Lecture 17: 3D Vision
Reminder: A4

A4 due **Today, Wednesday, November 13, 11:59pm**

A4 covers:
- PyTorch autograd
- Residual networks
- Recurrent neural networks
- Attention
- Feature visualization
- Style transfer
- Adversarial examples
Recall: Course Structure

• First half: Fundamentals
 • Details of how to implement and train different types of networks
 • Fully-connected networks, convolutional networks, recurrent networks
 • How to train and debug, very detailed

• Second half: Applications and “Researchy” topics
 • Object detection, image segmentation, 3D vision, videos
 • Attention, Transformers
 • Vision and Language
 • Generative models: GANs, VAEs, etc
 • Less detailed: provide overview and references, but skip some details
Last Time: Predicting 2D Shapes of Objects

Classification

- CAT

Semantic Segmentation

- GRASS, CAT, TREE, SKY

Object Detection

- DOG, DOG, CAT

Instance Segmentation

- DOG, DOG, CAT

No spatial extent

No objects, just pixels

Multiple Objects
Today: Predicting 3D Shapes of Objects

Mask R-CNN:
2D Image -> 2D shapes

Mesh R-CNN:
2D Image -> 3D shapes

He, Gkioxari, Dollár, and Girshick, “Mask R-CNN”, ICCV 2017

Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019
Focus on Two Problems today

Predicting 3D Shapes from single image

Processing 3D input data

Input Image 3D Shape 3D Shape Chair
Many more topics in 3D Vision!

Computing correspondences
Multi-view stereo
Structure from Motion
Simultaneous Localization and Mapping (SLAM)
Self-supervised learning
View Synthesis
Differentiable graphics
3D Sensors

Many non-Deep Learning methods alive and well in 3D!
3D Shape Representations

Depth Map
Voxel Grid
Implicit Surface
Pointcloud
Mesh
3D Shape Representations

Depth Map
Voxel Grid
Implicit Surface
Pointcloud
Mesh
3D Shape Representations: Depth Map

For each pixel, **depth map** gives distance from the camera to the object in the world at that pixel.

RGB image + Depth image = RGB-D Image (2.5D)

This type of data can be recorded directly for some types of 3D sensors (e.g. Microsoft Kinect)

RGB Image: $3 \times H \times W$
Depth Map: $H \times W$

Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015
Predicting Depth Maps

RGB Input Image: 3 x H x W

Fully Convolutional network

Predicted Depth Image: 1 x H x W

Eigen, Puhrsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015
Problem: Scale / Depth Ambiguity

A small, close object looks exactly the same as a larger, farther-away object. Absolute scale / depth are ambiguous from a single image.
Predicting Depth Maps

Scale invariant loss

\[
D(y, y^*) = \frac{1}{2n^2} \sum_{i,j} ((\log y_i - \log y_j) - (\log y_i^* - \log y_j^*))^2
\]

\[
= \frac{1}{n} \sum_i d_i^2 - \frac{1}{n^2} \sum_{i,j} d_i d_j
= \frac{1}{n} \sum_i d_i^2 - \frac{1}{n^2} \left(\sum_i d_i \right)^2
\]

RGB Input Image: 3 x H x W

Fully Convolutional network

Predicted Depth Image: 1 x H x W

Per-Pixel Loss
(Scale invariant)

Eigen, Puhrhsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014
Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015
For each pixel, **surface normals**
give a vector giving the normal vector to the object in the world for that pixel.
Predicting Normals

RGB Input Image: 3 x H x W

Fully Convolutional network

Predicted Normals: 3 x H x W

Ground-truth Normals: 3 x H x W

Per-Pixel Loss:

Recall:

Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015
3D Shape Representations

Depth Map
Voxel Grid
Implicit Surface
Pointcloud
Mesh
3D Shape Representations: Voxels

- Represent a shape with a V x V x V grid of occupancies
- Just like segmentation masks in Mask R-CNN, but in 3D!
- (+) Conceptually simple: just a 3D grid!
- (-) Need high spatial resolution to capture fine structures
- (-) Scaling to high resolutions is nontrivial!

Processing Voxel Inputs: 3D Convolution

Input: 1 x 30 x 30 x 30

6x6x6 conv 48x13x13x13
5x5x5 conv 160x5x5x5
4x4x4 conv 512x2x2x2

FC Layer

Class Scores

Train with classification loss

Generating Voxel Shapes: 3D Convolution

Input image: 3 x 112 x 112
2D Features: C x H x W
3D Features: C’ x D’ x H’ x W’
Voxels: 1 x V x V x V

Train with per-voxel cross-entropy loss

Generating Voxel Shapes: "Voxel Tubes"

Input image: \(3 \times 112 \times 112\)

2D Features: \(C \times H \times W\)

3D Features: \(C' \times D' \times H' \times W'\)

Voxels: \(V \times V \times V\)

Final conv layer: \(V\) filters
Interpret as a “tube” of voxel scores

Train with per-voxel cross-entropy loss

Voxel Problems: Memory Usage

Voxel memory usage ($V \times V \times V$ float32 numbers)

Storing 1024^3 voxel grid takes 4GB of memory!
Scaling Voxels: Oct-Trees

Use voxel grids with heterogenous resolution!

Octree level 1
Octree level 2
Octree level 3

32^3
64^3
128^3

Scaling Voxels: Nested Shape Layers

Predict shape as a composition of positive and negative spaces

Richter and Roth, “Matryoshka Networks: Predicting 3D Geometry via Nested Shape Layers”, CVPR 2018
3D Shape Representations

- Depth Map
- Voxel Grid
- Implicit Surface
- Pointcloud
- Mesh
3D Shape Representations

- Depth Map
- Voxel Grid
- Implicit Surface
- Pointcloud
- Mesh
3D Shape Representations: Implicit Functions

Learn a function to classify arbitrary 3D points as inside / outside the shape

\[o : \mathbb{R}^3 \rightarrow \{0, 1\} \]

The surface of the 3D object is the level set

\[\{x : o(x) = \frac{1}{2}\} \]
3D Shape Representations: Implicit Functions

Learn a function to classify arbitrary 3D points as inside / outside the shape

\[o : \mathbb{R}^3 \rightarrow \{0, 1\} \]

The surface of the 3D object is the level set

\[\{x : o(x) = \frac{1}{2}\} \]

Same idea: **signed distance function (SDF)** gives the Euclidean distance to the surface of the shape; sign gives inside / outside
3D Shape Representations: Implicit Functions

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o : \mathbb{R}^3 \rightarrow \{0, 1\}$$

The surface of the 3D object is the level set

$$\{x : o(x) = \frac{1}{2}\}$$

Allows for multiscale outputs like Oct-Trees

3D Shape Representations: Implicit Functions

Learn a function to classify arbitrary 3D points as inside / outside the shape

\[o : \mathbb{R}^3 \rightarrow \{0, 1\} \]

The surface of the 3D object is the level set

\[\{ x : o(x) = \frac{1}{2} \} \]

3D Shape Representations

- Depth Map
- Voxel Grid
- Implicit Surface
- Pointcloud
- Mesh
3D Shape Representations

- Depth Map
- Voxel Grid
- Implicit Surface
- Pointcloud
- Mesh
3D Shape Representations: Point Cloud

• Represent shape as a set of P points in 3D space
• (+) Can represent fine structures without huge numbers of points
• (-) Requires new architecture, losses, etc
• (-) Doesn’t explicitly represent the surface of the shape: extracting a mesh for rendering or other applications requires post-processing

Processing Pointcloud Inputs: PointNet

Input pointcloud: \(P \times 3 \)

Point features: \(P \times D \)

Pooled vector: \(D \)

Class score: \(C \)

Run MLP on each point

Max-Pool

Fully Connected

Want to process pointclouds as sets: order should not matter

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017
Generating Pointcloud Outputs

Input Image: $3 \times H \times W$

Image Features: $C \times H' \times W'$

2D CNN

Fully connected branch

Convolutional branch

Points: $P_1 \times 3$

Points: $(P_2 \times 3) \times H' \times W'$

Pointcloud: $(P_1 + H'W'P_2) \times 3$

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as **sets**!

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point’s nearest neighbor in the other set

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point’s nearest neighbor in the other set

\[
d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2
\]

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point’s nearest neighbor in the other set

\[
d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2
\]

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point’s nearest neighbor in the other set.

\[
d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2
\]

3D Shape Representations

Depth Map
Voxel Grid
Implicit Surface
Pointcloud
Mesh
3D Shape Representations

- Depth Map
- Voxel Grid
- Implicit Surface
- Pointcloud
- Mesh
3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

(+): Standard representation for graphics

(+): Explicitly represents 3D shapes
3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

(+) Standard representation for graphics

(+) Explicitly represents 3D shapes

(+)** Adaptive**: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail
3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

(+) Standard representation for graphics

(+) Explicitly represents 3D shapes

(+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail

(+) Can attach data on verts and interpolate over the whole surface: RGB colors, texture coordinates, normal vectors, etc.
3D Shape Representations: Triangle Mesh

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

(+) Standard representation for graphics

(+) Explicitly represents 3D shapes

(+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail

(+/-) Can attach data on verts and interpolate over the whole surface: RGB colors, texture coordinates, normal vectors, etc.

(-) Nontrivial to process with neural nets!
Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object

Output: Triangle mesh for the object

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object

Output: Triangle mesh for the object

Key ideas:
- Iterative Refinement
- Graph Convolution
- Vertex Aligned-Features
- Chamfer Loss Function

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Justin Johnson
Lecture 17 - 47
November 13, 2019
Idea #1: Iterative mesh refinement
Start from initial ellipsoid mesh
Network predicts offsets for each vertex
Repeat.
Input: Graph with a feature vector at each vertex

Output: New feature vector for each vertex

Vertex \(v_i \) has feature \(f_i \)

New feature \(f'_i \) for vertex \(v_i \) depends on feature of neighboring vertices \(N(i) \)

\[f'_i = W_0 f_i + \sum_{j \in N(i)} W_1 f_j \]

Use same weights \(W_0 \) and \(W_1 \) to compute all outputs
Each of these blocks consists of a stack of **graph convolution layers** operating on edges of the mesh.
Each of these blocks consists of a stack of **graph convolution layers** operating on edges of the mesh.
Idea #2: Aligned vertex features

For each vertex of the mesh:
- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature
Predicting Triangle Meshes: Vertex-Aligned Features

Idea #2: Aligned vertex features

For each vertex of the mesh:

- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature

Similar to RoI-Align operation from last time: maintains alignment between input image and feature vectors

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
Predicting Meshes: Loss Function

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
Predicting Meshes: Loss Function

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
Predicting Meshes: Loss Function

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
Predicting Meshes: Loss Function

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted verts and ground-truth samples

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted verts and ground-truth samples

Problem: Doesn’t take the interior of predicted faces into account!

Sample points from the surface of the ground-truth mesh (offline)

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
Predicting Meshes: Loss Function

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted samples and ground-truth samples

Sample points from the surface of the predicted mesh (online!)
Sample points from the surface of the ground-truth mesh (offline)

Smith et al, “GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects”, ICML 2019
Predicting Meshes: Loss Function

Problem: Need to sample online! Must be efficient!
Problem: Need to backprop through sampling!

Loss = Chamfer distance between predicted samples and ground-truth samples

Sample points from the surface of the predicted mesh (online!)

Sample points from the surface of the ground-truth mesh (offline)

Smith et al, “GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects”, ICML 2019
Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object

Output: Triangle mesh for the object

Key ideas:
- Iterative Refinement
- Graph Convolution
- Vertex Aligned-Features
- Chamfer Loss Function

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
3D Shape Representations

- Depth Map
- Voxel Grid
- Implicit Surface
- Pointcloud
- Mesh
<table>
<thead>
<tr>
<th>Shape Representations</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Shape Icon]</td>
<td>![Ruler Icon]</td>
</tr>
<tr>
<td>Camera Systems</td>
<td>Datasets</td>
</tr>
<tr>
<td>![Camera Icon]</td>
<td>![Folder Icon]</td>
</tr>
</tbody>
</table>
3D Shape Prediction

<table>
<thead>
<tr>
<th>Shape Representations</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Camera Systems</th>
<th>Datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shape Comparison Metrics: Intersection over Union

In 2D, we evaluate boxes and segmentation masks with intersection over union (IoU):

Figure credit: Alexander Kirillov
Shape Comparison Metrics: Intersection over Union

In 2D, we evaluate boxes and segmentation masks with intersection over union (IoU):

In 3D: Voxel IoU
- **Problem**: Cannot capture thin structures
- **Problem**: Cannot be applied to pointclouds
- **Problem**: For meshes, need to voxelize or sample

Figure credit: Alexander Kirillov
Shape Comparison Metrics: Intersection over Union

In 2D, we evaluate boxes and segmentation masks with intersection over union (IoU):

In 3D: **Voxel IoU**

Problem: Cannot capture thin structures
Problem: Cannot be applied to pointclouds
Problem: For meshes, need to voxelize or sample
Problem: Not very meaningful at low values!

Figure credit: Tatarchenko et al, “What Do Single-view 3D Reconstruction Networks Learn?”, CVPR 2019

Figure credit: Alexander Kirillov
Shape Comparison Metrics: Intersection over Union

State-of-the-art methods achieve low IoU

Problem: Cannot capture thin structures
Problem: Cannot be applied to pointclouds
Problem: For meshes, need to voxelize or sample
Problem: Not very meaningful at low values!

<table>
<thead>
<tr>
<th>Method</th>
<th>IoU</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D-R2N2 (Voxels)</td>
<td>0.493</td>
</tr>
<tr>
<td>Pixel2Mesh (mesh)</td>
<td>0.48</td>
</tr>
<tr>
<td>OccNet (implicit)</td>
<td>0.571</td>
</tr>
</tbody>
</table>

Results from Mescheder et al, “Occupancy Networks: Learning 3D Reconstruction in Function Space”, CVPR 2019

Conclusion: Voxel IoU not a good metric

Figure credit: Tatarchenko et al, “What Do Single-view 3D Reconstruction Networks Learn?”, CVPR 2019
Shape Comparison Metrics: Chamfer Distance

We’ve already seen another shape comparison metric: **Chamfer distance**

1. Convert your prediction and ground-truth into pointclouds via sampling
2. Compare with Chamfer distance

\[
d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2
\]
Shape Comparison Metrics: Chamfer Distance

We’ve already seen another shape comparison metric: **Chamfer distance**

1. Convert your prediction and ground-truth into pointclouds via sampling
2. Compare with Chamfer distance

Problem: Chamfer is very sensitive to outliers

\[
d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2
\]

Figure credit: Tatarchenko et al, “What Do Single-view 3D Reconstruction Networks Learn?”, CVPR 2019
Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth.

\[
\text{Precision}_{@t} = \text{fraction of predicted points within } t \text{ of some ground-truth point} \\
\text{Recall}_{@t} = \text{fraction of ground-truth points within } t \text{ of some predicted point} \\
\text{F1} @ t = \frac{2 \times \text{Precision}_{@t} \times \text{Recall}_{@t}}{\text{Precision}_{@t} + \text{Recall}_{@t}}
\]
Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth

Precision@t = fraction of predicted points within t of some ground-truth point

Predicted
Ground-truth

Precision@t = 3/4
Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth

\[\text{Precision@t} = \frac{\text{fraction of predicted points within } t \text{ of some ground-truth point}}{t} \]

\[\text{Recall@t} = \frac{\text{fraction of ground-truth points within } t \text{ of some predicted point}}{t} \]

Precision@t = 3/4
Recall@t = 2/3
Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth

Precision@t = fraction of predicted points within t of some ground-truth point

Recall@t = fraction of ground-truth points within t of some predicted point

\[F1@t = 2 \times \frac{\text{Precision@t} \times \text{Recall@t}}{\text{Precision@t} + \text{Recall@t}} \]

Precision@t = 3/4
Recall@t = 2/3
\[F1@t \approx 0.70 \]
Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth

Precision@t = fraction of predicted points within t of some ground-truth point

Recall@t = fraction of ground-truth points within t of some predicted point

F1@t = \frac{2 \times \text{Precision}@t \times \text{Recall}@t}{\text{Precision}@t + \text{Recall}@t}

F1 score is robust to outliers!

Conclusion: F1 score is probably the best shape prediction metric in common use

Figure credit: Tatarchenko et al, “What Do Single-view 3D Reconstruction Networks Learn?”, CVPR 2019
Shape Comparison Metrics: Summary

Intersection over Union:
Doesn’t capture fine structure, not meaningful at low values

Chamfer Distance:
Very sensitive to outliers
Can be directly optimized

F1 score:
Robust to outliers, but need to look at different threshold values to capture details at different scales
3D Shape Prediction

Shape Representations

Camera Systems

Metrics

Datasets
3D Shape Prediction

<table>
<thead>
<tr>
<th>Shape Representations</th>
<th>Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Cube Icon]</td>
<td>![Ruler Icon]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Camera Systems</th>
<th>Datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Camera Icon]</td>
<td>![Folder Icon]</td>
</tr>
</tbody>
</table>
Cameras: Canonical vs View Coordinates

Canonical Coordinates: Predict 3D shape in a canonical coordinate system (e.g. front of chair is +z) regardless of the viewpoint of the input image
Cameras: Canonical vs View Coordinates

Canonical Coordinates: Predict 3D shape in a canonical coordinate system (e.g. front of chair is +z) regardless of the viewpoint of the input image.

View Coordinates: Predict 3D shape aligned to the viewpoint of the camera.

Many papers predict in canonical coordinates – easier to load data.
Cameras: Canonical vs View Coordinates

Problem: Canonical view breaks the “principle of feature alignment”: Predictions should be aligned to inputs.

View coordinates maintain alignment between inputs and predictions!
Cameras: Canonical vs View Coordinates

Problem: Canonical view overfits to training shapes:
Better generalization to new views of known shapes
Worse generalization to new shapes or new categories

Shin et al, “Pixels, voxels, and views: A study of shape representations for single view 3D object shape prediction”, CVPR 2018

![Image of chairs showing comparison between canonical and view coordinates]
Cameras: Canonical vs View Coordinates

Problem: Canonical view overfits to training shapes:
Better generalization to new views of known shapes
Worse generalization to new shapes or new categories

Conclusion: Prefer view coordinate system
View-Centric Voxel Predictions

View-centric predictions! Voxels take perspective camera into account, so our “voxels” are actually frustums.

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019
3D Shape Prediction

<table>
<thead>
<tr>
<th>Shape Representations</th>
<th>Metrics</th>
</tr>
</thead>
</table>
| ![Shape]
| ![Ruler] |

<table>
<thead>
<tr>
<th>Camera Systems</th>
<th>Datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Camera]</td>
<td>![Folder]</td>
</tr>
<tr>
<td>Shape Representations</td>
<td>Metrics</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Camera Systems</th>
<th>Datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D Datasets: Object-Centric

ShapeNet

~50 categories, ~50k 3D CAD models

Standard split has 13 categories, ~44k models, 25 rendered images per model

Many papers show results here

(-) Synthetic, isolated objects; no context

(-) Lots of chairs, cars, airplanes

3D Datasets: Object-Centric

ShapeNet

- ~50 categories, ~50k 3D CAD models
- Standard split has 13 categories, ~44k models, 25 rendered images per model
- Many papers show results here
- (-) Synthetic, isolated objects; no context
- (-) Lots of chairs, cars, airplanes

Pix3D

- 9 categories, 219 3D models of IKEA furniture aligned to ~17k real images
- Some papers train on ShapeNet and show qualitative results here, but use ground-truth segmentation masks
- (+) Real images! Context!
- (-) Small, partial annotations – only 1 obj/image

Sun et al, “Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling”, CVPR 2018
3D Shape Prediction: Mesh R-CNN

Mask R-CNN:
2D Image -> 2D shapes

Mesh R-CNN:
2D Image -> Triangle Meshes

He, Gkioxari, Dollár, and Girshick, “Mask R-CNN”, ICCV 2017

Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019
Mesh R-CNN: Task

Input: Single RGB image

Output:
- A set of detected objects
 - For each object:
 - Bounding box
 - Category label
 - Instance segmentation
 - 3D triangle mesh

Mask R-CNN

Mesh head
Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh.
Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh

Our approach: Use voxel predictions to create initial mesh prediction!
Mesh R-CNN Pipeline

Input image
Mesh R-CNN Pipeline

Input image $
ightarrow$ 2D object recognition
Mesh R-CNN Pipeline

Input image

2D object recognition

3D object voxels
Mesh R-CNN Pipeline

Input image

2D object recognition

3D object meshes

3D object voxels
Mesh R-CNN: ShapeNet Results
Using Chamfer as only mesh loss gives degenerate meshes. Also need “mesh regularizer” to encourage nice predictions: \(L_{\text{edge}} = \text{minimize L2 norm of edges in the predicted mesh} \).
Mesh R-CNN: Pix3D Results
Mesh R-CNN: Pix3D Results

Predicting many objects per scene

Box & Mask Predictions

Mesh Predictions

Justin Johnson
Lecture 17 - 100
November 13, 2019
Mesh R-CNN: Pix3D Results

Amodal completion: predict occluded parts of objects

Box & Mask Predictions

Mesh Predictions
Mesh R-CNN: Pix3D Results

Segmentation failures propagate to meshes

Box & Mask Predictions

Mesh Predictions
Recap

Predicting 3D Shapes from single image

Input Image → 3D Shape → 3D Shape → Chair

Processing 3D input data

3D Shape Representations

Depth Map Voxel Grid Implicit Surface Pointcloud Mesh
Next Time: Videos