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Assignment 5: Object Detection

Single-stage detector
Two-stage detector

Due on Monday 12/9, 11:59pm
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Assignment 6: Generative Models

Generative Adversarial Networks

Due on Tuesday 12/17, 11:59pm
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So far: Supervised Learning

Lecture 21 - 4

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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So far: Unsupervised Learning

Lecture 21 - 5

Feature Learning
(e.g. autoencoders)

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying hidden 
structure of the data

Examples: Clustering, dimensionality 
reduction, feature learning, density 
estimation, etc.
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Today: Reinforcement Learning

Lecture 21 - 6

Earth photo is in the public domain
Robot image is in the public domain

Action

Reward

Agent EnvironmentProblems where an
agent performs actions
in environment, and 
receives rewards

Goal: Learn how to 
take actions that 
maximize reward

https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg
https://en.wikipedia.org/wiki/File:Cartoon_Robot.svg
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Overview

Lecture 21 - 7

- What is reinforcement learning?
- Algorithms for reinforcement learning

- Q-Learning
- Policy Gradients
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Reinforcement Learning

Lecture 21 - 8

Environment

Agent
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Reinforcement Learning

Lecture 21 - 9

Environment

State 
st

Agent

The agent sees a state; may 
be noisy or incomplete
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Reinforcement Learning
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Environment

State 
st

Action
at

Agent

The makes an action
based on what it sees
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Reinforcement Learning

Lecture 21 - 11

Environment

State 
st

Action
at

Agent

Reward 
rt

Reward tells the agent 
how well it is doing



Justin Johnson December 4, 2019

Reinforcement Learning

Lecture 21 - 12

Environment

State 
st

Action
at

Agent

Reward 
rt

Environment

Agent

Action causes change 
to environment

Agent learns
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Reinforcement Learning

Lecture 21 - 13

Environment

State 
st

Action
at

Agent

Reward 
rt

Environment

State 
st+1

Action
at+1

Agent

Reward 
rt+1

Process repeats
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Example: Cart-Pole Problem

Lecture 21 - 14

Objective: Balance a pole 
on top of a movable cart

State: angle, angular speed, 
position, horizontal velocity

Action: horizontal force 
applied on the cart

Reward: 1 at each time 
step if the pole is upright

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:Cart-pendulum.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Example: Robot Locomotion

Lecture 21 - 15

Objective: Make the 
robot move forward

State: Angle, position, 
velocity of all joints

Action: Torques applied 
on joints

Reward: 1 at each time 
step upright + forward 
movement

Figure from: Schulman et al, “High-Dimensional Continuous 
Control Using Generalized Advantage Estimation”, ICLR 2016
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Example: Atari Games

Lecture 21 - 16

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013



Justin Johnson December 4, 2019

Example: Go

Lecture 21 - 17

Objective: Win the game!

State: Position of all pieces

Action: Where to put the 
next piece down

Reward: On last turn: 1 if 
you won, 0 if you lost

This image is CC0 public domain

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Reinforcement Learning vs Supervised Learning
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Environment

State 
st

Action
at

Agent

Reward 
rt

Environment

State 
st+1

Action
at+1

Agent

Reward 
rt+1
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Reinforcement Learning vs Supervised Learning

Lecture 21 - 19

Dataset

Input
xt

Prediction
yt

Model

Loss 
Lt

Dataset

Model

Loss
Lt+1

Input
xt+t

Prediction
yt+1

Why is RL different from normal supervised learning?
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Reinforcement Learning vs Supervised Learning

Lecture 21 - 20

Environment

State 
st

Action
at

Agent

Reward 
rt

Environment

State 
st+1

Action
at+1

Agent

Reward 
rt+1

Stochasticity: Rewards and state transitions may be random
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Reinforcement Learning vs Supervised Learning

Lecture 21 - 21

Environment

State 
st

Action
at

Agent

Reward 
rt

Environment

State 
st+1

Action
at+1

Agent

Reward 
rt+1

Credit assignment: Reward rt may not directly depend on action at
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Reinforcement Learning vs Supervised Learning

Lecture 21 - 22

Environment

State 
st

Action
at

Agent

Reward 
rt

Environment

State 
st+1

Action
at+1

Agent

Reward 
rt+1

Nondifferentiable: Can’t backprop through world; can’t compute drt/dat
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Reinforcement Learning vs Supervised Learning

Lecture 21 - 23

Environment

State 
st

Action
at

Agent

Reward 
rt

Environment

State 
st+1

Action
at+1

Agent

Reward 
rt+1

Nonstationary: What the agent experiences depends on how it acts



Justin Johnson December 4, 2019

Markov Decision Process (MDP)

Lecture 21 - 24

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Markov Property: The current state completely characterizes the state of the 
world. Rewards and next states depend only on current state, not history.
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Markov Decision Process (MDP)

Lecture 21 - 25

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Agent executes a policy 𝜋 giving distribution of actions conditioned on states
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Markov Decision Process (MDP)

Lecture 21 - 26

Mathematical formalization of the RL problem: A tuple (𝑆, 𝐴, 𝑅, 𝑃, 𝛾)

S: Set of possible states
A: Set of possible actions
R: Distribution of reward given (state, action) pair
P: Transition probability: distribution over next state given (state, action)
𝛾: Discount factor (tradeoff between future and present rewards)

Agent executes a policy 𝜋 giving distribution of actions conditioned on states
Goal: Find policy 𝜋* that maximizes cumulative discounted reward: ∑+ 𝛾+𝑟+
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Markov Decision Process (MDP)

Lecture 21 - 27

- At time step t=0, environment samples initial state 𝑠. ~ 𝑝(𝑠.)
- Then, for t=0 until done:
- Agent selects action 𝑎+ ~ 𝜋 𝑎 𝑠+)
- Environment samples reward 𝑟+ ~ 𝑅 𝑟 𝑠+, 𝑎+)
- Environment samples next state 𝑠+23 ~ 𝑃 𝑠 | 𝑠+, 𝑎+
- Agent receives reward rt and next state st+1
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A simple MDP: Grid World

Lecture 21 - 28

★

★

States Reward

Set a negative 
“reward” for 

each transition 
(e.g. r = -1)

Actions:

1. Right

2. Left

3. Up

4. Down

Objective: Reach one of the terminal states in as few moves as possible
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A simple MDP: Grid World

Lecture 21 - 29

★

★

Bad policy

★

★

Optimal Policy
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Finding Optimal Policies

Lecture 21 - 30

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.
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Finding Optimal Policies

Lecture 21 - 31

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards
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Finding Optimal Policies

Lecture 21 - 32

Goal: Find the optimal policy 𝜋* that maximizes (discounted) sum of rewards.

Problem: Lots of randomness! Initial state, transition probabilities, rewards

Solution: Maximize the expected sum of rewards

𝜋∗ = argmax
<

𝔼 >
+?.

𝛾+ 𝑟+ | 𝜋
𝑠. ~ 𝑝 𝑠.
𝑎+ ~ 𝜋 𝑎 | 𝑠+
𝑠+23 ~ 𝑃 𝑠 | 𝑠+, 𝑎+
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Value Function and Q Function

Lecture 21 - 33

Following a policy 𝜋 produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …
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Value Function and Q Function

Lecture 21 - 34

Following a policy 𝜋 produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? The value function at state s, is the expected cumulative reward 
from following the policy from state s:

𝑉< 𝑠 = 𝔼 >
+?.

𝛾+ 𝑟+ | 𝑠. = 𝑠, 𝜋
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Value Function and Q Function

Lecture 21 - 35

Following a policy 𝜋 produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? The value function at state s, is the expected cumulative reward 
from following the policy from state s:

𝑉< 𝑠 = 𝔼 >
+?.

𝛾+ 𝑟+ | 𝑠. = 𝑠, 𝜋

How good is a state-action pair? The Q function at state s and action a, is the expected 
cumulative reward from taking action a in state s and then following the policy:

𝑄< 𝑠, 𝑎 = 𝔼 >
+?.

𝛾+ 𝑟+ | 𝑠. = 𝑠, 𝑎. = 𝑎, 𝜋
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Bellman Equation

Lecture 21 - 36

Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
<

𝔼 >
+?.

𝛾+𝑟+ | 𝑠. = 𝑠, 𝑎. = 𝑎, 𝜋
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Bellman Equation

Lecture 21 - 37

Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
<

𝔼 >
+?.

𝛾+𝑟+ | 𝑠. = 𝑠, 𝑎. = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmaxBC 𝑄(𝑠, 𝑎C)
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Bellman Equation

Lecture 21 - 38

Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
<

𝔼 >
+?.

𝛾+𝑟+ | 𝑠. = 𝑠, 𝑎. = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmaxBC 𝑄(𝑠, 𝑎C)

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)



Justin Johnson December 4, 2019

Bellman Equation

Lecture 21 - 39

Optimal Q-function: Q*(s, a) is the Q-function for the optimal policy 𝜋*

It gives the max possible future reward when taking action a in state s:

𝑄∗ 𝑠, 𝑎 = max
<

𝔼 >
+?.

𝛾+𝑟+ | 𝑠. = 𝑠, 𝑎. = 𝑎, 𝜋

Q* encodes the optimal policy: 𝜋∗ 𝑠 = argmaxBC 𝑄(𝑠, 𝑎C)

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Intuition: After taking action a in state s, we get reward r and move to a new 
state s’. After that, the max possible reward we can get is max

BC
𝑄∗ 𝑠C, 𝑎′
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Solving for the optimal policy: Value Iteration

Lecture 21 - 40

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.
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Solving for the optimal policy: Value Iteration

Lecture 21 - 41

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄H23 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄H 𝑠C, 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)
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Solving for the optimal policy: Value Iteration

Lecture 21 - 42

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄H23 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄H 𝑠C, 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
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Solving for the optimal policy: Value Iteration

Lecture 21 - 43

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄H23 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄H 𝑠C, 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
Problem: Need to keep track of Q(s, a) for all (state, action) pairs – impossible if infinite
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Solving for the optimal policy: Value Iteration

Lecture 21 - 44

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Idea: If we find a function Q(s, a) that satisfies the Bellman Equation, then it must be Q*
.

Start with a random Q, and use the Bellman Equation as an update rule:

𝑄H23 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄H 𝑠C, 𝑎′
Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Amazing fact: Qi converges to Q* as 𝑖 → ∞
Problem: Need to keep track of Q(s, a) for all (state, action) pairs – impossible if infinite
Solution: Approximate Q(s, a) with a neural network, use Bellman Equation as loss!
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Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 45

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃
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Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 46

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦E,B,P = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄(𝑠C, 𝑎C; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃 𝑠, 𝑎
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Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 47

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦E,B,P = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄(𝑠C, 𝑎C; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃 𝑠, 𝑎

Use this to define the loss for training Q:      𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦E,B,P
S
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Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 48

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦E,B,P = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄(𝑠C, 𝑎C; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃 𝑠, 𝑎

Use this to define the loss for training Q:      𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦E,B,P
S

Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights θ!
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Solving for the optimal policy: Deep Q-Learning

Lecture 21 - 49

Bellman Equation: Q* satisfies the following recurrence relation:
𝑄∗ 𝑠, 𝑎 = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄∗ 𝑠C, 𝑎′

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃(𝑠, 𝑎)

Train a neural network (with weights θ) to approximate Q*: 𝑄∗ 𝑠, 𝑎 ≈ 𝑄 𝑠, 𝑎; 𝜃

Use the Bellman Equation to tell what Q should output for a given state and action:
𝑦E,B,P = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄(𝑠C, 𝑎C; 𝜃)

Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃 𝑠, 𝑎

Use this to define the loss for training Q:      𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦E,B,P
S

Problem: Nonstationary! The “target” for Q(s, a) depends on the current weights θ!
Problem: How to sample batches of data for training?
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Case Study: Playing Atari Games

Lecture 21 - 50

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game screen
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Mnih et al, “Playing Atari with Deep Reinforcement Learning”, NeurIPS Deep Learning Workshop, 2013
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Case Study: Playing Atari Games

Lecture 21 - 51

Network input: state st: 4x84x84 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

FC-256

FC-A (Q-values)

Conv(4->16, 8x8, stride 4)

Conv(16->32, 4x4, stride 2)

𝑄 𝑠, 𝑎; 𝜃
Neural network
with weights θ

Network output:
Q-values for all actions With 4 actions: last 

layer gives values 
Q(st, a1), Q(st, a2), 
Q(st, a3), Q(st,a4)

Mnih et al, “Playing Atari with Deep Reinforcement 
Learning”, NeurIPS Deep Learning Workshop, 2013
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https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Q-Learning

Lecture 21 - 53

Q-Learning: Train network 𝑄P 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions
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Q-Learning vs Policy Gradients

Lecture 21 - 54

Q-Learning: Train network 𝑄P 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network 𝜋P 𝑎 𝑠) that takes state as input, gives distribution over 
which action to take in that state
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Q-Learning vs Policy Gradients

Lecture 21 - 55

Q-Learning: Train network 𝑄P 𝑠, 𝑎 to estimate future rewards for every (state, action) pair

Problem: For some problems this can be a hard function to learn.
For some problems it is easier to learn a mapping from states to actions

Policy Gradients: Train a network 𝜋P 𝑎 𝑠) that takes state as input, gives distribution over 
which action to take in that state

Objective function: Expected future rewards when following policy 𝜋P:

𝐽 𝜃 = 𝔼D~UV >
+?.

𝛾+ 𝑟+

Find the optimal policy by maximizing: 𝜃∗ = argmaxP 𝐽 𝜃 (Use gradient ascent!)
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Policy Gradients

Lecture 21 - 56

Objective function: Expected future rewards when following policy 𝜋P:

𝐽 𝜃 = 𝔼D~UV >
+?.

𝛾+ 𝑟+

Find the optimal policy by maximizing: 𝜃∗ = argmaxP 𝐽 𝜃 (Use gradient ascent!)

Problem: Nondifferentiability! Don’t know how to compute WX
WP



Justin Johnson December 4, 2019

Policy Gradients

Lecture 21 - 57

Objective function: Expected future rewards when following policy 𝜋P:

𝐽 𝜃 = 𝔼D~UV >
+?.

𝛾+ 𝑟+

Find the optimal policy by maximizing: 𝜃∗ = argmaxP 𝐽 𝜃 (Use gradient ascent!)

General formulation:   𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 Want to compute  WX
WP

Problem: Nondifferentiability! Don’t know how to compute WX
WP
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 58

General formulation:   𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 Want to compute  WX
WP
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 59

General formulation:   𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 Want to compute  WX
WP

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼Y~UV 𝑓 𝑥 =

𝜕
𝜕𝜃
]
^
𝑝P 𝑥 𝑓 𝑥 𝑑𝑥 = ]

^
𝑓 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 𝑑𝑥
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 60

General formulation:   𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 Want to compute  WX
WP

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼Y~UV 𝑓 𝑥 =

𝜕
𝜕𝜃
]
^
𝑝P 𝑥 𝑓 𝑥 𝑑𝑥 = ]

^
𝑓 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 𝑑𝑥
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 61

General formulation:   𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 Want to compute  WX
WP

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼Y~UV 𝑓 𝑥 =

𝜕
𝜕𝜃
]
^
𝑝P 𝑥 𝑓 𝑥 𝑑𝑥 = ]

^
𝑓 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥 =

1
𝑝P 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 ⇒

𝜕
𝜕𝜃
𝑝P 𝑥 = 𝑝P 𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 62

General formulation:   𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 Want to compute  WX
WP

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼Y~UV 𝑓 𝑥 =

𝜕
𝜕𝜃
]
^
𝑝P 𝑥 𝑓 𝑥 𝑑𝑥 = ]

^
𝑓 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥 =

1
𝑝P 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 ⇒

𝜕
𝜕𝜃
𝑝P 𝑥 = 𝑝P 𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 63

General formulation:   𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 Want to compute  WX
WP

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼Y~UV 𝑓 𝑥 =

𝜕
𝜕𝜃
]
^
𝑝P 𝑥 𝑓 𝑥 𝑑𝑥 = ]

^
𝑓 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥 =

1
𝑝P 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 ⇒

𝜕
𝜕𝜃
𝑝P 𝑥 = 𝑝P 𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 64

General formulation:   𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 Want to compute  WX
WP

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼Y~UV 𝑓 𝑥 =

𝜕
𝜕𝜃
]
^
𝑝P 𝑥 𝑓 𝑥 𝑑𝑥 = ]

^
𝑓 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥 =

1
𝑝P 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 ⇒

𝜕
𝜕𝜃
𝑝P 𝑥 = 𝑝P 𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥

𝜕𝐽
𝜕𝜃

= ]
^
𝑓 𝑥 𝑝P 𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥 𝑑𝑥 = 𝔼Y~UV 𝑓 𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 65

General formulation:   𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 Want to compute  WX
WP

𝜕𝐽
𝜕𝜃

=
𝜕
𝜕𝜃
𝔼Y~UV 𝑓 𝑥 =

𝜕
𝜕𝜃
]
^
𝑝P 𝑥 𝑓 𝑥 𝑑𝑥 = ]

^
𝑓 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 𝑑𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥 =

1
𝑝P 𝑥

𝜕
𝜕𝜃
𝑝P 𝑥 ⇒

𝜕
𝜕𝜃
𝑝P 𝑥 = 𝑝P 𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥

𝜕𝐽
𝜕𝜃

= ]
^
𝑓 𝑥 𝑝P 𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥 𝑑𝑥 = 𝔼Y~UV 𝑓 𝑥

𝜕
𝜕𝜃
log 𝑝P 𝑥

Approximate the expectation via sampling!
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 66

𝑝P 𝑥 =d
+?.

𝑃 𝑠+23| 𝑠+ 𝜋P 𝑎+ | 𝑠+ ⇒ log 𝑝P(𝑥) =>
+?.

log 𝑃 𝑠+23|𝑠+ + log 𝜋P 𝑎+|𝑠+

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 67

𝑝P 𝑥 =d
+?.

𝑃 𝑠+23| 𝑠+ 𝜋P 𝑎+ | 𝑠+ ⇒ log 𝑝P(𝑥) =>
+?.

log 𝑃 𝑠+23|𝑠+ + log 𝜋P 𝑎+|𝑠+

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 68

𝑝P 𝑥 =d
+?.

𝑃 𝑠+23| 𝑠+ 𝜋P 𝑎+ | 𝑠+ ⇒ log 𝑝P(𝑥) =>
+?.

log 𝑃 𝑠+23|𝑠+ + log 𝜋P 𝑎+|𝑠+

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

Transition probabilities 
of environment. We 
can’t compute this.



Justin Johnson December 4, 2019

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 69

𝑝P 𝑥 =d
+?.

𝑃 𝑠+23| 𝑠+ 𝜋P 𝑎+ | 𝑠+ ⇒ log 𝑝P(𝑥) =>
+?.

log 𝑃 𝑠+23|𝑠+ + log 𝜋P 𝑎+|𝑠+

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

Transition probabilities 
of environment. We 
can’t compute this.

Action probabilities 
of policy. We can 
are learning this!
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 70

𝑝P 𝑥 =d
+?.

𝑃 𝑠+23| 𝑠+ 𝜋P 𝑎+ | 𝑠+ ⇒ log 𝑝P(𝑥) =>
+?.

log 𝑃 𝑠+23|𝑠+ + log 𝜋P 𝑎+|𝑠+

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

Transition probabilities 
of environment. We 
can’t compute this.

Action probabilities 
of policy. We can 
are learning this!

𝜕
𝜕𝜃

log 𝑝P 𝑥 =>
+?.

𝜕
𝜕𝜃

log 𝜋P 𝑎+|𝑠+
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 71

𝑝P 𝑥 =d
+?.

𝑃 𝑠+23| 𝑠+ 𝜋P 𝑎+ | 𝑠+ ⇒ log 𝑝P(𝑥) =>
+?.

log 𝑃 𝑠+23|𝑠+ + log 𝜋P 𝑎+|𝑠+

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

Transition probabilities 
of environment. We 
can’t compute this.

Action probabilities 
of policy. We can 
are learning this!

𝜕
𝜕𝜃

log 𝑝P 𝑥 =>
+?.

𝜕
𝜕𝜃

log 𝜋P 𝑎+|𝑠+
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 72

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

𝜕
𝜕𝜃

log 𝑝P 𝑥 =>
+?.

𝜕
𝜕𝜃

log 𝜋P 𝑎+|𝑠+
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Expected reward under 𝜋P:
𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼Y~UV 𝑓 𝑥
𝜕
𝜕𝜃
log 𝑝P 𝑥 = 𝔼Y~UV 𝑓 𝑥 >

+?.

𝜕
𝜕𝜃
log 𝜋P 𝑎+|𝑠+

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 73

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

𝜕
𝜕𝜃

log 𝑝P 𝑥 =>
+?.

𝜕
𝜕𝜃

log 𝜋P 𝑎+|𝑠+
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Expected reward under 𝜋P:
𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼Y~UV 𝑓 𝑥
𝜕
𝜕𝜃
log 𝑝P 𝑥 = 𝔼Y~UV 𝑓 𝑥 >

+?.

𝜕
𝜕𝜃
log 𝜋P 𝑎+|𝑠+

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 74

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

𝜕
𝜕𝜃

log 𝑝P 𝑥 =>
+?.

𝜕
𝜕𝜃

log 𝜋P 𝑎+|𝑠+
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Expected reward under 𝜋P:
𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼Y~UV 𝑓 𝑥 >
+?.

𝜕
𝜕𝜃
log 𝜋P 𝑎+|𝑠+

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 75

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥
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Expected reward under 𝜋P:
𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼𝒙~𝒑𝜽 𝑓 𝑥 >
+?.

𝜕
𝜕𝜃
log 𝜋P 𝑎+|𝑠+

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 76

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

Sequence of states 
and actions when 
following policy 𝝅𝜽
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Expected reward under 𝜋P:
𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼Y~UV 𝒇 𝒙 >
+?.

𝜕
𝜕𝜃
log 𝜋P 𝑎+|𝑠+

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 77

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

Reward we get from 
state sequence x
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Expected reward under 𝜋P:
𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼Y~UV 𝑓 𝑥 >
+?.

𝝏
𝝏𝜽

𝒍𝒐𝒈𝝅𝜽 𝒂𝒕|𝒔𝒕

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 78

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

Gradient of predicted
action scores with 
respect to model 
weights. Backprop 
through model 𝝅𝜽! 
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Expected reward under 𝜋P:
𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥
𝜕𝐽
𝜕𝜃

= 𝔼Y~UV 𝑓 𝑥 >
+?.

𝜕
𝜕𝜃
𝑙𝑜𝑔 𝜋P 𝑎+|𝑠+

Policy Gradients: REINFORCE Algorithm

Lecture 21 - 79

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

1. Initialize random weights θ
2. Collect trajectories x and 

rewards f(x) using policy 𝜋P
3. Compute dJ/dθ
4. Gradient ascent step on θ
5. GOTO 2
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Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state
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Expected reward under 𝜋P:
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Policy Gradients: REINFORCE Algorithm

Lecture 21 - 82

Goal: Train a network 𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to take in that state

Define: Let 𝑥 = 𝑠., 𝑎., 𝑠3, 𝑎3, … be the sequence of states and 
actions we get when following policy 𝜋P. It’s random: 𝑥~𝑝P 𝑥

Intuition: 
When f(x) is high: Increase the
probability of the actions we took.
When f(x) is low: Decrease the 
probability of the actions we took.
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So far: Q-Learning and Policy Gradients

Lecture 21 - 83

Q-Learning: Train network 𝑄P 𝑠, 𝑎 to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

𝑦E,B,P = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄(𝑠C, 𝑎C; 𝜃) Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃 𝑠, 𝑎

𝐿 𝑠, 𝑎 = 𝑄 𝑠, 𝑎; 𝜃 − 𝑦E,B,P
S

Policy Gradients: Train a network 𝜋P 𝑎 𝑠) that takes state as input, gives distribution over 
which action to take in that state. Use REINFORCE Rule for computing gradients:

𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 WX
WP
= 𝔼Y~UV 𝑓 𝑥 ∑+?.

W
WP
𝑙𝑜𝑔 𝜋P 𝑎+|𝑠+



Justin Johnson December 4, 2019

So far: Q-Learning and Policy Gradients

Lecture 21 - 84

Q-Learning: Train network 𝑄P 𝑠, 𝑎 to estimate future rewards for every (state, action) pair
Use Bellman Equation to define loss function for training Q:

𝑦E,B,P = 𝔼D,EC 𝑟 + 𝛾maxBC 𝑄(𝑠C, 𝑎C; 𝜃) Where 𝑟~𝑅 𝑠, 𝑎 , 𝑠C~𝑃 𝑠, 𝑎
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S

Policy Gradients: Train a network 𝜋P 𝑎 𝑠) that takes state as input, gives distribution over 
which action to take in that state. Use REINFORCE Rule for computing gradients:

𝐽 𝜃 = 𝔼Y~UV 𝑓 𝑥 WX
WP
= 𝔼Y~UV 𝑓 𝑥 ∑+?.

W
WP
𝑙𝑜𝑔 𝜋P 𝑎+|𝑠+

Improving policy gradients: Add baseline to reduce variance of gradient estimator
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Other approaches: Model Based RL

Lecture 21 - 85

Actor-Critic: Train an actor that predicts actions (like policy gradient) and a critic that 
predicts the future rewards we get from taking those actions (like Q-Learning)
Sutton and Barto, “Reinforcement Learning: An Introduction”, 1998; Degris et al, “Model-free reinforcement learning with continuous action in practice”, 2012; Mnih et al, 
“Asynchronous Methods for Deep Reinforcement Learning”, ICML 2016

Model-Based: Learn a model of the world’s state transition function 𝑃(𝑠+23|𝑠+, 𝑎+) and 
then use planning through the model to make decisions

Imitation Learning: Gather data about how experts perform in the environment, learn a 
function to imitate what they do (supervised learning approach)

Inverse Reinforcement Learning: Gather data of experts performing in environment; learn a
reward function that they seem to be optimizing, then use RL on that reward function
Ng et al, “Algorithms for Inverse Reinforcement Learning”, ICML 2000

Adversarial Learning: Learn to fool a discriminator that classifies actions as real/fake
Ho and Ermon, “Generative Adversarial Imitation Learning”, NeurIPS 2016
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Case Study: Playing Games

Lecture 21 - 90

This image is CC0 public domain

AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

https://upload.wikimedia.org/wikipedia/commons/a/ab/Go_game_Kobayashi-Kato.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Case Study: Playing Games
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AlphaGo: (January 2016)
- Used imitation learning + tree search + RL
- Beat 18-time world champion Lee Sedol
AlphaGo Zero (October 2017)
- Simplified version of AlphaGo
- No longer using imitation learning
- Beat (at the time) #1 ranked Ke Jie
Alpha Zero (December 2018)
- Generalized to other games: Chess and Shogi
MuZero (November 2019)
- Plans through a learned model of the game

Silver et al, “Mastering the game of Go with deep neural networks and tree search”, Nature 2016
Silver et al, “Mastering the game of Go without human knowledge”, Nature 2017
Silver et al, “A general reinforcement learning algorithm that masters chess, shogi, and go through self-play”, Science 2018
Schrittwieser et al, “Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model”, arXiv 2019

November 2019: Lee Sedol 
announces retirement

“With the debut of AI 
in Go games, I've 
realized that I'm not at 
the top even if I 
become the number 
one through frantic 
efforts”
“Even if I become the 
number one, there is 
an entity that cannot 
be defeated”

Quotes from: https://en.yna.co.kr/view/AEN20191127004800315
Image of Lee Sedol is licensed under CC BY 2.0

https://en.yna.co.kr/view/AEN20191127004800315
https://commons.wikimedia.org/wiki/File:Lee_Se-Dol_-_2016_(cropped).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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More Complex Games

Lecture 21 - 95

StarCraft II: AlphaStar
(October 2019)
Vinyals et al, “Grandmaster 
level in StarCraft II using 
multi-agent reinforcement 
learning”, Science 2018

Dota 2: OpenAI Five (April 2019)
No paper, only a blog post:
https://openai.com/five/#how-
openai-five-works

https://openai.com/five/
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Reinforcement Learning: Interacting With World

Lecture 21 - 96

Ac#on

Reward

Agent Environment

Normally we use RL to train 
agents that interact with a (noisy, 
nondifferentiable) environment
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Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 97

Can also use RL to train neural networks with nondifferentiable components!
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Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 98

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN
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Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 99

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN

Which network 
to use?
P(orange) = 0.2
P(blue) = 0.1
P(green) = 0.7
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Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 100

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN

Which network 
to use?
P(orange) = 0.2
P(blue) = 0.1
P(green) = 0.7

Sample: 
Green
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Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 101

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN

Which network 
to use?
P(orange) = 0.2
P(blue) = 0.1
P(green) = 0.7

Sample: 
Green

Loss
Reward = -loss
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Reinforcement Learning: Stochastic Computation Graphs

Lecture 21 - 102

Can also use RL to train neural networks with nondifferentiable components!
Example: Small “routing” network sends image to one of K networks

CNN

CNN

CNN

CNN

Which network 
to use?
P(orange) = 0.2
P(blue) = 0.1
P(green) = 0.7

Sample: 
Green

Loss
Reward = -loss

Update routing net with policy gradient
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Stochastic Computation Graphs: Attention

Lecture 21 - 103

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Recall: Image captioning with attention. At each timestep use a 
weighted combination of features from different spatial positions

(Soft Attention)
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Stochastic Computation Graphs: Attention

Lecture 21 - 104

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Recall: Image captioning with attention. At each timestep use a 
weighted combination of features from different spatial positions

(Soft Attention)

Hard Attention: At each timestep, select features from exactly one 
spatial location. Train with policy gradient.
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Summary: Reinforcement Learning

Lecture 21 - 105

Ac#on

Reward

Agent Environment

RL trains agents that interact 
with an environment and 
learn to maximize reward

Q-Learning: Train network 𝑄P 𝑠, 𝑎 to 
estimate future rewards for every 
(state, action) pair. Use Bellman
Equation to define loss function for 
training Q

Policy Gradients: Train a network 
𝜋P 𝑎 𝑠) that takes state as input, 
gives distribution over which action to 
take in that state. Use REINFORCE Rule
for computing gradients
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Next Time:
Course Recap

Open Problems in Computer Vision

Lecture 21 - 106


