dropout: Test Time

Lecture 10 - 74

Dropout makes our output random!

Output
(label)

Input
(image)

Random
mask

Want to “average out” the randomness at test-time

But this integral seems hard …

𝒚 = 𝑓# 𝒙, 𝒛

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = .𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧

Justin Johnson October 5, 2020

Dropout: Test Time

Lecture 10 - 75

Want to approximate
the integral

Consider a single neuron:

At test time we have: 𝐸 𝑎 = 𝑤%𝑥 + 𝑤&𝑦
a

x y

w1 w2

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧

Justin Johnson October 5, 2020

Dropout: Test Time

Lecture 10 - 76

Want to approximate
the integral

Consider a single neuron:

At test time we have: 𝐸 𝑎 = 𝑤%𝑥 + 𝑤&𝑦
During training we have: 𝐸 𝑎 = !

"
𝑤!𝑥 + 𝑤#𝑦 + !

"
𝑤!𝑥 + 0𝑦

+ !
" 0𝑥 + 0𝑦 + !

" 0𝑥 + 𝑤#𝑦

= !
𝑤!𝑥 + 𝑤#𝑦

a

x y

w1 w2

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧

Justin Johnson October 5, 2020

Dropout: Test Time

Lecture 10 - 77

Want to approximate
the integral

Consider a single neuron:

At test time we have: 𝐸 𝑎 = 𝑤%𝑥 + 𝑤&𝑦
During training we have: 𝐸 𝑎 = !

"
𝑤!𝑥 + 𝑤#𝑦 + !

"
𝑤!𝑥 + 0𝑦

+ !
" 0𝑥 + 0𝑦 + !

" 0𝑥 + 𝑤#𝑦

= !
𝑤!𝑥 + 𝑤#𝑦

a

x y

w1 w2

At test time, drop
nothing and multiply
by dropout probability

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧

Justin Johnson October 5, 2020

Dropout: Test Time

Lecture 10 - 78

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

Justin Johnson October 5, 2020

Dropout Summary

Lecture 10 - 79

drop in forward pass

scale at test time

Justin Johnson October 5, 2020

More common: “Inverted dropout”

Lecture 10 - 80

test time is unchanged!

Drop and scale
during training

Justin Johnson October 5, 2020

Dropout architectures

Lecture 10 - 81

0

20000

40000

60000

80000

100000

120000

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

AlexNet vs VGG-16
(Params, M)

AlexNet VGG-16

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

Dropout here!

Justin Johnson October 5, 2020

Dropout architectures

Lecture 10 - 82

0

20000

40000

60000

80000

100000

120000

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

AlexNet vs VGG-16
(Params, M)

AlexNet VGG-16

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

Dropout here! Later architectures (GoogLeNet,
ResNet, etc) use global average
pooling instead of fully-connected
layers: they don’t use dropout at all!

Justin Johnson October 5, 2020

Regularization: A common pattern

Lecture 10 - 83

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

𝑦 = 𝑓> 𝑥, 𝑧

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧

Justin Johnson October 5, 2020

Regularization: A common pattern

Lecture 10 - 84

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

Example: Batch
Normalization

Training: Normalize
using stats from
random minibatches

Testing: Use fixed
stats to normalize

𝑦 = 𝑓> 𝑥, 𝑧

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧

Justin Johnson October 5, 2020

Regularization: A common pattern

Lecture 10 - 85

Training: Add some kind of
randomness

Testing: Average out randomness
(sometimes approximate)

Example: Batch
Normalization

Training: Normalize
using stats from
random minibatches

Testing: Use fixed
stats to normalize

For ResNet and later,
often L2 and Batch
Normalization are
the only regularizers!

𝑦 = 𝑓> 𝑥, 𝑧

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧

Justin Johnson October 5, 2020

Data Augmentation

Lecture 10 - 86

Load image
and label “cat”

CNN

Compute
loss

This image by Nikita is
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Justin Johnson October 5, 2020

Data Augmentation

Lecture 10 - 87

Transform image

Load image
and label “cat”

CNN

Compute
loss

Justin Johnson October 5, 2020

Data Augmentation: Horizontal Flips

Lecture 10 - 88

Justin Johnson October 5, 2020

Data Augmentation: Random Crops and Scales

Lecture 10 - 89

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Justin Johnson October 5, 2020

Data Augmentation: Random Crops and Scales

Lecture 10 - 90

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Justin Johnson October 5, 2020

Data Augmentation: Color Jitter

Lecture 10 - 91

Simple: Randomize
contrast and brightness

More Complex:
1. Apply PCA to all [R, G, B]

pixels in training set
2. Sample a “color offset”

along principal
component directions

3. Add offset to all pixels
of a training image

(Used in AlexNet, ResNet, etc)

Justin Johnson October 5, 2020

Data Augmentation: Get creative for your problem!

Lecture 10 - 92

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)

Justin Johnson October 5, 2020

Regularization: A common pattern

Lecture 10 - 93
Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Examples:
Dropout
Batch Normalization
Data Augmentation

Training: Add some randomness
Testing: Marginalize over randomness

Justin Johnson October 5, 2020

Regularization: DropConnect

Lecture 10 - 94
Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Justin Johnson October 5, 2020

Regularization: Fractional Pooling

Lecture 10 - 95

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Graham, “Fractional Max Pooling”, arXiv 2014

Justin Johnson October 5, 2020

Regularization: Stochastic Depth

Lecture 10 - 96

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Justin Johnson October 5, 2020

Regularization: Stochastic Depth

Lecture 10 - 97

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout

Training: Set random images regions to 0
Testing: Use the whole image

DeVries and Taylor, “Improved Regularization of Convolutional
Neural Networks with Cutout”, arXiv 2017

Works very well for small datasets like CIFAR, less
common for large datasets like ImageNet

Justin Johnson October 5, 2020

Regularization: Mixup

Lecture 10 - 98

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout
Mixup

Training: Train on random blends of images
Testing: Use original images

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels of
pairs of training images, e.g.
40% cat, 60% dog

CNN
Target label:
cat: 0.4
dog: 0.6

Sample blend
probability from a beta
distribution Beta(a, b)
with a=b≈0 so blend
weights are close to 0/1

Justin Johnson October 5, 2020

Regularization: Mixup

Lecture 10 - 99

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout
Mixup

Training: Train on random blends of images
Testing: Use original images

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels of
pairs of training images, e.g.
40% cat, 60% dog

CNN
Target label:
cat: 0.4
dog: 0.6

Justin Johnson October 5, 2020

Regularization: Mixup

Lecture 10 - 100

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout
Mixup

Training: Train on random blends of images
Testing: Use original images

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

- Consider dropout for large fully-
connected layers

- Batch normalization and data
augmentation almost always a
good idea

- Try cutout and mixup especially
for small classification datasets

Justin Johnson October 5, 2020

Summary

Lecture 10 - 101

1.One time setup
Activation functions, data preprocessing, weight
initialization, regularization

2.Training dynamics
Learning rate schedules; large-batch training;
hyperparameter optimization

3.After training
Model ensembles, transfer learning

Today

Next time

Justin Johnson October 5, 2020

Next time:
Training Neural Networks

(part 2)

Lecture 10 - 102

