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Lecture 19:
Generative Models, Part 1

Lecture 19 - 1
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Last Time: Videos

Lecture 19 - 2

Many video models:
Single-frame CNN (Try this first!)
Late fusion
Early fusion
3D CNN / C3D
Two-stream networks
CNN + RNN
Convolutional RNN
Spatio-temporal self-attention
SlowFast networks (current SoTA)
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Today:
Generative Models, Part 1

Lecture 19 - 3
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Supervised vs Unsupervised Learning

Lecture 19 - 4

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Lecture 19 - 5

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

DOG, DOG, CAT
This image is CC0 public domain

Object Detection

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Lecture 19 - 6

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Semantic Segmentation

GRASS, CAT, TREE, SKY
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Supervised vs Unsupervised Learning

Lecture 19 - 7

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Image captioning

A cat sitting on a 
suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Lecture 19 - 8

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.
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Supervised vs Unsupervised Learning

Lecture 19 - 9

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Clustering
(e.g. K-Means)

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Lecture 19 - 10

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Dimensionality Reduction
(e.g. Principal Components Analysis)

This image from Matthias Scholz  is CC0 public domain

3D 2D

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Lecture 19 - 11

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Feature Learning
(e.g. autoencoders)
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Supervised vs Unsupervised Learning

Lecture 19 - 12

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.

Density Estimation

Images left and right are CC0 public domain

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Supervised vs Unsupervised Learning

Lecture 19 - 13

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, regression, 
object detection, semantic 
segmentation, image captioning, etc.

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc.
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Discriminative vs Generative Models

Lecture 19 - 14

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y) Cat

Data: x

Label: y
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Discriminative vs Generative Models

Lecture 19 - 15

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y) Cat

Data: x

Label: y
!
"
𝑝 𝑥 𝑑𝑥 = 1

Probability Recap:

Density Function
p(x) assigns a positive 
number to each possible 
x; higher numbers mean 
x is more likely

Density functions are 
normalized:

Different values of x 
compete for density
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Discriminative vs Generative Models

Lecture 19 - 16

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Data: x

!
"
𝑝 𝑥 𝑑𝑥 = 1

Density Function
p(x) assigns a positive number 
to each possible x; higher 
numbers mean x is more likely

Density functions 
are normalized:

Different values of x 
compete for density 

P(cat|.      )

P(dog|.      )
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Discriminative vs Generative Models

Lecture 19 - 17

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(cat|.      )

P(dog|.      )

P(cat|      )

P(dog|      )

Discriminative model: the possible labels for 
each input ”compete” for probability mass. 
But no competition between images

Dog image is CC0 Public Domain

https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
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Discriminative vs Generative Models

Lecture 19 - 18

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(cat|      )
P(dog|      )

Discriminative model: No way for the model 
to handle unreasonable inputs; it must give 
label distributions for all images

Monkey image is CC0 Public Domain

P(cat|      )

P(dog|      )

https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
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Discriminative vs Generative Models

Lecture 19 - 19

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

P(cat|      )
P(dog|      )

Discriminative model: No way for the model 
to handle unreasonable inputs; it must give 
label distributions for all images

P(cat|      )
P(dog|      )

Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Lecture 19 - 20

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Generative model: All possible images compete 
with each other for probability mass

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(      )

P(      )

P(      )
P(      )

…

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Lecture 19 - 21

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Generative model: All possible images compete 
with each other for probability mass

Requires deep image understanding! Is a dog more likely to 
sit or stand? How about 3-legged dog vs 3-armed monkey?

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(      )

P(      )

P(      )
P(      )

…

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Lecture 19 - 22

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Generative model: All possible images compete 
with each other for probability mass

Model can “reject” unreasonable inputs by 
assigning them small values

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(      )

P(      )

P(      )
P(      )

…

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Lecture 19 - 23

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Conditional Generative Model: Each possible 
label induces a competition among all images

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

P(      |cat) P(      |cat)

P(      |cat)

P(      |cat)

…
P(      |dog) P(      |dog)

P(      |dog)
P(      |dog)

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Lecture 19 - 24

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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Discriminative vs Generative Models

Lecture 19 - 25

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

We can build a conditional generative 
model from other components!

Cat image is CC0 public domain
Dog image is CC0 Public Domain
Monkey image is CC0 Public Domain
Abstract image is free to use under the Pixabay license

𝑃 𝑥 𝑦) =
𝑃 𝑦 𝑥)
𝑃 𝑦

𝑃(𝑥)

Recall Bayes’ Rule:

Conditional 
Generative Model

Discriminative Model

Prior over labels

(Unconditional) 
Generative Model

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.maxpixel.net/Pet-Dog-Autumn-Animal-Puppy-Autumn-Forest-4632387
https://www.maxpixel.net/Eyes-Animal-Macaque-Primate-Face-Monkey-Fur-4506321
https://pixabay.com/illustrations/abstract-lithofacies-by-fractal-2733605/
https://pixabay.com/service/license/
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What can we do with a discriminative model?

Lecture 19 - 26

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Assign labels to data
Feature learning (with labels)
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What can we do with a generative model?

Lecture 19 - 27

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Assign labels to data
Feature learning (with labels)

Detect outliers
Feature learning (without labels)
Sample to generate new data
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What can we do with a generative model?

Lecture 19 - 28

Discriminative Model: 
Learn a probability 
distribution p(y|x)

Generative Model: 
Learn a probability 
distribution p(x)

Conditional Generative 
Model: Learn p(x|y)

Assign labels to data
Feature learning (supervised)

Detect outliers
Feature learning (unsupervised)
Sample to generate new data

Assign labels, while rejecting outliers!
Generate new data conditioned on input labels
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Taxonomy of Generative Models

Lecture 19 - 29

Generative models

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Taxonomy of Generative Models

Lecture 19 - 30

Generative models

Explicit density Implicit density

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)
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Taxonomy of Generative Models

Lecture 19 - 31

Generative models

Explicit density Implicit density

Tractable density Approximate density

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)
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Taxonomy of Generative Models

Lecture 19 - 32

Generative models

Explicit density Implicit density

Tractable density Approximate density

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)
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Taxonomy of Generative Models

Lecture 19 - 33

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial 
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)
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Taxonomy of Generative Models

Lecture 19 - 34

Generative models

Explicit density Implicit density

DirectTractable density Approximate density Markov Chain

Variational Markov Chain

Variational Autoencoder Boltzmann Machine

GSN Generative Adversarial 
Networks (GANs)

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Can compute p(x)
- Autoregressive
- NADE / MADE
- NICE / RealNVP
- Glow 
- Ffjord

Model does not explicitly 
compute p(x), but can 
sample from p(x)

Model can 
compute p(x)

Can compute 
approximation to p(x)

We will talk 
about these
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Autoregressive models

Lecture 19 - 35
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Explicit Density Estimation

Lecture 19 - 36

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)
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Explicit Density Estimation

Lecture 19 - 37

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(/), 𝑥(0), … 𝑥 2 , train the model by solving:

Maximize probability of training data 
(Maximum likelihood estimation)𝑊∗ = argmax

9
:

;
𝑝(𝑥 ; )
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Explicit Density Estimation

Lecture 19 - 38

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(/), 𝑥(0), … 𝑥 2 , train the model by solving:

Maximize probability of training data 
(Maximum likelihood estimation)𝑊∗ = argmax

9
:

;
𝑝(𝑥 ; )

= argmax
<

∑; log 𝑝(𝑥 ; ) Log trick to exchange product for sum
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Explicit Density Estimation

Lecture 19 - 39

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

Given dataset 𝑥(/), 𝑥(0), … 𝑥 2 , train the model by solving:

Maximize probability of training data 
(Maximum likelihood estimation)𝑊∗ = argmax

9
:

;
𝑝(𝑥 ; )

= argmax
<

∑; log 𝑝(𝑥 ; )

= argmax
<

∑; log 𝑓(𝑥 ; ,𝑊)

Log trick to exchange product for sum

This will be our loss function! 
Train with gradient descent



Justin Johnson November 20, 2019

Explicit Density: Autoregressive Models

Lecture 19 - 40

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥/, 𝑥0, 𝑥@, … , 𝑥A
Assume x consists of 
multiple subparts:
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Explicit Density: Autoregressive Models

Lecture 19 - 41

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥/, 𝑥0, 𝑥@, … , 𝑥A
Assume x consists of 
multiple subparts:

𝑝 𝑥 = 𝑝 𝑥/, 𝑥0, 𝑥@, … , 𝑥A
= 𝑝 𝑥/ 𝑝 𝑥0 𝑥/)𝑝 𝑥@ 𝑥/, 𝑥0)…

Break down probability 
using the chain rule:
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Explicit Density: Autoregressive Models

Lecture 19 - 42

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥/, 𝑥0, 𝑥@, … , 𝑥A
Assume x consists of 
multiple subparts:

𝑝 𝑥 = 𝑝 𝑥/, 𝑥0, 𝑥@, … , 𝑥A
= 𝑝 𝑥/ 𝑝 𝑥0 𝑥/)𝑝 𝑥@ 𝑥/, 𝑥0)…
= ∏CD/

A 𝑝 𝑥C 𝑥/, … , 𝑥CE/)

Break down probability 
using the chain rule:

Probability of the next subpart 
given all the previous subparts
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Explicit Density: Autoregressive Models

Lecture 19 - 43

Goal: Write down an explicit function for 𝑝 𝑥 = 𝑓(𝑥,𝑊)

𝑥 = 𝑥/, 𝑥0, 𝑥@, … , 𝑥A
Assume x consists of 
multiple subparts:

𝑝 𝑥 = 𝑝 𝑥/, 𝑥0, 𝑥@, … , 𝑥A
= 𝑝 𝑥/ 𝑝 𝑥0 𝑥/)𝑝 𝑥@ 𝑥/, 𝑥0)…
= ∏CD/

A 𝑝 𝑥C 𝑥/, … , 𝑥CE/)

Break down probability 
using the chain rule:

Probability of the next subpart 
given all the previous subparts

x0

h1

p(x1)

x1

h2

p(x2)

x2

h3

p(x3)

x3

h4

p(x4) We’ve already 
seen this! 
Language 
modeling with 
an RNN!
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PixelRNN

Lecture 19 - 44

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Lecture 19 - 45

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Lecture 19 - 46

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Lecture 19 - 47

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Lecture 19 - 48

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Lecture 19 - 49

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Lecture 19 - 50

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]
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PixelRNN

Lecture 19 - 51

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]

Each pixel depends implicity on all pixels above 
and to the left:
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PixelRNN

Lecture 19 - 52

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]

Each pixel depends implicity on all pixels above 
and to the left:
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PixelRNN

Lecture 19 - 53

Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016

Generate image pixels one at a time, starting at 
the upper left corner

Compute a hidden state for each pixel that 
depends on hidden states and RGB values from 
the left and from above (LSTM recurrence)

ℎG,H = 𝑓(ℎGE/,H, ℎG,HE/,𝑊)

At each pixel, predict red, then blue, then green: 
softmax over [0, 1, …, 255]

Each pixel depends implicity on all pixels above 
and to the left:

Problem: Very slow during both 
training and testing; N x N image 
requires 2N-1 sequential steps
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PixelCNN

Lecture 19 - 54

Still generate image pixels starting from corner

Dependency on previous pixels now modeled 
using a CNN over context region

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016
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PixelCNN

Lecture 19 - 55

Still generate image pixels starting from corner

Dependency on previous pixels now modeled 
using a CNN over context region

Training: maximize likelihood of training images

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016

Softmax loss 
at each pixel
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PixelCNN

Lecture 19 - 56

Still generate image pixels starting from corner

Dependency on previous pixels now modeled 
using a CNN over context region

Training: maximize likelihood of training images

Van den Oord et al, “Conditional Image Generation with PixelCNN Decoders”, NeurIPS 2016

Softmax loss 
at each pixel

Training is faster than PixelRNN
(can parallelize convolutions since context 
region values known from training images)

Generation must still proceed sequentially
=> still slow
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PixelRNN: Generated Samples

Lecture 19 - 57

32x32 CIFAR-10 32x32 ImageNet
Van den Oord et al, “Pixel Recurrent Neural Networks”, ICML 2016
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Autoregressive Models: PixelRNN and PixelCNN

Lecture 19 - 58

Improving PixelCNN performance
- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 (PixelCNN++)

Pros:
- Can explicitly compute likelihood p(x)
- Explicit likelihood of training data 

gives good evaluation metric
- Good samples

Con:
- Sequential generation => slow
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Variational Autoencoders

Lecture 19 - 59
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Variational Autoencoders

Lecture 19 - 60

PixelRNN / PixelCNN explicitly parameterizes density function with a neural 
network, so we can train to maximize likelihood of training data:

Variational Autoencoders (VAE) define an intractable density that we 
cannot explicitly compute or optimize

But we will be able to directly optimize a lower bound on the density
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Variational Autoencoders

Lecture 19 - 61



Justin Johnson November 20, 2019

(Regular, non-variational) Autoencoders

Lecture 19 - 62

Unsupervised method for learning feature vectors from raw data x, without any labels

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful 
information (maybe object identities, 
properties, scene type, etc) that we 
can use for downstream tasks

Input Data
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(Regular, non-variational) Autoencoders

Lecture 19 - 63

Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Features should extract useful 
information (maybe object identities, 
properties, scene type, etc) that we 
can use for downstream tasks
But we can’t observe features!

Input Data
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(Regular, non-variational) Autoencoders

Lecture 19 - 64

Problem: How can we learn this feature transform from raw data?

Encoder

Input data

Features

Idea: Use the features to reconstruct the input data with a decoder
“Autoencoding” = encoding itself

Decoder

Reconstructed 
input data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Input Data
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(Regular, non-variational) Autoencoders

Lecture 19 - 65

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 
input data

Loss Function

I𝑥 − 𝑥 0
0

Input Data

Does not use any 
labels! Just raw data!
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(Regular, non-variational) Autoencoders

Lecture 19 - 66

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 
input data

Loss Function

I𝑥 − 𝑥 0
0

Input Data

Does not use any 
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers
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(Regular, non-variational) Autoencoders

Lecture 19 - 67

Encoder

Input data

Features

Loss: L2 distance between input and reconstructed data. 

Decoder

Reconstructed 
input data

Loss Function

I𝑥 − 𝑥 0
0

Input Data

Does not use any 
labels! Just raw data!

Reconstructed data

Decoder:
4 tconv layers
Encoder:
4 conv layers

Features need to be 
lower dimensional
than the data
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(Regular, non-variational) Autoencoders

Lecture 19 - 68

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Decoder

Reconstructed 
input data

After training, 
throw away decoder
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(Regular, non-variational) Autoencoders

Lecture 19 - 69

Encoder

Input data

Features

After training, throw away decoder and use encoder for a downstream task

Classifier

Predicted Label

Loss function 
(Softmax, etc)

Fine-tune
encoder
jointly with
classifier

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)
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(Regular, non-variational) Autoencoders

Lecture 19 - 70

Encoder

Input data

Features

Autoencoders learn latent features for data without any labels!
Can use features to initialize a supervised model
Not probabilistic: No way to sample new data from learned model

Decoder

Reconstructed 
input data
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Variational Autoencoders

Lecture 19 - 71

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014
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Variational Autoencoders

Lecture 19 - 72

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data
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Variational Autoencoders

Lecture 19 - 73

Assume training data                       is 
generated from unobserved (latent) 
representation z

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 
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Variational Autoencoders

Lecture 19 - 74

Assume training data                       is 
generated from unobserved (latent) 
representation z

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z 
from prior

Sample from 
conditional

After training, sample new data like this: Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 
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Variational Autoencoders

Lecture 19 - 75

Assume training data                       is 
generated from unobserved (latent) 
representation z

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z 
from prior

Sample from 
conditional

After training, sample new data like this: Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume simple prior p(z), e.g. Gaussian
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Variational Autoencoders

Lecture 19 - 76

Assume training data                       is 
generated from unobserved (latent) 
representation z

Probabilistic spin on autoencoders: 
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Sample z 
from prior

Sample from 
conditional

After training, sample new data like this: Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)
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Variational Autoencoders

Lecture 19 - 77

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Intuition: x is an image, z is latent 
factors used to generate x:
attributes, orientation, etc. 

Assume simple prior p(z), e.g. Gaussian

Represent p(x|z) with a neural network
(Similar to decoder from autencoder)

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z
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Variational Autoencoders

Lecture 19 - 78

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

If we could observe the z for each x, then 
could train a conditional generative model
p(x|z)
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Variational Autoencoders

Lecture 19 - 79

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝K 𝑥 = !𝑝K 𝑥, 𝑧 𝑑𝑧 = !𝑝K 𝑥 𝑧 𝑝K 𝑧 𝑑𝑧
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Variational Autoencoders

Lecture 19 - 80

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝K 𝑥 = !𝑝K 𝑥, 𝑧 𝑑𝑧 = !𝑝K 𝑥 𝑧 𝑝K 𝑧 𝑑𝑧

Ok, can compute this with decoder network
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Variational Autoencoders

Lecture 19 - 81

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝K 𝑥 = !𝑝K 𝑥, 𝑧 𝑑𝑧 = !𝑝K 𝑥 𝑧 𝑝K 𝑧 𝑑𝑧

Ok, we assumed Gaussian prior for z
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Variational Autoencoders

Lecture 19 - 82

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

We don’t observe z, so need to marginalize:

𝑝K 𝑥 = !𝑝K 𝑥, 𝑧 𝑑𝑧 = !𝑝K 𝑥 𝑧 𝑝K 𝑧 𝑑𝑧

Problem: Impossible to integrate over all z!
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Variational Autoencoders

Lecture 19 - 83

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

𝑝K 𝑥 =
𝑝K 𝑥 𝑧)𝑝K 𝑧
𝑝K 𝑧 𝑥)
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Variational Autoencoders

Lecture 19 - 84

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, compute with 
decoder network

𝑝K 𝑥 =
𝑝K 𝑥 𝑧)𝑝K 𝑧
𝑝K 𝑧 𝑥)
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Variational Autoencoders

Lecture 19 - 85

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Ok, we assumed 
Gaussian prior

𝑝K 𝑥 =
𝑝K 𝑥 𝑧)𝑝K 𝑧
𝑝K 𝑧 𝑥)
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Variational Autoencoders

Lecture 19 - 86

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Problem: No way 
to compute this!𝑝K 𝑥 =

𝑝K 𝑥 𝑧)𝑝K 𝑧
𝑝K 𝑧 𝑥)



Justin Johnson November 20, 2019

Variational Autoencoders

Lecture 19 - 87

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝K 𝑥 =
𝑝K 𝑥 𝑧)𝑝K 𝑧
𝑝K 𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Solution: Train 
another network 

(encoder) that learns 
𝑞N 𝑧 𝑥) ≈ 𝑝K 𝑧 𝑥)
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Variational Autoencoders

Lecture 19 - 88

Assume training data                       is 
generated from unobserved (latent) 
representation z

Sample z 
from prior

Sample from 
conditional

Decoder must be probabilistic:
Decoder inputs z, outputs mean μx|z
and (diagonal) covariance ∑x|z

Sample x from Gaussian with mean 
μx|z and (diagonal) covariance ∑x|z How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes’ Rule:

𝑝K 𝑥 =
𝑝K 𝑥 𝑧)𝑝K 𝑧
𝑝K 𝑧 𝑥)

≈
𝑝K 𝑥 𝑧)𝑝K 𝑧
𝑞N 𝑧 𝑥)

Recall 𝑝 𝑥, 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑧 = 𝑝 𝑧 𝑥 𝑝 𝑥

Use encoder to compute 𝑞N 𝑧 𝑥) ≈ 𝑝K 𝑧 𝑥)
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Variational Autoencoders

Lecture 19 - 89

𝑝K 𝑥 | 𝑧 = 𝑁(𝜇G|S, ΣG|S) 𝑞N 𝑧 | 𝑥 = 𝑁(𝜇S|G, ΣS|G)

Decoder network inputs 
latent code z, gives 
distribution over data x

Encoder network inputs 
data x, gives distribution 
over latent codes z

If we can ensure that 
𝑞N 𝑧 𝑥) ≈ 𝑝K 𝑧 𝑥), 

then we can approximate 

𝑝K 𝑥 ≈
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑞N 𝑧 𝑥)

Idea: Jointly train both 
encoder and decoder
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Variational Autoencoders

Lecture 19 - 90

log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥)

Bayes’ Rule



Justin Johnson November 20, 2019

Variational Autoencoders

Lecture 19 - 91

log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

Multiply top and bottom by qΦ(z|x)
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Variational Autoencoders

Lecture 19 - 92

log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

= log 𝑝K 𝑥 𝑧 − log
𝑞N 𝑧|𝑥
𝑝(𝑧) + log

𝑞N(𝑧|𝑥)
𝑝K(𝑧|𝑥)

Split up using rules for logarithms
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Variational Autoencoders

Lecture 19 - 93

log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

= log 𝑝K 𝑥 𝑧 − log
𝑞N 𝑧|𝑥
𝑝(𝑧) + log

𝑞N(𝑧|𝑥)
𝑝K(𝑧|𝑥)

c

c

c

Split up using rules for logarithms
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Variational Autoencoders

Lecture 19 - 94

log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

= log 𝑝K 𝑥 𝑧 − log
𝑞N 𝑧|𝑥
𝑝(𝑧) + log

𝑞N(𝑧|𝑥)
𝑝K(𝑧|𝑥)

log 𝑝K 𝑥 = 𝐸S~XY(S|G) log 𝑝K(𝑥)
We can wrap in an 
expectation since it 
doesn’t depend on z
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Variational Autoencoders
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log 𝑝K 𝑥 = 𝐸S~XY(S|G) log 𝑝K(𝑥)
We can wrap in an 
expectation since it 
doesn’t depend on z

log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

= 𝐸S[log 𝑝K(𝑥|𝑧)] − 𝐸S log
𝑞N 𝑧 𝑥
𝑝 𝑧

+ 𝐸S log
𝑞N(𝑧|𝑥)
𝑝K(𝑧|𝑥)
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log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

= 𝐸S[log 𝑝K(𝑥|𝑧)] − 𝐸S log
𝑞N 𝑧 𝑥
𝑝 𝑧

+ 𝐸S log
𝑞N(𝑧|𝑥)
𝑝K(𝑧|𝑥)

= 𝐸S~XY(S|G)[log 𝑝K(𝑥|𝑧)] − 𝐷]^ 𝑞N 𝑧 𝑥 , 𝑝 𝑧 + 𝐷]^(𝑞N 𝑧 𝑥 , 𝑝K 𝑧 𝑥 )

Data reconstruction
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log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

= 𝐸S[log 𝑝K(𝑥|𝑧)] − 𝐸S log
𝑞N 𝑧 𝑥
𝑝 𝑧

+ 𝐸S log
𝑞N(𝑧|𝑥)
𝑝K(𝑧|𝑥)

= 𝐸S~XY(S|G)[log 𝑝K(𝑥|𝑧)] − 𝐷]^ 𝑞N 𝑧 𝑥 , 𝑝 𝑧 + 𝐷]^(𝑞N 𝑧 𝑥 , 𝑝K 𝑧 𝑥 )
KL divergence between prior, and 
samples from the encoder network
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log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

= 𝐸S[log 𝑝K(𝑥|𝑧)] − 𝐸S log
𝑞N 𝑧 𝑥
𝑝 𝑧

+ 𝐸S log
𝑞N(𝑧|𝑥)
𝑝K(𝑧|𝑥)

= 𝐸S~XY(S|G)[log 𝑝K(𝑥|𝑧)] − 𝐷]^ 𝑞N 𝑧 𝑥 , 𝑝 𝑧 + 𝐷]^(𝑞N 𝑧 𝑥 , 𝑝K 𝑧 𝑥 )
KL divergence between encoder 
and posterior of decoder
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log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

= 𝐸S[log 𝑝K(𝑥|𝑧)] − 𝐸S log
𝑞N 𝑧 𝑥
𝑝 𝑧

+ 𝐸S log
𝑞N(𝑧|𝑥)
𝑝K(𝑧|𝑥)

= 𝐸S~XY(S|G)[log 𝑝K(𝑥|𝑧)] − 𝐷]^ 𝑞N 𝑧 𝑥 , 𝑝 𝑧 + 𝐷]^(𝑞N 𝑧 𝑥 , 𝑝K 𝑧 𝑥 )
KL is >= 0, so dropping this term gives a 
lower bound on the data likelihood:
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log 𝑝K(𝑥) = log
𝑝K 𝑥 𝑧)𝑝(𝑧)
𝑝K 𝑧 𝑥) = log

𝑝K 𝑥 𝑧 𝑝 𝑧 𝑞N(𝑧|𝑥)
𝑝K 𝑧 𝑥 𝑞N(𝑧|𝑥)

= 𝐸S[log 𝑝K(𝑥|𝑧)] − 𝐸S log
𝑞N 𝑧 𝑥
𝑝 𝑧

+ 𝐸S log
𝑞N(𝑧|𝑥)
𝑝K(𝑧|𝑥)

= 𝐸S~XY(S|G)[log 𝑝K(𝑥|𝑧)] − 𝐷]^ 𝑞N 𝑧 𝑥 , 𝑝 𝑧 + 𝐷]^(𝑞N 𝑧 𝑥 , 𝑝K 𝑧 𝑥 )

log 𝑝K 𝑥 ≥ 𝐸S~XY(S|G)[log 𝑝K(𝑥|𝑧)] − 𝐷]^ 𝑞N 𝑧 𝑥 , 𝑝 𝑧
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log 𝑝K 𝑥 ≥𝐸S~XY(S|G)[log 𝑝K(𝑥|𝑧)] − 𝐷]^ 𝑞N 𝑧 𝑥 , 𝑝 𝑧

Jointly train encoder q and decoder p to maximize 
the variational lower bound on the data likelihood

𝑝K 𝑥 | 𝑧 = 𝑁(𝜇G|S, ΣG|S)𝑞N 𝑧 | 𝑥 = 𝑁(𝜇S|G, ΣS|G)
Encoder Network Decoder Network
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Next Time:
Generative Models, part 2

More Variational Autoencoders,
Generative Adversarial Networks
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