Lecture 10:
Training Neural Networks

(Part 1)

Justin Johnson Lecture1-1 October 5, 2020

Reminder: A3

* Due Friday, October 9

Justin Johnson Lecture 10 - 2 October 5, 2020

Midterm Exam

We are still working out details! Will share more on Wednesday

- Will (most likely) be online via https://crabster.org/
- Material up to Lecture 13 is fair game
- Mostly conceptual questions, no coding
- Some combination of:
- True / False
- Multiple choice
- Short answer (math on paper)
- If you need accommodations, send your SSD letter to me

Justin Johnson Lecture 10 -3 October 5, 2020

https://crabster.org/

Last Time: Hardware and Software

CPU GPU TPU

Static Graphs vs PyTorch vs
Dynamic Graphs TensorFlow

Justin Johnson Lecture 10 - 4 October 5, 2020

Overview

1.0ne time setup
Activation functions, data preprocessing, weight
initialization, regularization

2.Training dynamics
Learning rate schedules; large-batch training;
hyperparameter optimization

3.After training
Model ensembles, transfer learning

Justin Johnson Lecture 10 -5 October 5, 2020

Overview

1.0ne time setup

Activation functions, data preprocessing, weight Today
initialization, regularization
2.Training dynamics
Learning rate schedules; large-batch training;
hyperparameter optimization Next time

3.After training
Model ensembles, transfer learning

Justin Johnson Lecture 10 -6 October 5, 2020

Activation Functions

Justin Johnson Lecture 10 - 7 October 5, 2020

Activation Functions

L) Wy

*@® synapse
axon from a neuron
wox(

cell body

f (Z wW;T; + b)

|
output axon

activation
function

W11

f

W2

Justin Johnson Lecture 10 - 8 October 5, 2020

Activation Functions

Sigmoid
1
14+e—2

o(x) =

tanh
tanh(x)

RelU
max(0, x)

Justin Johnson

Leaky RelLU

max(0.1x, x)

Maxout

10 f
10

max(wi x + by, wd z + by)

ELU

{a(ex — 1)

Lecture 10-9

x>0
x <0

10,

October 5, 2020

Activation Functions: Sigmoid

(x) = —

Oo\X) =

1, 1+e™*
Squashes numbers to range [0,1]
Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

D

~-10 10

Sigmoid

Justin Johnson Lecture 10 - 10 October 5, 2020

Activation Functions: Sigmoid

(x) = —

Oo\X) =

1, 1+e™*
Squashes numbers to range [0,1]
Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

D

_10 10 3 problems:

Sigmoid

1. Saturated neurons “kill” the gradients

Justin Johnson Lecture 10 - 11 October 5, 2020

Activation Functions: Sigmoid

Justin Johnson

o(z) =1/(1+e)

X | 1Qc/| sigmoid
« i % gate
9L _ 00 9L
ox Ox Oo
What happens when x =-107
What happens when x =07
What happens when x =107

OL
oo

Lecture 10-12

1.0
08

06F

od|

/U.Q '

..........

Lot
-10

|
o

October 5, 2020

Activation Functions: Sigmoid

(x) = —

Oo\X) =

1, 1+e™*
Squashes numbers to range [0,1]
Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

D

_10 10 3 problems:

Sigmoid

1. Saturated neurons “kill” the gradients

Justin Johnson Lecture 10 - 13 October 5, 2020

Activation Functions: Sigmoid

(x) = —

Oo\X) =

1, 1+e™*
Squashes numbers to range [0,1]
Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

D

_10 10 3 problems:

Sigmoid

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered

Justin Johnson Lecture 10 - 14 October 5, 2020

Consider what happens when
nonlinearity is always positive

(£) _ E (£) (£=1) (£)
J

hl@ is the ith element of the hidden layer at
layer £ (before activation)
w® b® are the weights and bias of layer £

What can we say about the gradients on w)?

Justin Johnson Lecture 10 - 15 October 5, 2020

Consider what happens when
nonlinearity is always positive

(£) _ E (£) (£=1) (£)
J

hl@ is the ith element of the hidden layer at
layer £ (before activation)
w® b® are the weights and bias of layer £

What can we say about the gradients on w)?

Justin Johnson Lecture 10 - 16 October 5, 2020

Consider what happens when
nonlinearity is always positive

allowed
gradient
{ £ -1 £
A = wido (hD) + b upcate
_ /] J | directions
J
) . _ . allowed
h;"’ is the ith element of the hidden layer at gradient
layer £ (before activation) update
) H&) i i irecti
w'*’, b\’ are the weights and bias of layer £ directions hypothetical
. optimal w
What can we say about the gradients on w(®)? vector

Always all positive or all negative :(

Justin Johnson Lecture 10-17 October 5, 2020

Consider what happens when
nonlinearity is always positive

allowed
gradient
{ £ -1 £
A = wido (hD) + b upcate
_ /] J | directions
J
) . _ . allowed
h;"’ is the ith element of the hidden layer at gradient
layer £ (before activation) update
) H&) i i irecti
w'*’, b\’ are the weights and bias of layer £ directions hypothetical
. optimal w
What can we say about the gradients on w(®)? vector

Always all positive or all negative :(
(For a single element! Minibatches help)

Justin Johnson Lecture 10 - 18 October 5, 2020

Activation Functions: Sigmoid

(x) = —

Oo\X) =

1, 1+e™*
Squashes numbers to range [0,1]
Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

D

_10 10 3 problems:

Sigmoid

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered

Justin Johnson Lecture 10 - 19 October 5, 2020

Activation Functions: Sigmoid

(x) = —

Oo\X) =

1, 1+e™*
Squashes numbers to range [0,1]
Historically popular since they have
nice interpretation as a saturating
“firing rate” of a neuron

D

_10 10 3 problems:

Sigmoid

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. exp() is a bit compute expensive

Justin Johnson Lecture 10 - 20 October 5, 2020

Activation Functions: Tanh

Squashes numbers to range [-1,1]
zero centered (nice)
still kills gradients when saturated :(

tanh(x)

Justin Johnson Lecture 10 - 21 October 5, 2020

Activation Functions: RelLU f(x) = max(0,x)

Does not saturate (in +region)

101
Very computationally efficient
Converges much faster than
sigmoid/tanh in practice (e.g. 6x)
-10 10
RelU

(Rectified Linear Unit)

Justin Johnson Lecture 10 - 22 October 5, 2020

Activation Functions: RelLU f(x) = max(0,x)

10- - Does not saturate (in +region)
Very computationally efficient
Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

Not zero-centered output

~10 10

RelU
(Rectified Linear Unit)

Justin Johnson Lecture 10 - 23 October 5, 2020

Activation Functions: RelLU f(x) = max(0,x)

10- - Does not saturate (in +region)
Very computationally efficient
Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

Not zero-centered output
An annoyance:

~10 10

RelU
(Rectified Linear Unit) hint: what is the gradient when x < 0?

Justin Johnson Lecture 10 - 24 October 5, 2020

Activation Functions: RelLU

10,

(18] ReLy J(x):max(O,fc)

< 833 gate <
OL Oo % OL

ox B % oo oo ~10 10

’_

What happens when x =-107
What happens when x =07
What happens when x =107

Justin Johnson Lecture 10 - 25 October 5, 2020

active RelLU
> DATA CLOUD

dead RelU
will never activate
=> never update

Justin Johnson Lecture 10 - 26 October 5, 2020

e

active RelLU
> DATA CLOUD

D

VoS

=> Sometimes initialize ReLU
neurons with slightly positive
biases (e.g. 0.01)

R

dead RelU
will never activate

Justin Johnson

=> never update

Lecture 10 - 27 October 5, 2020

Activation Functions: Leaky RelLU

Does not saturate
Computationally efficient
Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)
will not “die”.

10,

10

-1

Leaky RelLU

f(x) = max(ax, x)

« is a hyperparameter,
often @ = 0.1

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

Justin Johnson Lecture 10 - 28 October 5, 2020

Activation Functions: Leaky RelLU

- Does not saturate

- Computationally efficient

- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

10,

10

Leaky RelLU Parametric ReLU (PRelLU)
f(x) = max(ax, x) f(x) = max(ax, x)

« is a hyperparameter, a is learned via backprop
often @ = 0.1

He et al, “Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification”, ICCV 2015

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

Justin Johnson Lecture 10 - 29 October 5, 2020

Activation Functions: Exponential Linear Unit (ELU)

10-
All benefits of RelLU
Closer to zero mean outputs
Negative saturation regime
compared with Leaky RelLU
B - adds some robustness to noise
Y
X if x>0
flx) = {a(ex —1) ifx<0 - Computation requires exp()

(Default alpha=1)

Justin Johnson Lecture 10 - 30 October 5, 2020

Activation Functions: Scaled Exponential Linear Unit (SELU)

10

- Scaled version of ELU that
works better for deep networks

- “Self-Normalizing” property;
can train deep SELU networks

=5 - without BatchNorm
(.
Ax if x>0
selu(x) = 3 .
(%) Aa(e*—=1) ifx<0

o
A

= 1.6732632423543772848170429916717
= 1.0507009873554804934193349852946

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

Justin Johnson Lecture 10 - 31 October 5, 2020

Activation Functions: Scaled Exponential Linear Unit (SELU

e 0<p<land0<w< 0L
gis increasing in 2 and increasi

9(1,0.1,3,1.25, A1, a01) = —0.0180173 . @3)

inw. Wesetp=1andw =0.1.

Therefore the maximal value of g is —0.0180173,

A3.3 Proof of Theorem 3

First we recall Theorem 3:
Theorem (Increasing v). We consider A = Mo, & = oo and the two domains QO =
{(mw,v,7) | =01 < p < 0.1,-01 € w < 01,005 < v < 0.16,08 < 7 < 1.25} and
Q= {(jtw,r,7)| —01< p<01,-0.1 <w<0.1,005 < v <0.24,09 <7< 125}
The mapping of the variance (s, w, v, 7, \, &) given in Eq. (S) increases
P w,n,m Mo, a0n) > v 4

in both Q and Q. All fixed points (1, v) of mapping Eq. (5) and Eq. (4) ensure for 0.8 < 7 that
7> 0.16 and for 0.9 < 7 that 7 > 0.24. Consequently, the variance mapping Eq. (5) and Eq. (4)
ensures a lower bound on the variance v.
Proof. The mean value theorem states that there exists a ¢ € [0, 1] for which

&,y o1, @01) = (4,0, Vinin, T, Mon, @01) = “s)

5 -

S @y Hmin =), 7 Aor, a01) (v = Vinin) -
‘Therefore

£,y M1, 001) = €1, Viuin, 7, dor, a01) + (46)

min) -

s, + Hotmin =), dov,) (v =

Therefore we are interested to bound the derivative of the ¢-mapping Eq. (13) with respect to v:

%é(u,w,u. s a0) = @n
e () (20

(k)

‘The sub-term Eq. (308) enters the derivative Eq. (47) with a negative sign! According to Lemma 18,
the minimal value of sub-term Eq. (308) is obtained by the largest largest v, by the smallest 7, and
the largest y = pw = 0.01. Also the positive term erfc ﬁ%) +2 is multiplied by 7, which is
‘minimized by using the smallest 7. Therefore we can use the smallest 7 in whole formula Eq. (47) to
Tower bound it.

First we consider the domain 0.05 < » < 0.16 and 0.8 < 7 < 1.25. The factor consisting of the
exponential in front of the brackets has its smallest value for e~ #4005, Since erfc is monotonically
decreasing we inseted the smalest argument via exfc (24 in order o obtain the maximal
negative contribution. Thus, applying Lemma 18, we obtain the lower bound on the derivative:
Lyreit (nz (, (arte (&) — 26l 55) erte (&))) -

2 N e

608 +0,01> _
N2v016-08

0.01
e [~) +2 960231
°< \/2\/0,05»03))) > 096923

est (). We follow the proof of Lemma 8,
al and = = v7 must be minimal. Thus, the
o1, a01) = 0.0662727 for 0.05 < » and

(Lemma 43) provide

L aon)’ > “9)
0.01281115 + 0.969231y >

>v.

< 7 < 1.25. The factor consisting of the

r e~ #5575 Since erfc is monotonically

oo\ : . j
2k) in order to obtain the maximal

the derivative:

L) o (M2) o

4-09 +0.01) _
f2v021-09

0.01
e (——=——) +2)) > 0.976952
c(V2v/0.05 0.9)))

lest (/). We follow the proof of Lemma 8,
jal and 2 = v must be minimal. Thus, the
01, 01) = 0.0738404 for 0.05 < v and
H on (j2)? (Lemma 43) gives

001)” > 1)
= 0.0199928 + 0.976952v >

> v

ofs
cobian norm smaller than one

the Jacobian of the mapping g is smaller
en true in 2 larger domain than the original
xtend to 7 € [0.8, 1.25]. The range of the
ollowing domain throughout this section:
.8, 1.23].

n the following, we denote two Jacobians: (1) the Jacobian 7 of the
and (2) the Jacobian of the mapping g : (4,) = (i, 7) because the
ind many properties of the system can already be scen on J.

W T)

w e _ T Fia

0 H)* (Tor = 20T ez — 2) 3

f the Jacobian 7 is:

aifl([l,u, v, Aa) = (54)
u

vt 0

ﬁﬁ) Em(ﬁﬁ)”)

o .,) 5
w +

%E(wv v Aa) = (56)

pw + vt

< ﬁm)*

“”) + (27“&(o)) B

agur) Vayur Va

%5’(,‘,% v, 7, A, 0) 7

) o))

largest singular value of the Jacobian. If the largest singular value
1, then the spectral norm of the Jacobian is smaller than 1. Then the
f the mean and variance to the mean and variance in the next layer is

lar value is smaller than 1 by evaluating the function S(u, w, v, 7, , @)
ean Value Theorem to bound the deviation of the function 5 between
e have to bound the gradient of S with respect to (4w, v, 7). If all
imes the deltas (differences between grid points and evaluated points)
have proofed that the function is below 1.

2 matrix

4= (o) 58

a1 ax;

) + (a2 — 012)® + Vo —an) + (a2 +an)?) (59

an) + (a2 —012)* = V0o —a2)* + (a2 +an)?) . (60)

20

Scaled version of ELU that
works better for deep networks
“Self-Normalizing” property;
can train deep SELU networks
without BatchNorm

Derivation takes
91 pages of math
in appendix...

= 1.6732632423543772848170429916717
= 1.0507009873554804934193349852946

Lecture 10 - 32

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

Justin Johnson

October 5, 2020

Activation Functions: Gaussian Error Linear Unit (GELU)

3 - ldea: Multiply input by O or 1
at random; large values more
likely to be multiplied by 1,
small values more likely to be
multiplied by O
(data-dependent dropout)
Take expectation over

-1- randomness
X~N(0,1) X - Very common in Transformers
gelu(x) = xP(X < x) = 5(1 +erf(x/v2)) (BERT, GPT, GPT-2, GPT-3)

~ x0(1.702x)

Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

Justin Johnson Lecture 10 - 33 October 5, 2020

96

95

94

93

92

91

90

B RelLU m Leaky ReLU m Parametric RelLU

ResNet

Justin Johnson

Accuracy on CIFAR10

95.5 95.5

Wide ResNet

Lecture 10 - 34

Ramachandran et al, “Searching for
activation functions”, ICLR Workshop 2018

Softplus m ELU mSELU m GELU m Swish

948947 94.8 94.8

DenseNet

October 5, 2020

Activation Functions: Summary

- Don’t think too hard. Just use RelLU

- Try out Leaky RelU / ELU / SELU / GELU
if you need to squeeze that last 0.1%

- Don’t use sigmoid or tanh

Justin Johnson Lecture 10 - 35 October 5, 2020

Data Preprocessing

Justin Johnson Lecture 10 - 36 October 5, 2020

Data Preprocessing

original data zero-centered data normalized data

10 10 . 10

:°%o A
_' 3. 5

o,
PaRE
“‘,4

-10 . -10 :
1Q =10 -5 0 5 1, -10 -5 0 5 10

X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Justin Johnson Lecture 10 - 37 October 5, 2020

Remember: Consider what happens when the
input to a neuron is always positive...

allowed
gradient
update
p p ’1 p ’directions
1O = o (hD) + b0
] J L allowed
J gradient
update
directions :
hypothetical
What can we say about the gradients on w? xzfgral v

Always all positive or all negative :(
(this is also why you want zero-mean data!)

Justin Johnson Lecture 10 - 38 October 5, 2020

Data Preprocessing

original data zero-centered data normalized data

10 10 . 10

:°%o A
_' 3. 5

o,
PaRE
“‘,4

-10 . -10 :
1Q =10 -5 0 5 1, -10 -5 0 5 10

X -= np.mean(X, axis = 0) X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Justin Johnson Lecture 10 - 39 October 5, 2020

Data Preprocessing

In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

10 10

10

1g T =5 0 B 1 -10 =5 0 5 10

(data has diagonal (covariance matrix is
covariance matrix) the identity matrix)

Justin Johnson Lecture 10 - 40 October 5, 2020

Data Preprocessing

Before normalization: classification After normalization: less sensitive to
loss very sensitive to changes in small changes in weights; easier to
weight matrix; hard to optimize optimize

\ AR

Justin Johnson Lecture 10 - 41 October 5, 2020

Data Preprocessing for Images

e.g. consider CIFAR-10 example with [32,32,3] images

Subtract the mean image
(mean image = [32,32,3] array)
Subtract per-channel mean
(mean along each channel = 3 numbers)
Subtract per-channel mean and
Not common to

Divide by per-channel std o PCA oF
(mean along each channel = 3 numbers) whitening

Justin Johnson Lecture 10 - 42 October 5, 2020

Weight Initialization

Justin Johnson Lecture 10 - 43 October 5, 2020

Weight Initialization

Q: What happens if we
initialize all W=0, b=07?

output layer
input layer
hidden layer

Justin Johnson Lecture 10 - 44 October 5, 2020

Weight Initialization

Q: What happens if we
initialize all W=0, b=07?

A: All outputs are 0O, all
gradients are the same!
No “symmetry breaking”

output layer
input layer
hidden layer

Justin Johnson Lecture 10 - 45 October 5, 2020

Weight Initialization

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)

W= 0.0l * np.random.randn(Din, Dout)

Justin Johnson Lecture 10 - 46 October 5, 2020

Weight Initialization

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)

W= 0.0l * np.random.randn(Din, Dout)

Works ~okay for small networks, but
problems with deeper networks.

Justin Johnson Lecture 10 - 47 October 5, 2020

Weight Initialization: Activation Statistics

dims = [4096] * 7 Forward pass for a 6-layer

hs = [] net with hidden size 4096

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W= 0.0l * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))
hs.append(x)

Justin Johnson Lecture 10 - 48 October 5, 2020

Weight Initialization: Activation Statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero for

hs = [] net with hidden size 4096 deeper network layers
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[l:]): Q: What do the gradients
W= 0.01 * np.random.randn(Din, Dout) ad
X = np.tanh(x.dot(W)) dL/dW look like:

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

Justin Johnson Lecture 10 - 49 October 5, 2020

Weight Initialization: Activation Statistics

dims =
hs = []

X = np.random.randn(16, dims[0])

[4096] * 7 Forward pass for a 6-layer All activations tend to zero for
net with hidden size 4096 deeper network Iayers

for Din, Dout in zip(dims[:-1], dims[1:]): Q: Whatdo the gradients

W= 0.01 * np.random.randn(Din, Dout) dL/dW | .
ook like?
X = np.tanh(x.dot(W)) /

e e) A: All zero, no learning =(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00
std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

Justin

Johnson Lecture 10 - 50 October 5, 2020

Weight Initialization: Activation Statistics

dims = [4096] * 7 Increase std of initial weights
hs = [] from 0.01 to 0.05

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1l:]):
W= 0.05 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))

hs.append(Xx)

Justin Johnson Lecture 10 - 51 October 5, 2020

Weight Initialization: Activation Statistics

dims = [4096] * 7 Increase std of initial weights All activations saturate

hs = [] from 0.01 to 0.05

X = np.random.randn(16, dims[0]) Q: What do the gradients look
for Din, Dout in zip(dims[:-1], dims[1l:]): |ike?

W = 0.05 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W))

hs.append(Xx)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

Justin Johnson Lecture 10 - 52 October 5, 2020

Weight Initialization: Activation Statistics

dims = [4096] * 7 Increase std of initial weights
hs = [] from 0.01 to 0.05
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[l:]):

All activations saturate

Q: What do the gradients look
like?

W = 0.05 * np.random.randn(Din, Dout)
X = np.tanh(x.dot(W)) A: Local gradients all zero, no
hs.append(Xx) Iearning :(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00
std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

Justin Johnson Lecture 10 - 53

October 5, 2020

Weight Initialization: Xavier Initialization

dims = [4096] * 7 “Xavier” initialization:

hs = [] std = 1/sqrt(Din)

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1]1, dims[1:]):

W = np.random.randn(Din, Dout) / np.sqrt(Din)
X = np.tanh(x.dot(W))

hs.append (Xx)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Justin Johnson Lecture 10 - 54 October 5, 2020

Weight Initialization: Xavier Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are

hs = [] std = 1/sqrt(Din) ' I
% = np.random.randn(16, dims[0]) nicely scaled for all layers!

for Din, Dout in zip(dims[:-1], dims[1:]):
W = np.random.randn(Din, Dout) / np.sqrt(Din)
X = np.tanh(x.dot(W))

hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

-1 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Justin Johnson Lecture 10 - 55 October 5, 2020

Weight Initialization: Xavier Initialization

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are

hs = [] std = 1/sqrt(Din) ' I
% = np.random.randn(16, dims[0]) nicely scaled for all layers!

for Din, Dout in zip(dims[:-1], dims[1:]):
W = np.random.randn(Din, Dout) / np.sqrt(Din)| For conv |ayer5’ Din is
X = np.tanh(x.dot(W))

kernel_size? * input_channels

hs.append (Xx)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

-1 0 1

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Justin Johnson Lecture 10 - 56 October 5, 2020

Weight Initialization: Xavier Initialization “Xavier” initialization;
std = 1/sqrt(Din)

Derivation: Variance of output = Variance of input

Din

y = Wx Yi =2ijj

J=1

Justin Johnson Lecture 10 - 57 October 5, 2020

Weight Initialization: Xavier Initialization “Xavier” initialization;
std = 1/sqrt(Din)

Derivation: Variance of output = Variance of input

Din
y = Wx Yi = 2 XjW;j
j=1
Var(y;) = Din * Var(x,w;) [Assume x, w are iid]

Justin Johnson Lecture 10 - 58 October 5, 2020

Weight Initialization: Xavier Initialization “Xavier” initialization;
std = 1/sqrt(Din)

Derivation: Variance of output = Variance of input

Din
y = Wx Yi = 2 XjW;j
j=1
Var(y;) = Din * Var(x,w;) [Assume x, w are iid]

= Din * (E[x.?]E[w;?] - E[x]? E[w.]?) [Assume x, w independent]

Justin Johnson Lecture 10 - 59 October 5, 2020

“Xavier” initialization:

Weight Initialization: Xavier Initialization |
std = 1/sqrt(Din)

Derivation: Variance of output = Variance of input

Din
y = Wx Yi = 2 XjW;j
j=1
Var(y;) = Din * Var(x,w;) [Assume x, w are iid]
= Din * (E[x.?]E[w;?] - E[x]? E[w.]?) [Assume x, w independent]
= Din * Var(x;) * Var(w;) [Assume X, w are zero-mean]

October 5, 2020

Justin Johnson Lecture 10 - 60

“Xavier” initialization:

Weight Initialization: Xavier Initialization |
std = 1/sqrt(Din)

Derivation: Variance of output = Variance of input

Din
y = Wx Yi = 2 XjW;j
j=1
Var(y;) = Din * Var(x,w;) [Assume x, w are iid]
= Din * (E[x.?]E[w;?] - E[x]? E[w.]?) [Assume x, w independent]
= Din * Var(x;) * Var(w;) [Assume X, w are zero-mean]

If Var(w;) = 1/Din then Var(y,) = Var(x;)

October 5, 2020

Justin Johnson Lecture 10 - 61

Weight Initialization: What about RelLU?

dims = [4096] * 7
hs = []

X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[l:]):
W = np.random.randn(Din, Dout) / np.sqrt(Din)
X = np.maximum(0, x.dot(W))

hs.append(x)

Change from tanh to RelLU

Justin Johnson Lecture 10 - 62 October 5, 2020

Weight Initialization: What about RelLU?

N . (40961 % 7 Change from tanh to RelLU Xavier assumes zero centered
X = np.random.randn(16, dims[0]) activation function
for Din, Dout in zip(dims[:-1], dims[l:]):
W = np.random.randn(Din, Dout) / np.sqgrt(Din) i i
B e e O PR Y AT, Activations collapse to zero
hs.append (x) again, no learning =(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07
std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10
| -

Justin Johnson Lecture 10 - 63

October 5, 2020

Weight Initialization: Kaiming / MSRA Initialization

flims T] [£0961 * 7 RelU correction: std = sqrt(2 / Din) ”Just right” — activations nicely
S =
X = np.random.randn(16, dims[0]) scaled for all Iayers

for Din, Dout in zip(dims[:-1], dims[l:]):
W = np.random.randn(Din, Dout) / np.sqrt(Din)
X = np.maximum(0, x.dot(W))

hs.append(x)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Justin Johnson Lecture 10 - 64 October 5, 2020

Weight Initialization: Residual Networks

T relu
F
() + If we initialize with MSRA: then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x) — variance grows
with each block!
F(x) I relu
X

Residual Block

Justin Johnson Lecture 10 - 65 October 5, 2020

Weight Initialization: Residual Networks

I relu If we initialize with MSRA:
F(x) + then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x)
F(x) I relu variance grows with each block!

Solution: Initialize first conv with
X MSRA, initialize second conv to
Residual Block zero. Then Var(x + F(x)) = Var(x)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019

Justin Johnson Lecture 10 - 66 October 5, 2020

Proper initialization is an active area of research

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015
Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

Justin Johnson Lecture 10 - 67 October 5, 2020

Now your model is training ... but it overfits!

Train Loss Accuracy
175 09 - —e— train
15.0 »— val
12.5 0.8 1
10.0
0.7 4
75
5.0
0.6
25
0.0 05 |eoeeeees®®®®
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000

Regularization

Justin Johnson Lecture 10 - 68 October 5, 2020

Regularization: Add term to the loss

L=+>1 Y, max(0, f(z; W); — f(zi; W)y, + 1) +AR(W)

In common use:

L2 regularization R(W) =324 22 Wiy (Weight decay)
L1 regularization R(W) =)5 22 Wyl

Elastic net (L1 + L2) R(W) =325 BWZ, + Wiy

Justin Johnson Lecture 10 - 69 October 5, 2020

Regularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Justin Johnson Lecture 10 - 70 October 5, 2020

Regularization: Dropout Example forward

pass with a 3-layer
p=0.5 | L1ty | . C network using

: dropout
def train_step(X):

""" X contains the data """

H1 = np.maximum(©, np.dot(Wl, X) + bl)
Ul = np.random.rand(*Hl.shape) < p
H1 *= Ul '

H2 = np.maximum(©, np.dot(W2, H1l) + b2)

U2 = np.random.rand(*H2.shape) < p ;
H2 *= U2 :

out = np.dot(W3, H2) + b3

Justin Johnson Lecture 10 - 71 October 5, 2020

Regularization: Dropout

Forces the network to have a redundant
representation; Prevents co-adaptation of features

has an ear ¥
has a tail s
is furry X—— , cat

has claws /
X

mischievous
look

v

v

v

v

00000

Justin Johnson Lecture 10 - 72 October 5, 2020

Regularization: Dropout

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 103% atoms in the universe...

Justin Johnson Lecture 10 - 73 October 5, 2020

Dropout: Test Time Output Input

(label) (image)
Random

Dropout makes our output random! y = fu(x, y
mas

Want to “average out” the randomness at test-time

y = &) = E,[f (x,2)] = f p()f (x, 2)dz

But this integral seems hard ...

Justin Johnson Lecture 10 - 74 October 5, 2020

Dropout: Test Time

J\c/r\]/ar?t to approximate y = f(x) — Ez[f(x, Z)] — fp(z)f(x, Z)dZ
e integral

Consider a single neuron:

At test time we have: E|a] = w;x + w,y

Justin Johnson Lecture 10 - 75 October 5, 2020

Dropout: Test Time

J\c/r\]/ar?t to approximate y = f(x) — Ez[f(x, Z)] — fp(z)f(x, Z)dZ
e integral

Consider a single neuron:

e At test time we have: E|a] = w;x + w,y
W, w, During training we have: E[a] = %(wlx + wyy) + i (wix + 0y)

+%(0x + 0y) + %(Ox + w,y)
1
Q G = > (wix + wzy)

Justin Johnson Lecture 10 - 76 October 5, 2020

Dropout: Test Time

J\c/r\]/ar?t to approximate y = f(x) — Ez[f(x, Z)] — fp(z)f(x, Z)dZ
e integral

Consider a single neuron:

At test time we have: E|a] = w;x + w,y
During training we have: E[a] = %(wlx + wyy) + i (wix + 0y)
At test time, drop + % (0x + 0y) + i(Ox + wyy)

nothing and multiply =2 (Wyx + wyy)
by dropout probability ’

Justin Johnson Lecture 10 - 77 October 5, 2020

Dropout: Test Time

def predict(X):

H1 = np.maximum(©®, np.dot(Wl, X) + bl) * p
H2 = np.maximum(©®, np.dot(W2, H1) + b2) * p
out = np.dot(W3, H2) + b3

At test time all neurons are active always
=> \We must scale the activations so that for each neuron:
output at test time = expected output at training time

Justin Johnson Lecture 10 - 78 October 5, 2020

Dropout Summary

""" Vanilla Dropout: Not recommended implementation (see notes below) """
p=0.5
def train_step(X):

""" X contains the data """

np.maximum(©, np.dot(Wl, X) + bl)

H1 =

Ul = np.random.rand(*Hl.shape) < p # 71

Hl *= Ul 3 , d . .I.‘ d

H2 = np.maximum(©®, np.dot(W2, Hl1l) + b2)

U2 = np.random.rand(*H2.shape) < p # second droj rop In Orwar paSS
H2 *= U2 _

out = np.dot(W3, H2) + b3

def predict(X):

H1 = np.maximum(©, np.dot(Wl, X) + bl) *p NOTE: scale tivati .
H2 = np.maximum(©, np.dot(W2, H1l) + b2) * p # NOTE: ‘ ivatior Scale at teSt tlme

out = np.dot(W3, AZ) + b3

Justin Johnson Lecture 10 - 79 October 5, 2020

More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

H1 = np.maximum(0O, np.dbt(Wl, X) + bl)
Ul = (np.random.rand(*Hl.shape) < p) / p # first dropout

H1 *= Ul # drop! o Drop and scale

H2 = np.maximum(©, np.dot(W2, Hl) + b2) . o
U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p! dumng tra|n|ng
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

e e e test time is unchanged!
def predict(X): ",,,——”"’—”—”—””””’

H1 = np.maximum(©®, np.dot(Wl, X) + bl) # no
H2 = np.maximum(©, np.dot(W2, Hl) + b2)
out = np.dot(W3, H2) + b3

Justin Johnson Lecture 10 - 80 October 5, 2020

Dropout architectures

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

AlexNet vs VGG-16
(Params, M) Dropout here!

120000 / ’

100000
80000

60000

40000 ¢
20000 I
O H _

convl conv2 conv3 conv4 conv5 fcb fc7 fc8

m AlexNet VGG-16

Justin Johnson Lecture 10 - 81

October 5, 2020

Dropout architectures

Recall AlexNet, VGG have most of their
parameters in fully-connected layers;
usually Dropout is applied there

AlexNet vs VGG-16
(Params, M) Dropout here!

120000 / ’

100000
80000

60000

40000 ¢
20000 I
O H _

convl conv2 conv3 conv4 conv5 fcb fc7 fc8

m AlexNet VGG-16

Later architectures (GoogleNet,
ResNet, etc) use global average
pooling instead of fully-connected
layers: they don’t use dropout at all!

Justin Johnson Lecture 10 - 82 October 5, 2020

Regularization: A common pattern

Training: Add some kind of
randomness

y = fW(x; Z)

Testing: Average out randomness
(sometimes approximate)

y =) = E,[f (x,2)] = f p()f (x, 2)dz

Justin Johnson Lecture 10 - 83 October 5, 2020

Regularization: A common pattern

Training: Add some kind of Example: Batch
randomness Normalization
Yy = fW(x; Z) Training: Normalize

using stats from

Testing: Average out randomness random minibatches

(sometimes approximate)
Testing: Use fixed

y =) = E,[f (x,2)] = f pDFE D2 oot to normaline

Justin Johnson Lecture 10 - 84 October 5, 2020

Regularization: A common pattern

Training: Add some kind of

randomness For ResNet and later,
often L2 and Batch

y p— fW (x, Z) Normalization are

the only regularizers!

Testing: Average out randomness
(sometimes approximate)

y =) = E,[f (x,2)] = f p()f (x, 2)dz

Example: Batch
Normalization

Training: Normalize
using stats from

random minibatches

Testing: Use fixed
stats to normalize

October 5, 2020

Justin Johnson Lecture 10 - 85

Data Augmentation

Load image “cqt”
and label
Compute
O T loss

v

CNN

\

»
This image by Nikita is
licensed under CC-BY 2.0

Justin Johnson Lecture 10 - 86 October 5, 2020

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

Data Augmentation

Load image
and label

Justin Johnson

Transform image

Lecture 10 - 87

v

/

CNN

\

Compute
loss

October 5, 2020

Data Augmentation: Horizontal Flips

Justin Johnson Lecture 10 - 88 October 5, 2020

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Justin Johnson Lecture 10 - 89 October 5, 2020

Data Augmentation: Random Crops and Scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Justin Johnson Lecture 10 - 90 October 5, 2020

Data Augmentation: Color Jitter

More Complex:
Simple: Randomize 1. Apply PCA to all [R, G, B]
contrast and brightness pixels in training set
2 2. Sample a “color offset”

along principal
component directions

3. Add offset to all pixels
of a training image

(Used in AlexNet, ResNet, etc)

Justin Johnson Lecture 10 - October 5, 2020

Data Augmentation: Get creative for your problem!

Random mix/combinations of :
- translation

- rotation

- stretching

- shearing,

- lens distortions, ... (go crazy)

Justin Johnson Lecture 10 - 92 October 5, 2020

Regularization: A common pattern

Training: Add some randomness
Testing: Marginalize over randomness

Examples:

Dropout
Batch Normalization
Data Augmentation

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Justin Johnson Lecture 10 - 93 October 5, 2020

Regularization: DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections

Examples:
Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Justin Johnson Lecture 10 - 94 October 5, 2020

Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

Justin Johnson Lecture 10 - 95 October 5, 2020

Regularization: Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Justin Johnson Lecture 10 - 96 October 5, 2020

Regularization: Stochastic Depth

Training: Set random images regions to O
Testing: Use the whole image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout

Works very well for small datasets like CIFAR, less
common for large datasets like ImageNet

DeVries and Taylor, “Improved Regularization of Convolutional
Neural Networks with Cutout”, arXiv 2017

Justin Johnson Lecture 10 - 97 October 5, 2020

; H . " | - Sample blend
Regu Ia rization: Mixu p 8 ~ probability from a beta
o . . 061 - distribution Beta(a, b)
Training: Train on random blends of images o ~ with a=b=0 so blend
Testing: Use original images o2 B o llRBE WEIGHLS are Close to 0/1
Examples:
Dropout .

Target label:
CNN cat: 0.4

dog: 0.6
/

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout

Mixup

* " pairs of training images, e.g.
£ 1 40% cat, 60% dog

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Justin Johnson Lecture 10 - 98 October 5, 2020

Regularization: Mixup

Training: Train on random blends of images
Testing: Use original images

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout

Mixup

Target label:

CNN cat: 0.4
dog: 0.6
/

Randomly blend the pixels of
' pairs of training images, e.g.
£ 40% cat, 60% dog

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Justin Johnson Lecture 10 - 99 October 5, 2020

Regularization: Mixup

Training: Train on random blends of images
Testing: Use original images

Examples:
Consider dropout for large fully-

Batch Normalization connected layers

Data Augmentation Batch normalization and data
augmentation almost always a
good idea
Try cutout and mixup especially

Cutout for small classification datasets

Mixup

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Justin Johnson Lecture 10 - 100 October 5, 2020

Ssummary

1.0ne time setup

Activation functions, data preprocessing, weight Today
initialization, regularization
2.Training dynamics
Learning rate schedules; large-batch training;
hyperparameter optimization Next time

3.After training
Model ensembles, transfer learning

Justin Johnson Lecture 10 - 101 October 5, 2020

Next time:
Training Neural Networks
(part 2)

Justin Johnson Lecture 10 - 102 October 5, 2020

