
Justin Johnson September 29, 2020

Lecture 9:
Hardware and Software

Lecture 9 - 1

Justin Johnson September 29, 2020

Assignment 3 Released

Lecture 8 - 2

Assignment 3 is released! It covers:
• Fully-connected networks
• Dropout
• Update rules: SGD+Momentum, RMSprop, Adam
• Convolutional networks
• Batch normalization

Due Friday October 9, 11:59pm
(Website originally said 10/16 – this was a typo!)

Justin Johnson September 29, 2020

Deep Learning Hardware

Lecture 9 - 3

Justin Johnson September 29, 2020

Inside a computer

Lecture 8 - 4

This image copyright 2017, Justin Johnson

Justin Johnson September 29, 2020

Inside a computer

Lecture 8 - 5

This image is in the public domain

GPU: “Graphics Processing Unit”

This image copyright 2017, Justin Johnson

https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg

Justin Johnson September 29, 2020

Inside a computer

Lecture 8 - 6

This image is licensed under CC-BY 2.0

CPU: “Central
Processing Unit”

This image is in the public domain

GPU: “Graphics Processing Unit”

This image copyright 2017, Justin Johnson

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg

Justin Johnson September 29, 20207

NVIDIA AMDvs

Justin Johnson September 29, 20208

NVIDIA AMDvs

Justin Johnson September 29, 2020Lecture 8 - 9

0
5

10
15
20
25
30
35
40
45
50

9/2002 5/2005 2/2008 11/2010 8/2013 5/2016 2/2019 10/2021

GF
LO

Ps
 p

er
 d

ol
la

r

Time

GFLOPs per Dollar
CPU GPU FP32

Justin Johnson September 29, 2020

CPU vs GPU

Lecture 8 - 10

Cores Clock
Speed
(GHz)

Memory Price TFLOP/sec

CPU
Ryzen
Threadripper
3970X

64
(128 threads with
hyperthreading)

3.7
(4.5
boost)

System RAM $1999 ~6.9 FP32

GPU
NVIDIA
RTX 3090

10496 1.4
(1.7
boost)

24 GB GDDR6X $1499 ~35.6 FP32

CPU: Fewer
cores, but each
core is much
faster and
much more
capable; great
at sequential
tasks

GPU: More
cores, but each
core is much
slower and
“dumber”;
great for
parallel tasks

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 11

12x 2GB
memory
modules

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 12

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 13

12x 2GB
memory
modules

Processor

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 14

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 15

82 Streaming
multiprocessors

(SMs)

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 16

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 17

64 FP32 cores per SM

64 INT32/FP32
cores per SM

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 18

64 FP32 cores per SM

64 INT32/FP32
cores per SM

35.6 FP32 TFLOP/sec

Multiply:
- 82 SM
- 128 FP32 core/SM
- 2 FLOP/cycle
- 1.7 GCycle / sec
= 35.6 TFLOP/sec

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 19

64 FP32 cores per SM

64 INT32/FP32
cores per SM

35.6 FP32 TFLOP/sec

4 Tensor Core per SM

Special hardware!

Let A, B, C be matrices
(A 4x4, B,C 4x8).
Compute AB+C in one
clock cycle (256 FLOP)

Justin Johnson September 29, 2020

Inside a GPU:
RTX 3090

Lecture 8 - 20

64 FP32 cores per SM

64 INT32/FP32
cores per SM

35.6 FP32 TFLOP/sec

4 Tensor Core per SM

35.6 FP32 TFLOP/sec

Multiply:
- 82 SM
- 4 Tensor Core/SM
- 256 FLOP/cycle
- 1.7 GCycle / sec
= 142 TFLOP/sec

Justin Johnson September 29, 2020

CPU vs GPU

Lecture 8 - 21

Cores Clock
Speed
(GHz)

Memory Price TFLOP/sec

CPU
Ryzen
Threadripper
3970X

64
(128 threads with
hyperthreading)

3.7
(4.5
boost)

System RAM $1999 ~6.9 FP32

GPU
NVIDIA
RTX 3090

10496 1.4
(1.7
boost)

24 GB GDDR6X $1499 ~35.6 FP32
~142 TFLOP
with Tensor
core

CPU: Fewer
cores, but each
core is much
faster and
much more
capable; great
at sequential
tasks

GPU: More
cores, but each
core is much
slower and
“dumber”;
great for
parallel tasks

Justin Johnson September 29, 2020Lecture 8 - 22

0

50

100

150

200

250

300

350

9/2002 5/2005 2/2008 11/2010 8/2013 5/2016 2/2019 10/2021

GF
LO

Ps
 p

er
 d

ol
la

r

Time

GFLOPs per Dollar
CPU GPU FP32 GPU Tensor Core

Justin Johnson September 29, 2020

Example: Matrix Multiplication

Lecture 8 - 23

A x B B x C A x C

=

Perfect for GPUs! All output
elements are independent,
can be trivially parallelized

Justin Johnson September 29, 2020

Programming GPUs

Lecture 8 - 24

• CUDA (NVIDIA only)
• Write C-like code that runs directly on the GPU
• NVIDIA provides optimized APIs: cuBLAS, cuFFT,

cuDNN, etc
• OpenCL
• Similar to CUDA, but runs on anything
• Usually slower on NVIDIA hardware

• EECS 598.009: Applied GPU Programming

Justin Johnson September 29, 2020

Scaling up: Typically 8 GPUs per server

Lecture 8 - 25

NVIDIA DGX-1: 8x V100 GPUs

Justin Johnson September 29, 2020

Google Tensor Processing Units (TPU)

Lecture 8 - 26

Special hardware for matrix
multiplication, similar to

NVIDIA Tensor Cores; also runs
in mixed precision (bfloat16)

Cloud TPU v2-8
180 TFLOP/sec

64 GB HBM memory
$6 / hour

(free on Colab!)

Justin Johnson September 29, 2020

Google Tensor Processing Units (TPU)

Lecture 8 - 27

Cloud TPU v2 Pod
16x TPU-v2-8
11.5 PFLOPs
$384 / hour

Cloud TPU v2-8
180 TFLOP/sec

64 GB HBM memory
$6 / hour

(free on Colab!)

Justin Johnson September 29, 2020

Google Tensor Processing Units (TPU)

Lecture 8 - 28

Cloud TPU v3-8
420 TFLOP/sec

128 GB HBM memory
$8 / hour

TPU-v3 imageis released under a CC-SA 4.0 International license

https://en.wikipedia.org/wiki/File:Tensor_Processing_Unit_3.0.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Justin Johnson September 29, 2020

Google Tensor Processing Units (TPU)

Lecture 8 - 29

TPU-v3 imageis released under a CC-SA 4.0 International license

Cloud TPU v3 Pod
256 TPU-v3
107 PFLOPs

Cloud TPU v3-8
420 TFLOP/sec

128 GB HBM memory
$8 / hour

https://en.wikipedia.org/wiki/File:Tensor_Processing_Unit_3.0.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Justin Johnson September 29, 2020

Google Tensor Processing Units (TPU)

Lecture 8 - 30

TPU-v3 imageis released under a CC-SA 4.0 International license

Cloud TPU v3 Pod
256 TPU-v3
107 PFLOPs

Contact sales rep for pricing

Cloud TPU v3-8
420 TFLOP/sec

128 GB HBM memory
$8 / hour

https://en.wikipedia.org/wiki/File:Tensor_Processing_Unit_3.0.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Justin Johnson September 29, 2020

Deep Learning Software

Lecture 9 - 31

Justin Johnson September 29, 2020

A zoo of frameworks!

Lecture 8 - 32

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT, Hong
Kong U, etc but main framework of choice at
AWS

Chainer

JAX
(Google)

Justin Johnson September 29, 2020

A zoo of frameworks!

Lecture 8 - 33

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT, Hong
Kong U, etc but main framework of choice at
AWS

Chainer

JAX
(Google)

We’ll focus on these

Justin Johnson September 29, 2020

Recall: Computational Graphs

Lecture 8 - 34

x

W

hinge
loss

R

+ Ls (scores)*

Justin Johnson September 29, 2020

The point of deep learning frameworks

Lecture 8 - 35

1. Allow rapid prototyping of new ideas
2. Automatically compute gradients for you
3. Run it all efficiently on GPU (or TPU)

Justin Johnson September 29, 2020

PyTorch

Lecture 9 - 36

Justin Johnson September 29, 2020

PyTorch: Versions

Lecture 8 - 37

For this class we are using PyTorch version 1.6
(Released July 2020)

Be careful if you are looking at older PyTorch code –
the API changed a lot before 1.0
(0.3 to 0.4 had big changes!)

Justin Johnson September 29, 2020

PyTorch: Fundamental Concepts

Lecture 8 - 38

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or
learnable weights

Autograd: Package for building computational graphs
out of Tensors, and automatically computing gradients

Justin Johnson September 29, 2020

PyTorch: Fundamental Concepts

Lecture 8 - 39

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or
learnable weights

Autograd: Package for building computational graphs
out of Tensors, and automatically computing gradients

A1, A2, A3

A4, A5, A6

Justin Johnson September 29, 2020

PyTorch: Tensors

Lecture 8 - 40

Running example: Train a
two-layer ReLU network on
random data with L2 loss

Justin Johnson September 29, 2020

PyTorch: Tensors

Lecture 8 - 41

Create random tensors
for data and weights

Justin Johnson September 29, 2020

PyTorch: Tensors

Lecture 8 - 42

Forward pass: compute
predictions and loss

Justin Johnson September 29, 2020

PyTorch: Tensors

Lecture 8 - 43

Backward pass: manually
compute gradients

Justin Johnson September 29, 2020

PyTorch: Tensors

Lecture 8 - 44

Gradient descent
step on weights

Justin Johnson September 29, 2020

PyTorch: Tensors

Lecture 8 - 45

To run on GPU, just use a
different device!

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 46

Creating Tensors with
requires_grad=True enables autograd

Operations on Tensors with
requires_grad=True cause PyTorch to
build a computational graph

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 47

We will not want gradients
(of loss) with respect to data

Do want gradients with
respect to weights

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 48

Forward pass looks exactly the
same as before, but we don’t
need to track intermediate
values - PyTorch keeps track of
them for us in the graph

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 49

Computes gradients with
respect to all inputs that
have requires_grad=True!

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 50

x w1
mm

Every operation on a tensor with
requires_grad=True will add to
the computational graph, and the
resulting tensors will also have
requires_grad=True

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 51

x w1
mm

clamp

Every operation on a tensor with
requires_grad=True will add to
the computational graph, and the
resulting tensors will also have
requires_grad=True

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 52

x w1
mm

clamp

mm

y_pred

w2

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 53

x w1
mm

clamp

mm

y_pred

-

w2

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 54

x w1
mm

clamp

mm

y_pred

-

pow

yw2

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 55

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 56

x w1 w2 y
mm

clamp

mm

y_pred

-

pow sum loss

Backprop to
all inputs that
require grad

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 57

x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 58

x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Make gradient step on weights

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 59

x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Set gradients to zero – forgetting
this is a common bug!

Justin Johnson September 29, 2020

PyTorch: Autograd

Lecture 8 - 60

x w1 w2 y

After backward finishes, gradients
are accumulated into w1.grad and
w2.grad and the graph is destroyed

Tell PyTorch not to build a
graph for these operations

Justin Johnson September 29, 2020

PyTorch: New functions

Lecture 8 - 61

Can define new operations
using Python functions

Justin Johnson September 29, 2020

PyTorch: New functions

Lecture 8 - 62

Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Justin Johnson September 29, 2020

PyTorch: New functions

Lecture 8 - 63

Define new autograd operators
by subclassing Function, define
forward and backwardCan define new operations

using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Recall:

Justin Johnson September 29, 2020

PyTorch: New functions

Lecture 8 - 64

Define new autograd operators
by subclassing Function, define
forward and backward

x Sigmoid

Can define new operations
using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

Now when our function runs,
it adds one node to the graph!

Justin Johnson September 29, 2020

PyTorch: New functions

Lecture 8 - 65

Define new autograd operators
by subclassing Function, define
forward and backwardCan define new operations

using Python functions

x

* -1

exp

+1 1.0 /

When our function runs,
it will add to the graph

Gradients computed
with autograd

In practice this is pretty rare – in most
cases Python functions are good enough

Justin Johnson September 29, 2020

PyTorch: nn

Lecture 8 - 66

Higher-level wrapper for
working with neural nets

Use this! It will make your
life easier

Justin Johnson September 29, 2020

PyTorch: nn

Lecture 8 - 67

Object-oriented API: Define
model object as sequence
of layers objects, each of
which holds weight tensors

Justin Johnson September 29, 2020

PyTorch: nn

Lecture 8 - 68

Forward pass: Feed data to
model and compute loss

Justin Johnson September 29, 2020

PyTorch: nn

Lecture 8 - 69

Forward pass: Feed data to
model and compute loss

torch.nn.functional has useful
helpers like loss functions

Justin Johnson September 29, 2020

PyTorch: nn

Lecture 8 - 70

Backward pass: compute
gradient with respect to all
model weights (they have
requires_grad=True)

Justin Johnson September 29, 2020

PyTorch: nn

Lecture 8 - 71

Make gradient step on
each model parameter
(with gradients disabled)

Justin Johnson September 29, 2020

PyTorch: optim

Lecture 8 - 72

Use an optimizer for
different update rules

Justin Johnson September 29, 2020

PyTorch: optim

Lecture 8 - 73

After computing
gradients, use optimizer to
update and zero gradients

Justin Johnson September 29, 2020

PyTorch: nn
Defining Modules

Lecture 8 - 74

A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or
other modules

Very common to define your own
models or layers as custom Modules

Justin Johnson September 29, 2020

PyTorch: nn
Defining Modules

Lecture 8 - 75

Define our whole model as
a single Module

Justin Johnson September 29, 2020

PyTorch: nn
Defining Modules

Lecture 8 - 76

Initializer sets up two
children (Modules can
contain modules)

Justin Johnson September 29, 2020

PyTorch: nn
Defining Modules

Lecture 8 - 77

Define forward pass using child
modules and tensor operations

No need to define backward -
autograd will handle it

Justin Johnson September 29, 2020

PyTorch: nn
Defining Modules

Lecture 8 - 78

Very common to mix and match
custom Module subclasses and
Sequential containers

Justin Johnson September 29, 2020

PyTorch: nn
Defining Modules

Lecture 8 - 79

Define network component
as a Module subclass

x

Linear Linear

*

relu

Linear

Justin Johnson September 29, 2020

PyTorch: nn
Defining Modules

Lecture 8 - 80

Stack multiple instances of the
component in a sequential

x

Linear Linear

*

relu

x

Linear Linear

*

relu

Linear

Very easy to quickly
build complex network
architectures!

Justin Johnson September 29, 2020

PyTorch: DataLoaders

Lecture 8 - 81

A DataLoader wraps a
Dataset and provides
minibatching, shuffling,
multithreading, for you

When you need to load
custom data, just write your
own Dataset class

Justin Johnson September 29, 2020

PyTorch: DataLoaders

Lecture 8 - 82

Iterate over loader to
form minibatches

Justin Johnson September 29, 2020

PyTorch: DataLoaders

Lecture 8 - 83

Iterate over loader to
form minibatches

Justin Johnson September 29, 2020

PyTorch: Pretrained Models

Lecture 8 - 84

Super easy to use pretrained models with torchvision
https://github.com/pytorch/vision

https://github.com/pytorch/vision

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 85

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 86

x w1 w2 y

Create Tensor objects

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 87

x w1
mm

clamp

mm

y_pred

w2

Build graph data structure
AND perform computation

y

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 88

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure
AND perform computation

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 89

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop,
throw away graph

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 90

x w1 yw2

Perform backprop,
throw away graph

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 91

x w1
mm

clamp

mm

y_pred

w2

Build graph data structure
AND perform computation

y

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 92

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure
AND perform computation

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 93

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop,
throw away graph

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 94

Dynamic graphs let you use
regular Python control flow
during the forward pass!

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 95

Dynamic graphs let you use
regular Python control flow
during the forward pass!

Initialize two different
weight matrices for
second layer

Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 96

Dynamic graphs let you use
regular Python control flow
during the forward pass!

Decide which one to use
at each layer based on
loss at previous iteration

(this model doesn’t
makes sense! Just a
simple dynamic example)

Justin Johnson September 29, 2020

Alternative: Static Computation Graphs

Lecture 8 - 97

Alternative: Static graphs

Step 1: Build computational graph
describing our computation
(including finding paths for backprop)

Step 2: Reuse the same graph on
every iteration

Justin Johnson September 29, 2020

PyTorch: Static Graphs with JIT

Lecture 8 - 98

Define model as a
Python function

Justin Johnson September 29, 2020

PyTorch: Static Graphs with JIT

Lecture 8 - 99

Just-In-Time compilation:
Introspect the source code
of the function, compile it
into a graph object.

Lots of magic here!

Justin Johnson September 29, 2020

PyTorch: Static Graphs with JIT

Lecture 8 - 100

x w1
mm

clamp

mm

y_pred

-

pow

yw2a

sum loss

w2b prev
loss

if < 5.0

Graph includes a conditional
node to handle both caes!

Justin Johnson September 29, 2020

PyTorch: Static Graphs with JIT

Lecture 8 - 101

Use our compiled graph
object at each forward pass

Justin Johnson September 29, 2020

PyTorch: Static Graphs with JIT

Lecture 8 - 102

Even easier: add annotation
to function, Python function
compiled to a graph when it
is defined

Calling function uses graph

Justin Johnson September 29, 2020

Static vs Dynamic Graphs: Optimization

Lecture 8 - 103

With static graphs,
framework can
optimize the graph
for you before it runs!

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with
fused operations

Conv+ReLU

Conv+ReLU

Justin Johnson September 29, 2020

Static vs Dynamic Graphs: Serialization

Lecture 8 - 104

Once graph is built, can
serialize it and run it
without the code that
built the graph!

e.g. train model in
Python, deploy in C++

Graph building and execution are
intertwined, so always need to
keep code around

Static Dynamic

Justin Johnson September 29, 2020

Static vs Dynamic Graphs: Debugging

Lecture 8 - 105

Lots of indirection
between the code you
write and the code that
runs – can be hard to
debug, benchmark, etc

The code you write is the code
that runs! Easy to reason about,
debug, profile, etc

Static Dynamic

Justin Johnson September 29, 2020

Dynamic Graph Applications

Lecture 8 - 106

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments
for Generating Image Descriptions”, CVPR 2015

Model structure
depends on the input:
- Recurrent Networks

Justin Johnson September 29, 2020

Dynamic Graph Applications

Lecture 8 - 107

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments
for Generating Image Descriptions”, CVPR 2015

The cat ate a big rat

Model structure
depends on the input:
- Recurrent Networks
- Recursive Networks

Justin Johnson September 29, 2020

Dynamic Graph Applications

Lecture 8 - 108

Model structure
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

Justin Johnson September 29, 2020

Dynamic Graph Applications

Lecture 8 - 109

Model structure
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks
- (Your idea here!)

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

Justin Johnson September 29, 2020

TensorFlow

Lecture 9 - 110

Justin Johnson September 29, 2020

TensorFlow Versions

Lecture 8 - 111

TensorFlow 1.0
- Final release: 1.15.3
- Default: static graphs
- Optional: dynamic graphs

(eager mode)

TensorFlow 2.0
- Current release: 2.3.1

- Released 9/24
- Default: dynamic graphs
- Optional: static graphs

Justin Johnson September 29, 2020

TensorFlow 1.0:
Static Graphs

Lecture 8 - 112

(Assume imports at the
top of each snippet)

Justin Johnson September 29, 2020

TensorFlow 1.0:
Static Graphs

Lecture 8 - 113

First define computational
graph

Then run the graph many
times

Justin Johnson September 29, 2020

TensorFlow 2.0:
Dynamic Graphs

Lecture 8 - 114

Create TensorFlow
Tensors for data and
weights

Weights need to be
wrapped in tf.Variable
so we can mutate them

Justin Johnson September 29, 2020

TensorFlow 2.0:
Dynamic Graphs

Lecture 8 - 115

Scope forward pass
under a GradientTape to
tell TensorFlow to start
building a graph

Justin Johnson September 29, 2020

TensorFlow 2.0:
Dynamic Graphs

Lecture 8 - 116

Ask the tape to
compute gradients

Justin Johnson September 29, 2020

TensorFlow 2.0:
Dynamic Graphs

Lecture 8 - 117

Gradient descent
step, update weights

Justin Johnson September 29, 2020Lecture 8 - 118

TensorFlow 2.0:
Static Graphs

Define a function that
implements forward,
backward, and update

Annotating with
tf.function will compile
the function into a graph!
(similar to torch.jit.script)

Justin Johnson September 29, 2020Lecture 8 - 119

TensorFlow 2.0:
Static Graphs

Define a function that
implements forward,
backward, and update

Annotating with
tf.function will compile
the function into a graph!
(similar to torch.jit.script)

(note TF graph can
include gradient
computation and update,
unlike PyTorch)

Justin Johnson September 29, 2020Lecture 8 - 120

TensorFlow 2.0:
Static Graphs

Call the compiled step
function in the training
loop

Justin Johnson September 29, 2020

Keras: High-level API

Lecture 8 - 121

Justin Johnson September 29, 2020

Keras: High-level API

Lecture 8 - 122

Object-oriented API:
build the model as a
stack of layers

Justin Johnson September 29, 2020

Keras: High-level API

Lecture 8 - 123

Keras gives you
common loss
functions and
optimization
algorithms

Justin Johnson September 29, 2020

Keras: High-level API

Lecture 8 - 124

Forward pass:
Compute loss,
build graph

Backward pass:
compute gradients

Justin Johnson September 29, 2020

Keras: High-level API

Lecture 8 - 125

Optimizer object
updates parameters

Justin Johnson September 29, 2020

Keras: High-level API

Lecture 8 - 126

Define a function
that returns the loss

Justin Johnson September 29, 2020

Keras: High-level API

Lecture 8 - 127

Optimizer computes
gradients and
updates parameters

Justin Johnson September 29, 2020

TensorBoard

Lecture 8 - 128

Add logging to code to record loss, stats, etc
Run server and get pretty graphs!

Justin Johnson September 29, 2020

TensorBoard

Lecture 8 - 129

Also works with PyTorch: torch.utils.tensorboard

https://pytorch.org/docs/stable/tensorboard.html

Justin Johnson September 29, 2020

PyTorch vs TensorFlow

Lecture 8 - 130

PyTorch
- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Cannot use TPUs
- Not easy to deploy on mobile

TensorFlow 1.0
- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0
- Dynamic by default
- Standardized on Keras API
- API still confusing

Justin Johnson September 29, 2020

Summary: Hardware

Lecture 8 - 131

CPU GPU TPU

Justin Johnson September 29, 2020

Summary: Software

Lecture 8 - 132

Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow

Justin Johnson September 29, 2020

Next time:
Training Neural Networks

Lecture 9 - 133

