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Lecture 10:
Training Neural Networks

(Part 1)

Lecture 1 - 1
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Reminder: A3

• Due Friday, October 9

Lecture 10 - 2
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Midterm Exam

Lecture 10 - 3

We are still working out details! Will share more on Wednesday

- Will (most likely) be online via https://crabster.org/
- Material up to Lecture 13 is fair game
- Mostly conceptual questions, no coding
- Some combination of:

- True / False
- Multiple choice
- Short answer (math on paper)

- If you need accommodations, send your SSD letter to me

https://crabster.org/
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Last Time: Hardware and Software

Lecture 10 - 4

CPU GPU TPU

Static Graphs vs 
Dynamic Graphs

PyTorch vs 
TensorFlow
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Overview

Lecture 10 - 5

1.One time setup
Activation functions, data preprocessing, weight 
initialization, regularization

2.Training dynamics
Learning rate schedules; large-batch training; 
hyperparameter optimization

3.After training
Model ensembles, transfer learning
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Overview

Lecture 10 - 6

1.One time setup
Activation functions, data preprocessing, weight 
initialization, regularization

2.Training dynamics
Learning rate schedules; large-batch training; 
hyperparameter optimization

3.After training
Model ensembles, transfer learning

Today 

Next time
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Activation Functions

Lecture 10 - 7
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Activation Functions

Lecture 10 - 8



Justin Johnson October 5, 2020

Activation Functions

Lecture 10 - 9

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions: Sigmoid

Lecture 10 - 10

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

𝜎 𝑥 =
1

1 + 𝑒!"
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Activation Functions: Sigmoid

Lecture 10 - 11

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients

𝜎 𝑥 =
1

1 + 𝑒!"
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Activation Functions: Sigmoid

Lecture 10 - 12

sigmoid 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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Activation Functions: Sigmoid

Lecture 10 - 13

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients

𝜎 𝑥 =
1

1 + 𝑒!"
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Activation Functions: Sigmoid

Lecture 10 - 14

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered

𝜎 𝑥 =
1

1 + 𝑒!"
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Consider what happens when 
nonlinearity is always positive

What can we say about the gradients on 𝑤 ℓ ?

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ

ℎ!
(ℓ) is the 𝑖th element of the hidden layer at 

layer ℓ (before activation)
𝑤 ℓ , b ℓ are the weights and bias of layer ℓ
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What can we say about the gradients on 𝑤 ℓ ?

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ

ℎ!
(ℓ) is the 𝑖th element of the hidden layer at 

layer ℓ (before activation)
𝑤 ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when 
nonlinearity is always positive
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What can we say about the gradients on 𝑤 ℓ ?
Always all positive or all negative :(

hypothetical 
optimal w 
vector

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ

ℎ!
(ℓ) is the 𝑖th element of the hidden layer at 

layer ℓ (before activation)
𝑤 ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when 
nonlinearity is always positive
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What can we say about the gradients on 𝑤 ℓ ?
Always all positive or all negative :(
(For a single element! Minibatches help)

hypothetical 
optimal w 
vector

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ

ℎ!
(ℓ) is the 𝑖th element of the hidden layer at 

layer ℓ (before activation)
𝑤 ℓ , b ℓ are the weights and bias of layer ℓ

Consider what happens when 
nonlinearity is always positive
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Activation Functions: Sigmoid

Lecture 10 - 19

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered

𝜎 𝑥 =
1

1 + 𝑒!"
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Activation Functions: Sigmoid

Lecture 10 - 20

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they have 

nice interpretation as a saturating 
“firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the gradients
2. Sigmoid outputs are not zero-centered
3. exp() is a bit compute expensive

𝜎 𝑥 =
1

1 + 𝑒!"
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Activation Functions: Tanh

Lecture 10 - 21

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(
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Activation Functions: ReLU

Lecture 10 - 22

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)
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Activation Functions: ReLU

Lecture 10 - 23

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
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Activation Functions: ReLU

Lecture 10 - 24

ReLU
(Rectified Linear Unit)

f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?
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Activation Functions: ReLU

Lecture 10 - 25

ReLU 
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?
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DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update



Justin Johnson October 5, 2020Lecture 10 - 27

DATA CLOUD
active ReLU

dead ReLU
will never activate 
=> never update

=> Sometimes initialize ReLU
neurons with slightly positive 
biases (e.g. 0.01)
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Activation Functions: Leaky ReLU

Lecture 10 - 28

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013

Leaky ReLU
𝑓 𝑥 = max 𝛼𝑥, 𝑥
𝛼 is a hyperparameter, 
often 𝛼 = 0.1
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Activation Functions: Leaky ReLU

Lecture 10 - 29

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Maas et al, “Rectifier Nonlinearities Improve Neural Network Acoustic Models”, ICML 2013
He et al, “Delving Deep into Rectifiers: Surpassing Human-
Level Performance on ImageNet Classification”, ICCV 2015

Leaky ReLU
𝑓 𝑥 = max 𝛼𝑥, 𝑥
𝛼 is a hyperparameter, 
often 𝛼 = 0.1

Parametric ReLU (PReLU)
𝑓 𝑥 = max 𝛼𝑥, 𝑥
𝛼 is learned via backprop 
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Activation Functions: Exponential Linear Unit (ELU)

Lecture 10 - 30

(Default alpha=1)

- All benefits of ReLU
- Closer to zero mean outputs
- Negative saturation regime 

compared with Leaky ReLU
adds some robustness to noise 

- Computation requires exp()𝑓 𝑥 = -
𝑥 𝑖𝑓 𝑥 > 0

𝛼 𝑒" − 1 𝑖𝑓 𝑥 ≤ 0
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Activation Functions: Scaled Exponential Linear Unit (SELU)

Lecture 10 - 31

𝛼 = 1.6732632423543772848170429916717
𝜆 = 1.0507009873554804934193349852946

- Scaled version of ELU that 
works better for deep networks

- “Self-Normalizing” property; 
can train deep SELU networks 
without BatchNorm

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

𝑠𝑒𝑙𝑢 𝑥 = -
𝜆𝑥 𝑖𝑓 𝑥 > 0

𝜆𝛼 𝑒" − 1 𝑖𝑓 𝑥 ≤ 0
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Activation Functions: Scaled Exponential Linear Unit (SELU)

Lecture 10 - 32

- Scaled version of ELU that 
works better for deep networks

- “Self-Normalizing” property; 
can train deep SELU networks 
without BatchNorm

Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017

Derivation takes 
91 pages of math 
in appendix…

𝛼 = 1.6732632423543772848170429916717
𝜆 = 1.0507009873554804934193349852946
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Activation Functions: Gaussian Error Linear Unit (GELU)

Lecture 10 - 33

𝑋~𝑁 0, 1
𝑔𝑒𝑙𝑢 𝑥 = 𝑥𝑃 𝑋 ≤ 𝑥 =

𝑥
2
1 + erf 𝑥/√2

≈ 𝑥𝜎 1.702𝑥 Hendrycks and Gimpel, Gaussian Error Linear Units (GELUs), 2016

- Idea: Multiply input by 0 or 1 
at random; large values more 
likely to be multiplied by 1, 
small values more likely to be 
multiplied by 0
(data-dependent dropout)

- Take expectation over 
randomness

- Very common in Transformers
(BERT, GPT, GPT-2, GPT-3)
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93.8
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ResNet Wide ResNet DenseNet

Accuracy on CIFAR10
ReLU Leaky ReLU Parametric ReLU Softplus ELU SELU GELU Swish

Ramachandran et al, “Searching for 
activation functions”, ICLR Workshop 2018
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Activation Functions: Summary

Lecture 10 - 35

- Don’t think too hard. Just use ReLU
- Try out Leaky ReLU / ELU / SELU / GELU 

if you need to squeeze that last 0.1%
- Don’t use sigmoid or tanh
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Data Preprocessing

Lecture 10 - 36
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Data Preprocessing

Lecture 10 - 37

(Assume X [NxD] is data matrix, 
each example in a row)
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Remember: Consider what happens when the 
input to a neuron is always positive...

Lecture 10 - 38

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

ℎ!
(ℓ) =#

%

𝑤!,%
(ℓ)𝜎 ℎ%

(ℓ'() + 𝑏!
ℓ
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Data Preprocessing

Lecture 10 - 39

(Assume X [NxD] is data matrix, 
each example in a row)
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Data Preprocessing

Lecture 10 - 40

In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is 
the identity matrix)



Justin Johnson October 5, 2020

Data Preprocessing

Lecture 10 - 41

Before normalization: classification 
loss very sensitive to changes in 
weight matrix; hard to optimize

After normalization: less sensitive to 
small changes in weights; easier to 
optimize
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Data Preprocessing for Images

Lecture 10 - 42

- Subtract the mean image (e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Divide by per-channel std (e.g. ResNet)

(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to 
do PCA or 
whitening
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Weight Initialization

Lecture 10 - 43
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Weight Initialization

Lecture 10 - 44

Q: What happens if we 
initialize all W=0, b=0?
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Weight Initialization

Lecture 10 - 45

Q: What happens if we 
initialize all W=0, b=0?

A: All outputs are 0, all 
gradients are the same!
No “symmetry breaking”
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Weight Initialization

Lecture 10 - 46

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)
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Weight Initialization

Lecture 10 - 47

Next idea: small random numbers
(Gaussian with zero mean, std=0.01)

Works ~okay for small networks, but 
problems with deeper networks.
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Weight Initialization: Activation Statistics

Lecture 10 - 48

Forward pass for a 6-layer 
net with hidden size 4096
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Weight Initialization: Activation Statistics

Lecture 10 - 49

Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero for 
deeper network layers

Q: What do the gradients 
dL/dW look like?
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Weight Initialization: Activation Statistics

Lecture 10 - 50

Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero for 
deeper network layers

Q: What do the gradients 
dL/dW look like?

A: All zero, no learning =(
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Weight Initialization: Activation Statistics

Lecture 10 - 51

Increase std of initial weights 
from 0.01 to 0.05
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Weight Initialization: Activation Statistics

Lecture 10 - 52

Increase std of initial weights 
from 0.01 to 0.05

All activations saturate

Q: What do the gradients look 
like?
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Weight Initialization: Activation Statistics

Lecture 10 - 53

Increase std of initial weights 
from 0.01 to 0.05

All activations saturate

Q: What do the gradients look 
like?

A: Local gradients all zero, no 
learning =(
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Weight Initialization: Xavier Initialization

Lecture 10 - 54

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: Xavier Initialization

Lecture 10 - 55

“Just right”: Activations are 
nicely scaled for all layers!

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: Xavier Initialization

Lecture 10 - 56

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
kernel_size2 * input_channels

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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Weight Initialization: Xavier Initialization

Lecture 10 - 57

“Xavier” initialization: 
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi)                              [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2)  [Assume x, w independent]

= Din * Var(xi) * Var(wi)                   [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$
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Weight Initialization: Xavier Initialization

Lecture 10 - 58

“Xavier” initialization: 
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi)                              [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2)  [Assume x, w independent]

= Din * Var(xi) * Var(wi)                   [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$
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Weight Initialization: Xavier Initialization

Lecture 10 - 59

“Xavier” initialization: 
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi)                              [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2)  [Assume x, w independent]

= Din * Var(xi) * Var(wi)                   [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$
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Weight Initialization: Xavier Initialization

Lecture 10 - 60

“Xavier” initialization: 
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi)                              [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2)  [Assume x, w independent]

= Din * Var(xi) * Var(wi)                   [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$
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Weight Initialization: Xavier Initialization

Lecture 10 - 61

“Xavier” initialization: 
std = 1/sqrt(Din)

y = Wx

Var(yi) = Din * Var(xiwi)                              [Assume x, w are iid]
= Din * (E[xi

2]E[wi
2] - E[xi]2 E[wi]2)  [Assume x, w independent]

= Din * Var(xi) * Var(wi)                   [Assume x, w are zero-mean]

If Var(wi) = 1/Din then Var(yi) = Var(xi)

Derivation: Variance of output = Variance of input

𝑦# =8
$%&

'#(

𝑥$𝑤$
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Weight Initialization: What about ReLU?

Lecture 10 - 62

Change from tanh to ReLU
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Weight Initialization: What about ReLU?

Lecture 10 - 63

Xavier assumes zero centered 
activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU
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Weight Initialization: Kaiming / MSRA Initialization

Lecture 10 - 64

”Just right” – activations nicely 
scaled for all layers

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015
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Weight Initialization: Residual Networks

Lecture 10 - 65

relu

Residual Block

conv

conv

F(x) + x

F(x)

relu

X

If we initialize with MSRA: then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x) – variance grows 
with each block! 
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Weight Initialization: Residual Networks

Lecture 10 - 66

relu

Residual Block

conv

conv

F(x) + x

F(x)

relu

X

If we initialize with MSRA: 
then Var(F(x)) = Var(x)
But then Var(F(x) + x) > Var(x) 
variance grows with each block! 

Solution: Initialize first conv with 
MSRA, initialize second conv to 
zero. Then Var(x + F(x)) = Var(x)

Zhang et al, “Fixup Initialization: Residual Learning Without Normalization”, ICLR 2019
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Proper initialization is an active area of research

Lecture 10 - 67

Understanding the difficulty of training deep feedforward neural networks by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019



Justin Johnson October 5, 2020

Now your model is training … but it overfits!

Lecture 10 - 68

Regularization
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Regularization: Add term to the loss

Lecture 10 - 69

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)
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Regularization: Dropout

Lecture 10 - 70

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common
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Regularization: Dropout

Lecture 10 - 71

Example forward 
pass with a 3-layer 
network using 
dropout
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Regularization: Dropout

Lecture 10 - 72

Forces the network to have a redundant 
representation; Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 
look

X

X

X

cat 
score
cat 
score
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Regularization: Dropout

Lecture 10 - 73

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Dropout: Test Time

Lecture 10 - 74

Dropout makes our output random!

Output
(label)

Input
(image)

Random 
mask

Want to “average out” the randomness at test-time

But this integral seems hard … 

𝒚 = 𝑓# 𝒙, 𝒛

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = .𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧
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Dropout: Test Time

Lecture 10 - 75

Want to approximate 
the integral

Consider a single neuron:

At test time we have: 𝐸 𝑎 = 𝑤%𝑥 + 𝑤&𝑦
a

x y

w1 w2

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧
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Dropout: Test Time

Lecture 10 - 76

Want to approximate 
the integral

Consider a single neuron:

At test time we have: 𝐸 𝑎 = 𝑤%𝑥 + 𝑤&𝑦
During training we have: 𝐸 𝑎 = !

"
𝑤!𝑥 + 𝑤#𝑦 + !

"
𝑤!𝑥 + 0𝑦

+ !
" 0𝑥 + 0𝑦 + !

" 0𝑥 + 𝑤#𝑦

= !
# 𝑤!𝑥 + 𝑤#𝑦

a

x y

w1 w2

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧
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Dropout: Test Time

Lecture 10 - 77

Want to approximate 
the integral

Consider a single neuron:

At test time we have: 𝐸 𝑎 = 𝑤%𝑥 + 𝑤&𝑦
During training we have: 𝐸 𝑎 = !

"
𝑤!𝑥 + 𝑤#𝑦 + !

"
𝑤!𝑥 + 0𝑦

+ !
" 0𝑥 + 0𝑦 + !

" 0𝑥 + 𝑤#𝑦

= !
# 𝑤!𝑥 + 𝑤#𝑦

a

x y

w1 w2

At test time, drop 
nothing and multiply
by dropout probability

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧
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Dropout: Test Time

Lecture 10 - 78

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

Lecture 10 - 79

drop in forward pass

scale at test time
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More common: “Inverted dropout”

Lecture 10 - 80

test time is unchanged!

Drop and scale 
during training
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Dropout architectures

Lecture 10 - 81

0

20000

40000

60000

80000

100000

120000

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

AlexNet vs VGG-16 
(Params, M)

AlexNet VGG-16

Recall AlexNet, VGG have most of their 
parameters in fully-connected layers; 
usually Dropout is applied there

Dropout here!
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Dropout architectures

Lecture 10 - 82

0

20000

40000

60000

80000

100000

120000

conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

AlexNet vs VGG-16 
(Params, M)

AlexNet VGG-16

Recall AlexNet, VGG have most of their 
parameters in fully-connected layers; 
usually Dropout is applied there

Dropout here! Later architectures (GoogLeNet, 
ResNet, etc) use global average 
pooling instead of fully-connected 
layers: they don’t use dropout at all!
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Regularization: A common pattern

Lecture 10 - 83

Training: Add some kind of 
randomness

Testing: Average out randomness 
(sometimes approximate)

𝑦 = 𝑓> 𝑥, 𝑧

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧
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Regularization: A common pattern

Lecture 10 - 84

Training: Add some kind of 
randomness

Testing: Average out randomness 
(sometimes approximate)

Example: Batch 
Normalization

Training: Normalize 
using stats from 
random minibatches

Testing: Use fixed 
stats to normalize

𝑦 = 𝑓> 𝑥, 𝑧

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧
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Regularization: A common pattern

Lecture 10 - 85

Training: Add some kind of 
randomness

Testing: Average out randomness 
(sometimes approximate)

Example: Batch 
Normalization

Training: Normalize 
using stats from 
random minibatches

Testing: Use fixed 
stats to normalize

For ResNet and later, 
often L2 and Batch 
Normalization are 
the only regularizers!

𝑦 = 𝑓> 𝑥, 𝑧

𝑦 = 𝑓 𝑥 = 𝐸) 𝑓 𝑥, 𝑧 = ;𝑝 𝑧 𝑓 𝑥, 𝑧 𝑑𝑧
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Data Augmentation

Lecture 10 - 86

Load image 
and label “cat”

CNN

Compute
loss

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Data Augmentation

Lecture 10 - 87

Transform image

Load image 
and label “cat”

CNN

Compute
loss
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Data Augmentation: Horizontal Flips

Lecture 10 - 88
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Data Augmentation: Random Crops and Scales

Lecture 10 - 89

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch
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Data Augmentation: Random Crops and Scales

Lecture 10 - 90

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
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Data Augmentation: Color Jitter

Lecture 10 - 91

Simple: Randomize 
contrast and brightness

More Complex:
1. Apply PCA to all [R, G, B] 

pixels in training set
2. Sample a “color offset” 

along principal 
component directions

3. Add offset to all pixels 
of a training image

(Used in AlexNet, ResNet, etc)
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Data Augmentation: Get creative for your problem!

Lecture 10 - 92

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing, 
- lens distortions, …  (go crazy)
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Regularization: A common pattern

Lecture 10 - 93
Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Examples:
Dropout
Batch Normalization
Data Augmentation

Training: Add some randomness
Testing: Marginalize over randomness
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Regularization: DropConnect

Lecture 10 - 94
Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect

Training: Drop random connections between neurons (set weight=0)
Testing: Use all the connections
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Regularization: Fractional Pooling

Lecture 10 - 95

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Training: Use randomized pooling regions
Testing: Average predictions over different samples

Graham, “Fractional Max Pooling”, arXiv 2014
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Regularization: Stochastic Depth

Lecture 10 - 96

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

Training: Skip some residual blocks in ResNet
Testing: Use the whole network

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016
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Regularization: Stochastic Depth

Lecture 10 - 97

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout

Training: Set random images regions to 0
Testing: Use the whole image

DeVries and Taylor, “Improved Regularization of Convolutional 
Neural Networks with Cutout”, arXiv 2017

Works very well for small datasets like CIFAR, less 
common for large datasets like ImageNet
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Regularization: Mixup

Lecture 10 - 98

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout
Mixup

Training: Train on random blends of images
Testing: Use original images

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels of 
pairs of training images, e.g. 
40% cat, 60% dog

CNN
Target label:
cat: 0.4
dog: 0.6

Sample blend 
probability from a beta 
distribution Beta(a, b) 
with a=b≈0 so blend 
weights are close to 0/1
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Regularization: Mixup

Lecture 10 - 99

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout
Mixup

Training: Train on random blends of images
Testing: Use original images

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Randomly blend the pixels of 
pairs of training images, e.g. 
40% cat, 60% dog

CNN
Target label:
cat: 0.4
dog: 0.6
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Regularization: Mixup

Lecture 10 - 100

Examples:
Dropout
Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout
Mixup

Training: Train on random blends of images
Testing: Use original images

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

- Consider dropout for large fully-
connected layers

- Batch normalization and data 
augmentation almost always a 
good idea

- Try cutout and mixup especially 
for small classification datasets
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Summary

Lecture 10 - 101

1.One time setup
Activation functions, data preprocessing, weight 
initialization, regularization

2.Training dynamics
Learning rate schedules; large-batch training; 
hyperparameter optimization

3.After training
Model ensembles, transfer learning

Today 

Next time
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Next time:
Training Neural Networks 

(part 2)

Lecture 10 - 102


