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Hardware and Software
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Assignment 3 Released

Lecture 8 - 2

Assignment 3 is released! It covers:
• Fully-connected networks
• Dropout
• Update rules: SGD+Momentum, RMSprop, Adam
• Convolutional networks
• Batch normalization

Due Friday October 9, 11:59pm
(Website originally said 10/16 – this was a typo!)
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Deep Learning Hardware

Lecture 9 - 3
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Inside a computer

Lecture 8 - 4

This image copyright 2017, Justin Johnson
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Inside a computer

Lecture 8 - 5

This image is in the public domain

GPU: “Graphics Processing Unit”

This image copyright 2017, Justin Johnson

https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg
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Inside a computer

Lecture 8 - 6

This image is licensed under CC-BY 2.0

CPU: “Central 
Processing Unit”

This image is in the public domain

GPU: “Graphics Processing Unit”

This image copyright 2017, Justin Johnson

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
https://commons.wikimedia.org/wiki/File:NVIDIA-GTX-1070-FoundersEdition-FL.jpg
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NVIDIA AMDvs
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Justin Johnson September 29, 2020Lecture 8 - 9

0
5

10
15
20
25
30
35
40
45
50

9/2002 5/2005 2/2008 11/2010 8/2013 5/2016 2/2019 10/2021

GF
LO

Ps
 p

er
 d

ol
la

r

Time

GFLOPs per Dollar
CPU GPU FP32



Justin Johnson September 29, 2020

CPU vs GPU

Lecture 8 - 10

Cores Clock 
Speed
(GHz)

Memory Price TFLOP/sec

CPU
Ryzen
Threadripper
3970X

64
(128 threads with
hyperthreading)

3.7 
(4.5 
boost)

System RAM $1999 ~6.9 FP32

GPU
NVIDIA 
RTX 3090

10496 1.4
(1.7 
boost)

24 GB GDDR6X $1499 ~35.6 FP32

CPU: Fewer 
cores, but each 
core is much 
faster and 
much more 
capable; great 
at sequential 
tasks

GPU: More 
cores, but each 
core is much 
slower and 
“dumber”; 
great for 
parallel tasks
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Inside a GPU:
RTX 3090

Lecture 8 - 11

12x 2GB 
memory 
modules
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Inside a GPU:
RTX 3090

Lecture 8 - 12
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Inside a GPU:
RTX 3090

Lecture 8 - 13

12x 2GB 
memory 
modules

Processor
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Inside a GPU:
RTX 3090

Lecture 8 - 14
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Inside a GPU:
RTX 3090

Lecture 8 - 15

82 Streaming 
multiprocessors 

(SMs)
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Inside a GPU:
RTX 3090

Lecture 8 - 16
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Inside a GPU:
RTX 3090

Lecture 8 - 17

64 FP32 cores per SM

64 INT32/FP32 
cores per SM
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Inside a GPU:
RTX 3090

Lecture 8 - 18

64 FP32 cores per SM

64 INT32/FP32 
cores per SM

35.6 FP32 TFLOP/sec

Multiply:
- 82 SM
- 128 FP32 core/SM
- 2 FLOP/cycle
- 1.7 GCycle / sec
= 35.6 TFLOP/sec
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Inside a GPU:
RTX 3090

Lecture 8 - 19

64 FP32 cores per SM

64 INT32/FP32 
cores per SM

35.6 FP32 TFLOP/sec

4 Tensor Core per SM

Special hardware!

Let A, B, C be matrices 
(A 4x4, B,C 4x8). 
Compute AB+C in one 
clock cycle (256 FLOP)
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Inside a GPU:
RTX 3090

Lecture 8 - 20

64 FP32 cores per SM

64 INT32/FP32 
cores per SM

35.6 FP32 TFLOP/sec

4 Tensor Core per SM

35.6 FP32 TFLOP/sec

Multiply:
- 82 SM
- 4 Tensor Core/SM
- 256 FLOP/cycle
- 1.7 GCycle / sec
= 142 TFLOP/sec
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CPU vs GPU

Lecture 8 - 21

Cores Clock 
Speed
(GHz)

Memory Price TFLOP/sec

CPU
Ryzen
Threadripper
3970X

64
(128 threads with
hyperthreading)

3.7 
(4.5 
boost)

System RAM $1999 ~6.9 FP32

GPU
NVIDIA 
RTX 3090

10496 1.4
(1.7 
boost)

24 GB GDDR6X $1499 ~35.6 FP32
~142 TFLOP 
with Tensor 
core

CPU: Fewer 
cores, but each 
core is much 
faster and 
much more 
capable; great 
at sequential 
tasks

GPU: More 
cores, but each 
core is much 
slower and 
“dumber”; 
great for 
parallel tasks
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Example: Matrix Multiplication

Lecture 8 - 23

A x B B x C A x C

=

Perfect for GPUs! All output 
elements are independent, 
can be trivially parallelized 
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Programming GPUs

Lecture 8 - 24

• CUDA (NVIDIA only)
• Write C-like code that runs directly on the GPU
• NVIDIA provides optimized APIs: cuBLAS, cuFFT, 

cuDNN, etc
• OpenCL
• Similar to CUDA, but runs on anything
• Usually slower on NVIDIA hardware

• EECS 598.009: Applied GPU Programming
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Scaling up: Typically 8 GPUs per server

Lecture 8 - 25

NVIDIA DGX-1: 8x V100 GPUs
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Google Tensor Processing Units (TPU)

Lecture 8 - 26

Special hardware for matrix 
multiplication, similar to 

NVIDIA Tensor Cores; also runs 
in mixed precision (bfloat16)

Cloud TPU v2-8
180 TFLOP/sec

64 GB HBM memory
$6 / hour 

(free on Colab!)
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Google Tensor Processing Units (TPU)

Lecture 8 - 27

Cloud TPU v2 Pod
16x TPU-v2-8
11.5 PFLOPs
$384 / hour

Cloud TPU v2-8
180 TFLOP/sec

64 GB HBM memory
$6 / hour 

(free on Colab!)
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Google Tensor Processing Units (TPU)

Lecture 8 - 28

Cloud TPU v3-8
420 TFLOP/sec

128 GB HBM memory
$8 / hour

TPU-v3 imageis released under a CC-SA 4.0 International license

https://en.wikipedia.org/wiki/File:Tensor_Processing_Unit_3.0.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Google Tensor Processing Units (TPU)

Lecture 8 - 29

TPU-v3 imageis released under a CC-SA 4.0 International license

Cloud TPU v3 Pod
256 TPU-v3
107 PFLOPs

Cloud TPU v3-8
420 TFLOP/sec

128 GB HBM memory
$8 / hour

https://en.wikipedia.org/wiki/File:Tensor_Processing_Unit_3.0.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Google Tensor Processing Units (TPU)

Lecture 8 - 30

TPU-v3 imageis released under a CC-SA 4.0 International license

Cloud TPU v3 Pod
256 TPU-v3
107 PFLOPs

Contact sales rep for pricing

Cloud TPU v3-8
420 TFLOP/sec

128 GB HBM memory
$8 / hour

https://en.wikipedia.org/wiki/File:Tensor_Processing_Unit_3.0.jpg
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Deep Learning Software

Lecture 9 - 31
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A zoo of frameworks!

Lecture 8 - 32

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 
AWS

Chainer 

JAX
(Google)
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A zoo of frameworks!

Lecture 8 - 33

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook)

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, Hong 
Kong U, etc but main framework of choice at 
AWS

Chainer 

JAX
(Google)

We’ll focus on these
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Recall: Computational Graphs

Lecture 8 - 34

x

W

hinge 
loss

R

+ Ls (scores)*
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The point of deep learning frameworks

Lecture 8 - 35

1. Allow rapid prototyping of new ideas
2. Automatically compute gradients for you
3. Run it all efficiently on GPU (or TPU)
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PyTorch

Lecture 9 - 36
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PyTorch: Versions

Lecture 8 - 37

For this class we are using PyTorch version 1.6
(Released July 2020)

Be careful if you are looking at older PyTorch code –
the API changed a lot before 1.0 
(0.3 to 0.4 had big changes!)
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PyTorch: Fundamental Concepts

Lecture 8 - 38

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

Autograd: Package for building computational graphs 
out of Tensors, and automatically computing gradients
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PyTorch: Fundamental Concepts

Lecture 8 - 39

Tensor: Like a numpy array, but can run on GPU

Module: A neural network layer; may store state or 
learnable weights

Autograd: Package for building computational graphs 
out of Tensors, and automatically computing gradients

A1, A2, A3

A4, A5, A6
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PyTorch: Tensors

Lecture 8 - 40

Running example: Train a 
two-layer ReLU network on 
random data with L2 loss



Justin Johnson September 29, 2020

PyTorch: Tensors

Lecture 8 - 41

Create random tensors 
for data and weights
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PyTorch: Tensors

Lecture 8 - 42

Forward pass: compute 
predictions and loss
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PyTorch: Tensors

Lecture 8 - 43

Backward pass: manually 
compute gradients
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PyTorch: Tensors

Lecture 8 - 44

Gradient descent 
step on weights
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PyTorch: Tensors

Lecture 8 - 45

To run on GPU, just use a 
different device!
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PyTorch: Autograd

Lecture 8 - 46

Creating Tensors with 
requires_grad=True enables autograd

Operations on Tensors with 
requires_grad=True cause PyTorch to 
build a computational graph
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PyTorch: Autograd

Lecture 8 - 47

We will not want gradients 
(of loss) with respect to data

Do want gradients with 
respect to weights 
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PyTorch: Autograd

Lecture 8 - 48

Forward pass looks exactly the 
same as before, but we don’t 
need to track intermediate 
values - PyTorch keeps track of 
them for us in the graph
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PyTorch: Autograd

Lecture 8 - 49

Computes gradients with 
respect to all inputs that 
have requires_grad=True!
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PyTorch: Autograd

Lecture 8 - 50

x w1
mm

Every operation on a tensor with 
requires_grad=True will add to 
the computational graph, and the 
resulting tensors will also have 
requires_grad=True
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PyTorch: Autograd

Lecture 8 - 51

x w1
mm

clamp

Every operation on a tensor with 
requires_grad=True will add to 
the computational graph, and the 
resulting tensors will also have 
requires_grad=True
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PyTorch: Autograd

Lecture 8 - 52

x w1
mm

clamp

mm

y_pred

w2
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PyTorch: Autograd

Lecture 8 - 53

x w1
mm

clamp

mm

y_pred

-

w2
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PyTorch: Autograd

Lecture 8 - 54

x w1
mm

clamp

mm

y_pred

-

pow

yw2
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PyTorch: Autograd

Lecture 8 - 55

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
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PyTorch: Autograd

Lecture 8 - 56

x w1 w2 y
mm

clamp

mm

y_pred

-

pow sum loss

Backprop to 
all inputs that 
require grad
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PyTorch: Autograd

Lecture 8 - 57

x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed
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PyTorch: Autograd

Lecture 8 - 58

x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Make gradient step on weights
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PyTorch: Autograd

Lecture 8 - 59

x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Set gradients to zero – forgetting 
this is a common bug!
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PyTorch: Autograd

Lecture 8 - 60

x w1 w2 y

After backward finishes, gradients 
are accumulated into w1.grad and 
w2.grad and the graph is destroyed

Tell PyTorch not to build a 
graph for these operations
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PyTorch: New functions

Lecture 8 - 61

Can define new operations 
using Python functions
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PyTorch: New functions

Lecture 8 - 62

Can define new operations 
using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd
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PyTorch: New functions

Lecture 8 - 63

Define new autograd operators 
by subclassing Function, define 
forward and backwardCan define new operations 

using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

Recall:
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PyTorch: New functions

Lecture 8 - 64

Define new autograd operators 
by subclassing Function, define 
forward and backward

x Sigmoid

Can define new operations 
using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

Now when our function runs, 
it adds one node to the graph!
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PyTorch: New functions

Lecture 8 - 65

Define new autograd operators 
by subclassing Function, define 
forward and backwardCan define new operations 

using Python functions

x

* -1

exp

+1 1.0 / 

When our function runs, 
it will add to the graph

Gradients computed 
with autograd

In practice this is pretty rare – in most 
cases Python functions are good enough
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PyTorch: nn

Lecture 8 - 66

Higher-level wrapper for 
working with neural nets

Use this! It will make your 
life easier
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PyTorch: nn

Lecture 8 - 67

Object-oriented API: Define 
model object as sequence 
of layers objects, each of 
which holds weight tensors
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PyTorch: nn

Lecture 8 - 68

Forward pass: Feed data to 
model and compute loss
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PyTorch: nn

Lecture 8 - 69

Forward pass: Feed data to 
model and compute loss

torch.nn.functional has useful 
helpers like loss functions
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PyTorch: nn

Lecture 8 - 70

Backward pass: compute 
gradient with respect to all 
model weights (they have 
requires_grad=True)



Justin Johnson September 29, 2020

PyTorch: nn

Lecture 8 - 71

Make gradient step on 
each model parameter 
(with gradients disabled)
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PyTorch: optim

Lecture 8 - 72

Use an optimizer for 
different update rules
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PyTorch: optim

Lecture 8 - 73

After computing 
gradients, use optimizer to 
update and zero gradients
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PyTorch: nn
Defining Modules

Lecture 8 - 74

A PyTorch Module is a neural net 
layer; it inputs and outputs Tensors

Modules can contain weights or 
other modules

Very common to define your own 
models or layers as custom Modules
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PyTorch: nn
Defining Modules

Lecture 8 - 75

Define our whole model as 
a single Module
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PyTorch: nn
Defining Modules

Lecture 8 - 76

Initializer sets up two 
children (Modules can 
contain modules)
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PyTorch: nn
Defining Modules

Lecture 8 - 77

Define forward pass using child 
modules and tensor operations

No need to define backward -
autograd will handle it



Justin Johnson September 29, 2020

PyTorch: nn
Defining Modules

Lecture 8 - 78

Very common to mix and match 
custom Module subclasses and 
Sequential containers
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PyTorch: nn
Defining Modules

Lecture 8 - 79

Define network component 
as a Module subclass

x

Linear Linear

*

relu

Linear
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PyTorch: nn
Defining Modules

Lecture 8 - 80

Stack multiple instances of the 
component in a sequential

x

Linear Linear

*

relu

x

Linear Linear

*

relu

Linear

Very easy to quickly 
build complex network 
architectures!
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PyTorch: DataLoaders

Lecture 8 - 81

A DataLoader wraps a 
Dataset and provides 
minibatching, shuffling, 
multithreading, for you

When you need to load 
custom data, just write your 
own Dataset class
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PyTorch: DataLoaders

Lecture 8 - 82

Iterate over loader to 
form minibatches
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PyTorch: DataLoaders

Lecture 8 - 83

Iterate over loader to 
form minibatches
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PyTorch: Pretrained Models

Lecture 8 - 84

Super easy to use pretrained models with torchvision 
https://github.com/pytorch/vision

https://github.com/pytorch/vision
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 85
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 86

x w1 w2 y

Create Tensor objects
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 87

x w1
mm

clamp

mm

y_pred

w2

Build graph data structure 
AND perform computation

y
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 88

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure 
AND perform computation
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 89

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop, 
throw away graph
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 90

x w1 yw2

Perform backprop, 
throw away graph
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 91

x w1
mm

clamp

mm

y_pred

w2

Build graph data structure 
AND perform computation

y
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 92

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build graph data structure 
AND perform computation
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 93

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform backprop, 
throw away graph



Justin Johnson September 29, 2020

PyTorch: Dynamic Computation Graphs

Lecture 8 - 94

Dynamic graphs let you use 
regular Python control flow 
during the forward pass!
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 95

Dynamic graphs let you use 
regular Python control flow 
during the forward pass!

Initialize two different 
weight matrices for 
second layer
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PyTorch: Dynamic Computation Graphs

Lecture 8 - 96

Dynamic graphs let you use 
regular Python control flow 
during the forward pass!

Decide which one to use 
at each layer based on 
loss at previous iteration

(this model doesn’t 
makes sense! Just a 
simple dynamic example)
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Alternative: Static Computation Graphs

Lecture 8 - 97

Alternative: Static graphs

Step 1: Build computational graph 
describing our computation 
(including finding paths for backprop)

Step 2: Reuse the same graph on 
every iteration
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PyTorch: Static Graphs with JIT

Lecture 8 - 98

Define model as a 
Python function
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PyTorch: Static Graphs with JIT

Lecture 8 - 99

Just-In-Time compilation: 
Introspect the source code 
of the function, compile it 
into a graph object.

Lots of magic here!



Justin Johnson September 29, 2020

PyTorch: Static Graphs with JIT

Lecture 8 - 100

x w1
mm

clamp

mm

y_pred

-

pow

yw2a

sum loss

w2b prev
loss

if < 5.0

Graph includes a conditional 
node to handle both caes!
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PyTorch: Static Graphs with JIT

Lecture 8 - 101

Use our compiled graph 
object at each forward pass
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PyTorch: Static Graphs with JIT

Lecture 8 - 102

Even easier: add annotation
to function, Python function 
compiled to a graph when it 
is defined

Calling function uses graph
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Static vs Dynamic Graphs: Optimization

Lecture 8 - 103

With static graphs, 
framework can 
optimize the graph 
for you before it runs!

Conv

ReLU

Conv

ReLU

Conv

ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 
fused operations

Conv+ReLU

Conv+ReLU
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Static vs Dynamic Graphs: Serialization

Lecture 8 - 104

Once graph is built, can 
serialize it and run it 
without the code that 
built the graph!

e.g. train model in 
Python, deploy in C++

Graph building and execution are 
intertwined, so always need to 
keep code around

Static Dynamic
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Static vs Dynamic Graphs: Debugging

Lecture 8 - 105

Lots of indirection 
between the code you 
write and the code that 
runs – can be hard to 
debug, benchmark, etc

The code you write is the code 
that runs! Easy to reason about, 
debug, profile, etc

Static Dynamic
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Dynamic Graph Applications

Lecture 8 - 106

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015

Model structure 
depends on the input:
- Recurrent Networks
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Dynamic Graph Applications

Lecture 8 - 107

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments 
for Generating Image Descriptions”, CVPR 2015

The cat ate a big rat

Model structure 
depends on the input:
- Recurrent Networks
- Recursive Networks
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Dynamic Graph Applications

Lecture 8 - 108

Model structure 
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017
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Dynamic Graph Applications

Lecture 8 - 109

Model structure 
depends on the input:
- Recurrent Networks
- Recursive Networks
- Modular Networks
- (Your idea here!)

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017
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TensorFlow

Lecture 9 - 110
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TensorFlow Versions

Lecture 8 - 111

TensorFlow 1.0
- Final release: 1.15.3
- Default: static graphs
- Optional: dynamic graphs 

(eager mode)

TensorFlow 2.0
- Current release: 2.3.1

- Released 9/24
- Default: dynamic graphs
- Optional: static graphs
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TensorFlow 1.0: 
Static Graphs

Lecture 8 - 112

(Assume imports at the 
top of each snippet)
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TensorFlow 1.0: 
Static Graphs

Lecture 8 - 113

First define computational 
graph

Then run the graph many 
times
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TensorFlow 2.0: 
Dynamic Graphs

Lecture 8 - 114

Create TensorFlow 
Tensors for data and 
weights

Weights need to be 
wrapped in tf.Variable
so we can mutate them
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TensorFlow 2.0: 
Dynamic Graphs

Lecture 8 - 115

Scope forward pass 
under a GradientTape to 
tell TensorFlow to start 
building a graph
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TensorFlow 2.0: 
Dynamic Graphs
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Ask the tape to 
compute gradients
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TensorFlow 2.0: 
Dynamic Graphs

Lecture 8 - 117

Gradient descent 
step, update weights
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TensorFlow 2.0: 
Static Graphs

Define a function that 
implements forward, 
backward, and update

Annotating with 
tf.function will compile 
the function into a graph! 
(similar to torch.jit.script)
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TensorFlow 2.0: 
Static Graphs

Define a function that 
implements forward, 
backward, and update

Annotating with 
tf.function will compile 
the function into a graph! 
(similar to torch.jit.script)

(note TF graph can 
include gradient 
computation and update, 
unlike PyTorch)
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TensorFlow 2.0: 
Static Graphs

Call the compiled step 
function in the training 
loop
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Keras: High-level API

Lecture 8 - 121
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Keras: High-level API
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Object-oriented API: 
build the model as a 
stack of layers
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Keras: High-level API
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Keras gives you 
common loss 
functions and 
optimization 
algorithms
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Keras: High-level API
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Forward pass: 
Compute loss, 
build graph

Backward pass: 
compute gradients
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Keras: High-level API
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Optimizer object 
updates parameters
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Keras: High-level API

Lecture 8 - 126

Define a function 
that returns the loss
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Keras: High-level API
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Optimizer computes 
gradients and 
updates parameters
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TensorBoard
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Add logging to code to record loss, stats, etc
Run server and get pretty graphs!
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TensorBoard
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Also works with PyTorch: torch.utils.tensorboard

https://pytorch.org/docs/stable/tensorboard.html
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PyTorch vs TensorFlow
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PyTorch
- My personal favorite
- Clean, imperative API
- Easy dynamic graphs for debugging
- JIT allows static graphs for production
- Cannot use TPUs
- Not easy to deploy on mobile

TensorFlow 1.0
- Static graphs by default
- Can be confusing to debug
- API a bit messy

TensorFlow 2.0
- Dynamic by default
- Standardized on Keras API
- API still confusing



Justin Johnson September 29, 2020

Summary: Hardware
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CPU GPU TPU
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Summary: Software
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Static Graphs vs Dynamic Graphs

PyTorch vs TensorFlow



Justin Johnson September 29, 2020

Next time: 
Training Neural Networks

Lecture 9 - 133


