Lecture 17: 3D Vision

Justin Johnson

Lecture 17 - 1

Reminder: A4

A4 due Today, Wednesday, November 13, 11:59pm

A4 covers:

- PyTorch autograd
- Residual networks
- Recurrent neural networks
- Attention
- Feature visualization
- Style transfer
- Adversarial examples

Recall: Course Structure

We are here!

- First half: Fundamentals
 - Details of how to implement and train different types of networks
 - Fully-connected networks, convolutional networks, recurrent networks
 - How to train and debug, very detailed
- Second half: Applications and "Researchy" topics
 - Object detection, image segmentation, 3D vision, videos
 - Attention, Transformers
 - Vision and Language
 - Generative models: GANs, VAEs, etc
 - Less detailed: provide overview and references, but skip some details

Last Time: Predicting 2D Shapes of Objects

Classification

Semantic Segmentation

Object Detection

Instance Segmentation

Today: Predicting **3D Shapes of Objects**

Mask R-CNN: 2D Image -> 2D shapes

Mesh R-CNN: 2D Image -> **3D** shapes

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

Justin Johnson

He, Gkioxari, Dollár, and Girshick, "Mask R-CNN",

ICCV 2017

Lecture 17 - 5

Focus on Two Problems today

Predicting 3D Shapes from single image

Processing 3D input data

luction		hnc	<u>_</u>
Justi	I JO	IIIS	O N

Lecture 17 - 6

Many more topics in 3D Vision!

Computing correspondences Multi-view stereo Structure from Motion Simultaneous Localization and Mapping (SLAM) Self-supervised learning **View Synthesis Differentiable graphics 3D** Sensors

Many non-Deep Learning methods alive and well in 3D!

Justin Johnson

3D Shape Representations

Justin Johnson

Lecture 17 - 8

3D Shape Representations

Justin Johnson

Lecture 17 - 9

3D Shape Representations: Depth Map

For each pixel, **depth map** gives distance from the camera to the object in the world at that pixel

RGB image + Depth image = RGB-D Image (2.5D)

This type of data can be recorded directly for some types of 3D sensors (e.g. Microsoft Kinect)

RGB Image: 3 x H x W Depth Map: H x W

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson

Lecture 17 - 10

Predicted Depth Image: Predicting Depth Maps $1 \times H \times W$ **Per-Pixel Loss** (L2 Distance)

RGB Input Image: 3 x H x W

Fully ConvolutionalPredicted Depth Image:network1 x H x W

Eigen, Puhrsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson

Lecture 17 - 11

Justin Johnson

Lecture 17 - 12

RGB Input Image: 3 x H x W

Fully ConvolutionalPredicted Depth Image:network1 x H x W

Eigen, Puhrsh, and Fergus, "Depth Map Prediction from a Single Image using a Multi-Scale Deep Network", NeurIPS 2014

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson

Lecture 17 - 13

3D Shape Representations: Surface Normals

For each pixel, **surface normals** give a vector giving the normal vector to the object in the world for that pixel

RGB Image: 3 x H x W

Normals: 3 x H x W

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson

Lecture 17 - 14

Predicting Normals

Ground-truth Normals:

3 x H x W

RGB Input Image: 3 x H x W

Fully Convolutional network

Predicted Normals: 3 x H x W Recall:

Per-Pixel Loss:

 $(x \cdot y) / (|x||y|)$

 $x \cdot y$ = $|x| |y| \cos \theta$

Eigen and Fergus, "Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture", ICCV 2015

Justin Johnson

Lecture 17 - 15

3D Shape Representations

Justin Johnson

Lecture 17 - 16

3D Shape Representations: Voxels

- Represent a shape with a V x V x V grid of occupancies
- Just like segmentation masks in Mask R-CNN, but in 3D!
- (+) Conceptually simple: just a 3D grid!
- (-) Need high spatial resolution to capture fine structures
- (-) Scaling to high resolutions is nontrivial!

Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Justin Johnson

Lecture 17 - 17

Processing Voxel Inputs: 3D Convolution

Train with classification loss

Wu et al, "3D ShapeNets: A Deep Representation for Volumetric Shapes", CVPR 2015

Justin Johnson

Lecture 17 - 18

Generating Voxel Shapes: 3D Convolution

Train with per-voxel cross-entropy loss

Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Justin Johnson

Lecture 17 - 19

Generating Voxel Shapes: "Voxel Tubes"

Train with per-voxel cross-entropy loss

Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Justin Johnson

Lecture 17 - 20

Voxel Problems: Memory Usage

Storing 1024³ voxel grid takes 4GB of memory!

Justin Johnson

Lecture 17 - 21

Scaling Voxels: Oct-Trees

Use voxel grids with heterogenous resolution!

Tatarchenko et al, "Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs", ICCV 2017

November 13, 2019

Justin Johnson

Lecture 17 - 22

Scaling Voxels: Nested Shape Layers

Predict shape as a composition of positive and negative spaces

Doll image is licensed under CC-BY 2.0

Richter and Roth, "Matryoshka Networks: Predicting 3D Geometry via Nested Shape Layers", CVPR 2018

Justin Johnson

Lecture 17 - 23

3D Shape Representations

Justin Johnson

Lecture 17 - 24

3D Shape Representations

Justin Johnson

Lecture 17 - 25

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set

 $\{x: o(x) = \frac{1}{2}\}$

Implicit function

Explicit Shape

J	ust	in J	0	hnson	
<u> </u>					

Lecture 17 - 26

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set

 $\{x: o(x) = \frac{1}{2}\}$

Same idea: **signed distance function (SDF)** gives the Euclidean distance to the surface of the shape; sign gives inside / outside

Implicit function

Explicit Shape

	usti	in I	hn	son
J	usu			301

Lecture 17 - 27

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set

 ${x : o(x) = \frac{1}{2}}$

Allows for multiscale outputs like Oct-Trees

Mescheder et al, "Occupancy Networks: Learning 3D Reconstruction in Function Space", CVPR 2019

Justin Johnson

Lecture 17 - 28

Learn a function to classify arbitrary 3D points as inside / outside the shape

$$o: \mathbb{R}^3 \to \{0,1\}$$

The surface of the 3D object is the level set

et $\{x : o(x) = \frac{1}{2}\}$

3D Shape Representations

Justin Johnson

Lecture 17 - 30

3D Shape Representations

Justin Johnson

Lecture 17 - 31

3D Shape Representations: Point Cloud

- Represent shape as a set of P points in 3D space
- (+) Can represent fine structures without huge numbers of points
- () Requires new architecture, losses, etc
- (-) Doesn't explicitly represent the surface of the shape: extracting a mesh for rendering or other applications requires post-processing

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson

Lecture 17 - 32

Qi et al, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation", CVPR 2017

Qi et al, "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space", NeurIPS 2017

Justin Johnson

Lecture 17 - 33

Justin Johnson

Lecture 17 - 34

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

November 13, 2019

Jus	tin J	loh	nson
	•••••		

Lecture 17 - 35

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's nearest ^C neighbor in the other set

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

November 13, 2019

llictin	nncon
JUSUIIJ	

Lecture 17 - 36
Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's nearest neighbor in the other set

$$d_{CD}[S_1, S_2] = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson

Lecture 17 - 37

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's nearest d neighbor in the other set

$$l_{CD}[S_1 | S_2] = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson

Lecture 17 - 38

Predicting Point Clouds: Loss Function

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2 distance to each point's nearest a neighbor in the other set

$$d_{CD}[S_1, S_2] = \sum_{x \in S_1} \min_{y \in S_2} \|x - y\|_2^2 + \sum_{y \in S_2} \min_{x \in S_1} \|x - y\|_2^2$$

Fan et al, "A Point Set Generation Network for 3D Object Reconstruction from a Single Image", CVPR 2017

Justin Johnson

Lecture 17 - 39

3D Shape Representations

Justin Johnson

Lecture 17 - 40

3D Shape Representations

Justin Johnson

Lecture 17 - 41

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes

Justin Johnson

Lecture 17 - 42

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

(+) Standard representation for graphics

(+) Explicitly represents 3D shapes

(+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail

Justin Johnson

Lecture 17 - 43

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

(+) Standard representation for graphics

(+) Explicitly represents 3D shapes

(+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail

(+) Can attach data on verts and interpolate over the whole surface: RGB colors, texture coordinates, normal vectors, etc.

UV mapping figure is licensed under <u>CC BY-SA 3.0</u>. Figure slightly reorganized.

Justin Johnson

Lecture 17 - 44

Represent a 3D shape as a set of triangles

Vertices: Set of V points in 3D space

Faces: Set of triangles over the vertices

(+) Standard representation for graphics

(+) Explicitly represents 3D shapes

(+) Adaptive: Can represent flat surfaces very efficiently, can allocate more faces to areas with fine detail

(+) Can attach data on verts and interpolate over the whole surface: RGB colors, texture coordinates, normal vectors, etc.

(-) Nontrivial to process with neural nets!

under <u>CC BY-SA 3.0</u>. Figure slightly reorganized.

November 13, 2019

Justin Johnson

Lecture 17 - 45

Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object

Output: Triangle mesh for the object

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 17 - 46

Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object

Key ideas:

Iterative Refinement Graph Convolution Vertex Aligned-Features Chamfer Loss Function

Output: Triangle mesh for the object

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 17 - 47

Predicting Triangle Meshes: Iterative Refinement

Idea #1: Iterative mesh refinement

Start from initial ellipsoid mesh Network predicts offsets for each vertex Repeat.

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 17 - 48

Predicting Triangle Meshes: Graph Convolution

 $\mathbf{f'}_{i} = W_0 f_i + \sum_{j \in \mathcal{N}(i)} W_1 f_j$

Vertex v_i has feature f_i

New feature f'_i for vertex vi depends on feature of neighboring vertices N(i)

Use same weights W0 and W1 to compute all outputs

Input: Graph with a feature vector at each vertex

Output: New feature vector for each vertex

Justin Johnson

Lecture 17 - 49

Predicting Triangle Meshes: Graph Convolution

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 17 - 50

Predicting Triangle Meshes: Graph Convolution

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 17 - 51

Predicting Triangle Meshes: Vertex-Aligned Features

- Idea #2: Aligned vertex features For each vertex of the mesh:
- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 17 - 52

Predicting Triangle Meshes: Vertex-Aligned Features

- Idea #2: Aligned vertex features For each vertex of the mesh:
- Use camera information to project onto image plane
- Use bilinear interpolation to sample a CNN feature

Similar to Rol-Align operation from last time: maintains alignment between input image and feature vectors

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 17 - 53

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Lecture 17 - 54

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Novem	ber 1	13.	2019
	<u> </u>		

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss

Lecture 17 - 55

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Idea: Convert meshes to pointclouds, then compute loss

Lecture 17 - 56

Sample points from the surface of the ground-truth mesh (offline)

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted verts and ground-truth samples

Lecture 17 - 57

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted verts and ground-truth samples

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

The same shape can be represented with different meshes – how can we define a loss between predicted and ground-truth mesh?

Loss = Chamfer distance between predicted samples and ground-truth samples

Smith et al, "GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects", ICML 2019

us	tin		hn	son	
 U U	CIT	J U			

Lecture 17 - 59

Problem: Need to sample online! Must be efficient! Problem: Need to backprop through sampling!

Loss = Chamfer distance between predicted samples and ground-truth samples

Smith et al, "GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects", ICML 2019

Justin Johnson

Lecture 17 - 60

Predicting Meshes: Pixel2Mesh

Input: Single RGB Image of an object

Key ideas:

Iterative Refinement Graph Convolution Vertex Aligned-Features Chamfer Loss Function

Output: Triangle mesh for the object

Wang et al, "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images", ECCV 2018

Justin Johnson

Lecture 17 - 61

3D Shape Representations

Justin Johnson

Lecture 17 - 62

3D Shape Prediction

Justin Johnson

Lecture 17 - 63

3D Shape Prediction

Justin Johnson

Lecture 17 - 64

In 2D, we evaluate boxes and segmentation masks with intersection over union (IoU):

Figure credit: Alexander Kirillov

Justin Johnson

Lecture 17 - 65

In 2D, we evaluate boxes and segmentation masks with intersection over union (IoU):

Figure credit: Alexander Kirillov

Justin Johnson

In 3D: Voxel IoU Problem: Cannot capture thin structures Problem: Cannot be applied to pointclouds Problem: For meshes, need to voxelize or sample

Lecture 17 - 66

In 2D, we evaluate boxes and segmentation masks with intersection over union (IoU):

In 3D: Voxel IoU

Problem: Cannot capture thin structuresProblem: Cannot be applied to pointcloudsProblem: For meshes, need to voxelize or sampleProblem: Not very meaningful at low values!

Figure credit: Tatarchenko et al, "What Do Single-view 3D Reconstruction Networks Learn?", CVPR 2019

Lecture 17 - 67

State–of-the-art methods achieve low IoU

loU

Results from Mescheder et al, "Occupancy Networks: Learning 3D Reconstruction in Function Space", CVPR 2019

Conclusion: Voxel IoU not a good metric

In 3D: Voxel IoU

Problem: Cannot capture thin structuresProblem: Cannot be applied to pointcloudsProblem: For meshes, need to voxelize or sampleProblem: Not very meaningful at low values!

Figure credit: Tatarchenko et al, "What Do Single-view 3D Reconstruction Networks Learn?", CVPR 2019

Justin Johnson

Lecture 17 - 68

Shape Comparison Metrics: Chamfer Distance

We've already seen another shape comparison metric: **Chamfer distance**

- Convert your prediction and ground-truth into pointclouds via sampling
- 2. Compare with Chamfer distance

$$d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{y \in S_2} \min_{x \in S_1} ||x - y||_2^2$$

Justin Johnson

Lecture 17 - 69

Shape Comparison Metrics: Chamfer Distance

We've already seen another shape comparison metric: Chamfer distance

- Convert your prediction and ground-truth into pointclouds via sampling
- 2. Compare with Chamfer distance

Problem: Chamfer is very sensitive to outliers

Figure credit: Tatarchenko et al, "What Do Single-view 3D Reconstruction Networks Learn?", CVPR 2019

Justin Johnson

Lecture 17 - 70

Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth

Justin Johnson

Lecture 17 - 71

Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth

Precision@t = fraction of predicted points within t of some groundtruth point

Justin Johnson

Lecture 17 - 72
Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth

Precision@t = fraction of predicted points within t of some groundtruth point

Recall@t = fraction of ground-truth points within t of some predicted point

Justin Johnson

Lecture 17 - 73

Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth

Precision@t = fraction of predicted points within t of some groundtruth point

Recall@t = fraction of ground-truth points within t of some predicted point

F1@t = 2 * $\frac{Precision@t * Recall@t}{Precision@t+Recall@t}$

Precision@t = 3/4Recall@t = 2/3F1@t ≈ 0.70 Predicted Ground-truth

Justin Johnson

Lecture 17 - 74

Shape Comparison Metrics: F1 Score

Similar to Chamfer, sample points from the surface of the prediction and the ground-truth

Precision@t = fraction of predicted points within t of some groundtruth point

Recall@t = fraction of ground-truth points within t of some predicted point

F1@t = 2 * $\frac{Precision@t * Recall@t}{Precision@t+Recall@t}$

F1 score is robust to outliers!

Conclusion: F1 score is probably the best shape prediction metric in common use

Figure credit: Tatarchenko et al, "What Do Single-view 3D Reconstruction Networks Learn?", CVPR 2019

Justin Johnson

Lecture 17 - 75

Shape Comparison Metrics: Summary

Intersection over Union:

Doesn't capture fine structure, not meaningful at low values

Chamfer Distance:

Very sensitive to outliers Can be directly optimized

F1 score:

Robust to outliers, but need to look at different threshold values to capture details at different scales

Justin Johnson

Lecture 17 - 76

3D Shape Prediction

Justin Johnson

Lecture 17 - 77

3D Shape Prediction

Justin Johnson

Lecture 17 - 78

Canonical Coordinates: Predict 3D shape in a canonical coordinate system (e.g. front of chair is +z) regardless of the viewpoint of the input image

Justin Johnson

Lecture 17 - 79

Canonical Coordinates: Predict 3D shape in a canonical coordinate system (e.g. front of chair is +z) regardless of the viewpoint of the input image

View Coordinates: Predict 3D shape aligned to the viewpoint of the camera

Many papers predict in canonical coordinates – easier to load data

November 13, 2019

Justin Johnson

Lecture 17 - 80

Problem: Canonical view breaks the "principle of feature alignment": Predictions should be aligned to inputs

View coordinates maintain alignment between inputs and predictions!

November 13, 2019

Justin Johnson

Lecture 17 - 81

Justin Johnson

Lecture 17 - 82

Problem: Canonical view overfits to training shapes: Better generalization to new views of known shapes Worse generalization to new shapes or new categories

Conclusion: Prefer view coordinate system

Justin Johnson

Lecture 17 - 83

View-Centric Voxel Predictions

View-centric predictions! Voxels take perspective camera into account, so our "voxels" are actually frustums

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

Justin Johnson

3D Shape Prediction

Justin Johnson

Lecture 17 - 85

3D Shape Prediction

Justin Johnson

Lecture 17 - 86

3D Datasets: Object-Centric ShapeNet

Standard split has 13 categories, ~44k models, 25 rendered images per model

Many papers show results here

(-) Synthetic, isolated objects; no context(-) Lots of chairs, cars, airplanes

Chang et al, "ShapeNet: An Information-Rich 3D Model Repository", arXiv 2015 Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016

Justin Johnson

Lecture 17 - 87

3D Datasets: Object-Centric

ShapeNet

~50 categories, ~50k 3D CAD models

Standard split has 13 categories, ~44k models, 25 rendered images per model

Many papers show results here

(-) Synthetic, isolated objects; no context(-) Lots of chairs, cars, airplanes

Chang et al, "ShapeNet: An Information-Rich 3D Model Repository", arXiv 2015 Choy et al, "3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction", ECCV 2016 Pix3D

9 categories, 219 3D models of IKEA furniture aligned to ~17k real images

Some papers train on ShapeNet and show qualitative results here, but use ground-truth segmentation masks

(+) Real images! Context!

(-) Small, partial annotations – only 1 obj/image

Sun et al, "Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling", CVPR 2018

Justin Johnson

Lecture 17 - 88

3D Shape Prediction: Mesh R-CNN

Mask R-CNN: 2D Image -> 2D shapes

Mesh R-CNN:

2D Image -> Triangle Meshes

bookcase chair chair

Gkioxari, Malik, and Johnson, "Mesh R-CNN", ICCV 2019

Justin Johnson

He, Gkioxari, Dollár, and Girshick, "Mask R-CNN",

ICCV 2017

Lecture 17 - 89

Mesh R-CNN: Task

Input: Single RGB image

Output:

- A set of detected objects For each object:
 - Bounding box
 - Category label
 - Instance segmentation
 - 3D triangle mesh

Mask R-CNN

Mesh head

November 13, 2019

Lecture 17 - 90

Justin Johnson

Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh

Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good results, but the topology (verts, faces, genus, connected components) fixed by the initial mesh

Our approach: Use voxel predictions to create initial mesh prediction!

Justin Johnson

Input image

Input image

2D object recognition

Justin Johnson

Lecture 17 - 94

Input image

2D object recognition

3D object voxels

November 13, 2019

Justin Johnson

Lecture 17 - 95

Input image

3D object meshes

2D object recognition

3D object voxels

Justin Johnson

Lecture 17 - 96

Mesh R-CNN: ShapeNet Results

Justin Johnson

Lecture 17 - 97

Mesh R-CNN: Shape Regularizers

Using Chamfer as only mesh loss gives degenerate meshes. Also need "mesh regularizer" to encourage nice predictions: $L_{edge} = minimize L2 norm of$ edges in the predicted mesh

Justin Johnson

Lecture 17 - 98

Justin Johnson

Lecture 17 - 99

Predicting many objects per scene

Box & Mask Predictions

Mesh Predictions

Justin Johnson

Lecture 17 - 100

Amodal completion: predict occluded parts of objects

Box & Mask Predictions

Mesh Predictions

Justin Johnson

Lecture 17 - 101

Segmentation failures propagate to meshes

Box & Mask Predictions

Mesh Predictions

Justin Johnson

Lecture 17 - 102

3D Shape Representations

Justin Johnson

Lecture 17 - 103

Next Time: Videos

Justin Johnson

Lecture 17 - 104