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Lecture 17:
3D Vision

Lecture 17 - 1
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Reminder: A4

Lecture 17 - 2

A4 due Today, Wednesday, November 13, 11:59pm

A4 covers:
- PyTorch autograd
- Residual networks
- Recurrent neural networks
- Attention
- Feature visualization
- Style transfer
- Adversarial examples
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Recall: Course Structure

Lecture 17 - 3

• First half: Fundamentals
• Details of how to implement and train different types of networks
• Fully-connected networks, convolutional networks, recurrent networks
• How to train and debug, very detailed

• Second half: Applications and “Researchy” topics
• Object detection, image segmentation, 3D vision, videos
• Attention, Transformers
• Vision and Language
• Generative models: GANs, VAEs, etc
• Less detailed: provide overview and references, but skip some details

We are here!
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Last Time: Predicting 2D Shapes of Objects

Lecture 17 - 4

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, TREE, 
SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectsNo objects, just pixels
This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Today: Predicting 3D Shapes of Objects

Lecture 17 - 5

He, Gkioxari, Dollár, and 
Girshick, “Mask R-CNN”, 
ICCV 2017

Mask R-CNN: 
2D Image -> 2D shapes

Mesh R-CNN: 
2D Image -> 3D shapes

Gkioxari, Malik, and Johnson, 
“Mesh R-CNN”, ICCV 2019
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Focus on Two Problems today

Lecture 17 - 6

Predicting 3D Shapes 
from single image

Processing 3D 
input data

Input Image 3D Shape 3D Shape

Chair
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Many more topics in 3D Vision!

Lecture 17 - 7

Computing correspondences 
Multi-view stereo
Structure from Motion
Simultaneous Localization and Mapping (SLAM)
Self-supervised learning
View Synthesis
Differentiable graphics
3D Sensors

Many non-Deep Learning methods alive and well in 3D!



Justin Johnson November 13, 2019

3D Shape Representations

Lecture 17 - 8
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3D Shape Representations

Lecture 17 - 9
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3D Shape Representations: Depth Map

Lecture 17 - 10

RGB Image: 3 x H x W Depth Map: H x W
Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015

For each pixel, depth map gives 
distance from the camera to the 
object in the world at that pixel

RGB image + Depth image 
= RGB-D Image (2.5D)

This type of data can be recorded 
directly for some types of 3D 
sensors (e.g. Microsoft Kinect)
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Predicting Depth Maps

Lecture 17 - 11

RGB Input Image:
3 x H x W

Fully Convolutional 
network

Predicted Depth Image:
1 x H x W

Predicted Depth Image:
1 x H x W

Per-Pixel Loss
(L2 Distance)

Eigen, Puhrsh, and Fergus, “Depth Map Prediction from a Single Image using a Multi-Scale Deep Network”, NeurIPS 2014
Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015



Justin Johnson November 13, 2019

Problem: Scale / Depth Ambiguity

Lecture 17 - 12

Image 
Plane

Small, close 
object

Large, far object

A small, close object looks exactly
the same as a larger, farther-away
object. Absolute scale / depth are 
ambiguous from a single image
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Predicting Depth Maps

Lecture 17 - 13

RGB Input Image:
3 x H x W

Fully Convolutional 
network

Predicted Depth Image:
1 x H x W

Predicted Depth Image:
1 x H x W

Per-Pixel Loss
(Scale invariant)

Eigen, Puhrsh, and Fergus, “Depth Map Prediction from a Single Image using a Multi-Scale Deep Network”, NeurIPS 2014
Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015

Scale invariant loss
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3D Shape Representations: Surface Normals

Lecture 17 - 14

RGB Image: 3 x H x W Normals: 3 x H x W
Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015

For each pixel, surface normals
give a vector giving the normal 
vector to the object in the 
world for that pixel
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Predicting Normals

Lecture 17 - 15

RGB Input Image:
3 x H x W

Fully Convolutional 
network

Predicted Normals:
3 x H x W

Ground-truth Normals:
3 x H x W

Per-Pixel Loss:
(x · y) / (|x||y|)

Eigen and Fergus, “Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture”, ICCV 2015

Recall:
x · y 

= |x| |y| cos θ
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3D Shape Representations

Lecture 17 - 16
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3D Shape Representations: Voxels

Lecture 17 - 17

• Represent a shape with a V x V x V grid of occupancies
• Just like segmentation masks in Mask R-CNN, but in 3D!
• (+) Conceptually simple: just a 3D grid!
• (-) Need high spatial resolution to capture fine structures
• (-) Scaling to high resolutions is nontrivial!

Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016
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Processing Voxel Inputs: 3D Convolution

Lecture 17 - 18

Class 
Scores

FC 
Layer

Input:
1 x 30 x 30 x 30

6x6x6 conv
48x13x13x13

5x5x5 conv
160x5x5x5

4x4x4 conv
512x2x2x2

Wu et al, “3D ShapeNets: A Deep Representation for Volumetric Shapes”, CVPR 2015
Train with classification loss
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Generating Voxel Shapes: 3D Convolution

Lecture 17 - 19

Input image:
3 x 112 x 112

2D 
CNN

2D Features:
C x H x W

3D Features:
C’ x D’ x H’ x W’

3D CNN

Voxels:
1 x V x V x V

Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016
Train with per-voxel cross-entropy loss
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Generating Voxel Shapes: ”Voxel Tubes”

Lecture 17 - 20

Input image:
3 x 112 x 112

2D CNN

2D Features:
C x H x W

3D Features:
C’ x D’ x H’ x W’

Voxels:
V x V x V

Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016
Train with per-voxel cross-entropy loss

2D CNN

Final conv layer: V filters
Interpret as a “tube” of 

voxel scores
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Voxel Problems: Memory Usage

Lecture 17 - 21

0.1

1

10

100

1000

10000

0 256 512 768 1024

MB

Voxel memory usage (V x V x V float32 numbers)

Storing 10243 voxel grid 
takes 4GB of memory!



Justin Johnson November 13, 2019

Scaling Voxels: Oct-Trees

Lecture 17 - 22

Tatarchenko et al, “Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”, ICCV 2017

Use voxel grids with heterogenous resolution!
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Scaling Voxels: Nested Shape Layers

Lecture 17 - 23

Predict shape as a composition 
of positive and negative spaces

=

-

+ -
+

Richter and Roth, “Matryoshka Networks: Predicting 3D Geometry via Nested Shape Layers”, CVPR 2018 Doll image is licensed under CC-BY 2.0

https://www.flickr.com/photos/30478819@N08/40650559914
https://creativecommons.org/licenses/by/2.0/
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3D Shape Representations

Lecture 17 - 24
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3D Shape Representations

Lecture 17 - 25

∞
∞
2

2
2

2

Depth 
Map

Voxel 
Grid

Implicit 
Surface

Pointcloud Mesh



Justin Johnson November 13, 2019

3D Shape Representations: Implicit Functions

Lecture 17 - 26

Learn a function to classify arbitrary 3D 
points as inside / outside the shape

The surface of the 3D object is the level set {x : o(x) = ½}

Implicit function Explicit Shape
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3D Shape Representations: Implicit Functions

Lecture 17 - 27

Learn a function to classify arbitrary 3D 
points as inside / outside the shape

The surface of the 3D object is the level set {x : o(x) = ½}

Implicit function Explicit Shape

Same idea: signed 
distance function  
(SDF) gives the 
Euclidean distance to 
the surface of the 
shape; sign gives 
inside / outside
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3D Shape Representations: Implicit Functions

Lecture 17 - 28

Learn a function to classify arbitrary 3D 
points as inside / outside the shape

The surface of the 3D object is the level set {x : o(x) = ½}

Mescheder et al, “Occupancy Networks: Learning 3D 
Reconstruction in Function Space”, CVPR 2019

Allows for multiscale 
outputs like Oct-Trees



Justin Johnson November 13, 2019

3D Shape Representations: Implicit Functions

Lecture 17 - 29

Learn a function to classify arbitrary 3D 
points as inside / outside the shape

The surface of the 3D object is the level set

Extracting explicit shape outputs 
requires post-processing

{x : o(x) = ½}

Mescheder et al, “Occupancy Networks: Learning 3D 
Reconstruction in Function Space”, CVPR 2019
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3D Shape Representations

Lecture 17 - 30
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3D Shape Representations

Lecture 17 - 31
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3D Shape Representations: Point Cloud

Lecture 17 - 32

• Represent shape as a set of P points in 3D space
• (+) Can represent fine structures without huge numbers of points
• (  ) Requires new architecture, losses, etc
• (-) Doesn’t explicitly represent the surface of the shape: extracting a mesh 

for rendering or other applications requires post-processing

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Processing Pointcloud Inputs: PointNet

Lecture 17 - 33

Input pointcloud:
P x 3

Point features:
P x D

Run MLP on
each point Max-Pool

Pooled vector:
D

Fully 
Connected

Class score:
C

Want to process 
pointclouds as sets: 

order should not matter

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017
Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017
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Generating Pointcloud Outputs

Lecture 17 - 34

Input Image:
3 x H x W

2D 
CNN

Image 
Features:

C x H’ x W’

2D
CNN

Fully connected 
branch

Convolutional 
branch

Points: 
P1 x 3

Points: 
(P2x3) x H’ x W’ Pointcloud: 

(P1 + H’W’P2) x 3
Fan et al, “A Point Set Generation Network for 3D Object 
Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function

Lecture 17 - 35

We need a (differentiable) way to compare pointclouds as sets!

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function

Lecture 17 - 36

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function

Lecture 17 - 37

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function

Lecture 17 - 38

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Predicting Point Clouds: Loss Function

Lecture 17 - 39

We need a (differentiable) way to compare pointclouds as sets!

Chamfer distance is the sum of L2
distance to each point’s nearest
neighbor in the other set

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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3D Shape Representations

Lecture 17 - 40
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3D Shape Representations

Lecture 17 - 41
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3D Shape Representations: Triangle Mesh

Lecture 17 - 42

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
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3D Shape Representations: Triangle Mesh

Lecture 17 - 43

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
(+) Adaptive: Can represent flat surfaces 
very efficiently, can allocate more faces to 
areas with fine detail

Dolphin image is in the public domain

https://en.wikipedia.org/wiki/File:Dolphin_triangle_mesh.svg
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3D Shape Representations: Triangle Mesh

Lecture 17 - 44

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
(+) Adaptive: Can represent flat surfaces 
very efficiently, can allocate more faces to 
areas with fine detail
(+) Can attach data on verts and 
interpolate over the whole surface: RGB 
colors, texture coordinates, normal 
vectors, etc.

UV mapping figure is licensed 
under CC BY-SA 3.0. Figure
slightly reorganized.

https://en.wikipedia.org/wiki/UV_mapping
https://creativecommons.org/licenses/by-sa/3.0
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3D Shape Representations: Triangle Mesh

Lecture 17 - 45

Represent a 3D shape as a set of triangles
Vertices: Set of V points in 3D space
Faces: Set of triangles over the vertices
(+) Standard representation for graphics
(+) Explicitly represents 3D shapes
(+) Adaptive: Can represent flat surfaces 
very efficiently, can allocate more faces to 
areas with fine detail
(+) Can attach data on verts and 
interpolate over the whole surface: RGB 
colors, texture coordinates, normal 
vectors, etc.
(-) Nontrivial to process with neural nets! UV mapping figure is licensed 

under CC BY-SA 3.0. Figure
slightly reorganized.

https://en.wikipedia.org/wiki/UV_mapping
https://creativecommons.org/licenses/by-sa/3.0


Justin Johnson November 13, 2019

Predicting Meshes: Pixel2Mesh

Lecture 17 - 46

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Input: Single RGB 
Image of an object

Output: Triangle
mesh for the object
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Predicting Meshes: Pixel2Mesh

Lecture 17 - 47

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Input: Single RGB 
Image of an object

Output: Triangle
mesh for the object

Key ideas:
Iterative Refinement
Graph Convolution
Vertex Aligned-Features
Chamfer Loss Function
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Predicting Triangle Meshes: Iterative Refinement

Lecture 17 - 48

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Idea #1: Iterative mesh refinement
Start from initial ellipsoid mesh
Network predicts offsets for each vertex
Repeat.
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Predicting Triangle Meshes: Graph Convolution

Lecture 17 - 49

Input: Graph with a feature 
vector at each vertex

Output: New feature 
vector for each vertex

Vertex vi has feature fi

New feature f’i for vertex 
vi depends on feature of 
neighboring vertices N(i)

f’i = 

Use same weights W0 
and W1 to compute 
all outputs
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Predicting Triangle Meshes: Graph Convolution

Lecture 17 - 50

Each of these blocks consists of a 
stack of graph convolution layers 
operating on edges of the mesh

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018
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Predicting Triangle Meshes: Graph Convolution

Lecture 17 - 51

Each of these blocks consists of a 
stack of graph convolution layers 
operating on edges of the mesh

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Problem: How 
to incorporate 
image features?
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Predicting Triangle Meshes: Vertex-Aligned Features

Lecture 17 - 52

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Idea #2: Aligned vertex features
For each vertex of the mesh:
- Use camera information to 

project onto image plane
- Use bilinear interpolation to 

sample a CNN feature

2D 
CNN

Input Image

Image 
Features
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Predicting Triangle Meshes: Vertex-Aligned Features

Lecture 17 - 53

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Idea #2: Aligned vertex features
For each vertex of the mesh:
- Use camera information to 

project onto image plane
- Use bilinear interpolation to 

sample a CNN feature
Similar to RoI-Align operation from 
last time: maintains alignment 
between input image and feature 
vectors

CNN

Project proposal 
onto features

f6,6 f7,6

f6,5 f7,5

f6.5,5.8
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Predicting Meshes: Loss Function

Lecture 17 - 54
Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth



Justin Johnson November 13, 2019

Predicting Meshes: Loss Function

Lecture 17 - 55
Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Idea: Convert meshes to pointclouds, then compute loss
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Predicting Meshes: Loss Function

Lecture 17 - 56
Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Idea: Convert meshes to pointclouds, then compute loss
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Predicting Meshes: Loss Function

Lecture 17 - 57
Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Loss = Chamfer distance between predicted verts and ground-truth samples
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Predicting Meshes: Loss Function

Lecture 17 - 58
Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Problem: Doesn’t 
take the interior 
of predicted faces 
into account!

Loss = Chamfer distance between predicted verts and ground-truth samples
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Predicting Meshes: Loss Function

Lecture 17 - 59

The same shape can be represented with different meshes – how 
can we define a loss between predicted and ground-truth mesh?

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Loss = Chamfer distance between predicted samples and ground-truth samples

Sample points 
from the surface 
of the predicted 
mesh (online!)

Smith et al, “GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects”, ICML 2019
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Predicting Meshes: Loss Function

Lecture 17 - 60

vs

Prediction Ground-Truth

Sample points from the 
surface of the ground-
truth mesh (offline)

Loss = Chamfer distance between predicted samples and ground-truth samples

Sample points 
from the surface 
of the predicted 
mesh (online!)

Problem: Need to sample online! Must be efficient!
Problem: Need to backprop through sampling!

Smith et al, “GEOMetrics: Exploiting Geometric Structure for Graph-Encoded Objects”, ICML 2019
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Predicting Meshes: Pixel2Mesh

Lecture 17 - 61

Wang et al, “Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images”, ECCV 2018

Input: Single RGB 
Image of an object

Output: Triangle
mesh for the object

Key ideas:
Iterative Refinement
Graph Convolution
Vertex Aligned-Features
Chamfer Loss Function
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3D Shape Representations

Lecture 17 - 62
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3D Shape Prediction

Lecture 17 - 63

Shape Representations

Camera Systems

Metrics

Datasets
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3D Shape Prediction

Lecture 17 - 64

Shape Representations

Camera Systems

Metrics

Datasets
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Shape Comparison Metrics: Intersection over Union

Lecture 17 - 65

Figure credit: Alexander Kirillov 

In 2D, we evaluate boxes and 
segmentation masks with 
intersection over union (IoU):
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Shape Comparison Metrics: Intersection over Union

Lecture 17 - 66

In 3D: Voxel IoU
Problem: Cannot capture thin structures
Problem: Cannot be applied to pointclouds
Problem: For meshes, need to voxelize or sample

Figure credit: Alexander Kirillov 

In 2D, we evaluate boxes and 
segmentation masks with 
intersection over union (IoU):
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Shape Comparison Metrics: Intersection over Union

Lecture 17 - 67

Figure credit: Tatarchenko et al, “What Do Single-view 3D Reconstruction Networks Learn?”, CVPR 2019

In 3D: Voxel IoU
Problem: Cannot capture thin structures
Problem: Cannot be applied to pointclouds
Problem: For meshes, need to voxelize or sample
Problem: Not very meaningful at low values!

Figure credit: Alexander Kirillov 

In 2D, we evaluate boxes and 
segmentation masks with 
intersection over union (IoU):
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Shape Comparison Metrics: Intersection over Union

Lecture 17 - 68

Figure credit: Tatarchenko et al, “What Do Single-view 3D Reconstruction Networks Learn?”, CVPR 2019

In 3D: Voxel IoU
Problem: Cannot capture thin structures
Problem: Cannot be applied to pointclouds
Problem: For meshes, need to voxelize or sample
Problem: Not very meaningful at low values!

State–of-the-art methods 
achieve low IoU

0.493 0.48

0.571

0.4

0.45

0.5

0.55

0.6

3D-R2N2
(Voxels)

Pixel2Mesh
(mesh)

OccNet
(implicit)

IoU

Conclusion: Voxel IoU not a good metric

Results from Mescheder et al, “Occupancy Networks: 
Learning 3D Reconstruction in Function Space”, CVPR 2019
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Shape Comparison Metrics: Chamfer Distance

Lecture 17 - 69

We’ve already seen another 
shape comparison metric: 
Chamfer distance

1. Convert your prediction 
and ground-truth into 
pointclouds via sampling

2. Compare with Chamfer 
distance
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Shape Comparison Metrics: Chamfer Distance

Lecture 17 - 70

We’ve already seen another 
shape comparison metric: 
Chamfer distance

1. Convert your prediction 
and ground-truth into 
pointclouds via sampling

2. Compare with Chamfer 
distance

Problem: Chamfer is very 
sensitive to outliers 

Figure credit: Tatarchenko et al, “What Do Single-view 3D Reconstruction Networks Learn?”, CVPR 2019
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Shape Comparison Metrics: F1 Score

Lecture 17 - 71

Similar to Chamfer, sample points 
from the surface of the prediction 
and the ground-truth

Precision@t = fraction of predicted 
points within t of some ground-
truth point

Recall@t = fraction of ground-truth 
points within t of some predicted 
point

F1@t = 2 ∗ #$%&'(')*@, ∗ -%&.//@,
#$%&'(')*@,0-%&.//@,

Predicted
Ground-truth
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Shape Comparison Metrics: F1 Score

Lecture 17 - 72

Similar to Chamfer, sample points 
from the surface of the prediction 
and the ground-truth

Precision@t = fraction of predicted 
points within t of some ground-
truth point

Recall@t = fraction of ground-truth 
points within t of some predicted 
point

F1@t = 2 ∗ #$%&'(')*@, ∗ -%&.//@,
#$%&'(')*@,0-%&.//@,

Predicted
Ground-truth

Precision@t = 3/4
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Shape Comparison Metrics: F1 Score

Lecture 17 - 73

Similar to Chamfer, sample points 
from the surface of the prediction 
and the ground-truth

Precision@t = fraction of predicted 
points within t of some ground-
truth point

Recall@t = fraction of ground-truth 
points within t of some predicted 
point

F1@t = 2 ∗ #$%&'(')*@, ∗ -%&.//@,
#$%&'(')*@,0-%&.//@,

Predicted
Ground-truth

Precision@t = 3/4
Recall@t = 2/3
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Shape Comparison Metrics: F1 Score

Lecture 17 - 74

Similar to Chamfer, sample points 
from the surface of the prediction 
and the ground-truth

Precision@t = fraction of predicted 
points within t of some ground-
truth point

Recall@t = fraction of ground-truth 
points within t of some predicted 
point

F1@t = 2 ∗ #$%&'(')*@, ∗ -%&.//@,
#$%&'(')*@,0-%&.//@,

Predicted
Ground-truth

Precision@t = 3/4
Recall@t = 2/3
F1@t ≅ 0.70
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Shape Comparison Metrics: F1 Score

Lecture 17 - 75

Similar to Chamfer, sample points 
from the surface of the prediction 
and the ground-truth

Precision@t = fraction of predicted 
points within t of some ground-
truth point

Recall@t = fraction of ground-truth 
points within t of some predicted 
point

F1@t = 2 ∗ #$%&'(')*@, ∗ -%&.//@,
#$%&'(')*@,0-%&.//@,

Figure credit: Tatarchenko et al, “What Do Single-view 3D 
Reconstruction Networks Learn?”, CVPR 2019

F1 score is robust to outliers!

Conclusion: F1 score is probably 
the best shape prediction metric 

in common use
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Shape Comparison Metrics: Summary

Lecture 17 - 76

Intersection over Union:
Doesn’t capture fine structure,
not meaningful at low values

Chamfer Distance:
Very sensitive to outliers
Can be directly optimized

F1 score:
Robust to outliers, but need to
look at different threshold values
to capture details at different scales

F1@1% = 0.56 F1@1% = 0.56
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3D Shape Prediction

Lecture 17 - 77

Shape Representations

Camera Systems

Metrics

Datasets
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3D Shape Prediction
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Shape Representations

Camera Systems

Metrics

Datasets
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Cameras: Canonical vs View Coordinates

Lecture 17 - 79

Input Canonical 
target

Canonical Coordinates: Predict 3D 
shape in a canonical coordinate 
system (e.g. front of chair is +z) 
regardless of the viewpoint of the 
input image
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Cameras: Canonical vs View Coordinates

Lecture 17 - 80

Input Canonical 
target

View 
target

Canonical Coordinates: Predict 3D 
shape in a canonical coordinate 
system (e.g. front of chair is +z) 
regardless of the viewpoint of the 
input image
View Coordinates: Predict 3D shape 
aligned to the viewpoint of the 
camera
Many papers predict in canonical 
coordinates – easier to load data
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Cameras: Canonical vs View Coordinates

Lecture 17 - 81

Problem: Canonical view breaks 
the “principle of feature 
alignment”: Predictions should be 
aligned to inputs

View coordinates maintain 
alignment between inputs and 
predictions! 

Input Canonical 
target

View 
target
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Cameras: Canonical vs View Coordinates

Lecture 17 - 82

Input Canonical 
target

View 
target

Problem: Canonical view overfits to training shapes:
Better generalization to new views of known shapes
Worse generalization to new shapes or new categories

Shin et al, “Pixels, voxels, and views: A study of shape representations 
for single view 3D object shape prediction”, CVPR 2018
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Cameras: Canonical vs View Coordinates

Lecture 17 - 83

Input Canonical 
target

View 
target

Problem: Canonical view overfits to training shapes:
Better generalization to new views of known shapes
Worse generalization to new shapes or new categories

Conclusion: Prefer view
coordinate system
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View-Centric Voxel Predictions

Lecture 17 - 84

View-centric predictions! Voxels take perspective camera 
into account, so our “voxels” are actually frustums

Gkioxari, Malik, and Johnson, “Mesh R-CNN”, ICCV 2019
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3D Shape Prediction

Lecture 17 - 85

Shape Representations

Camera Systems

Metrics

Datasets
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3D Shape Prediction
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Shape Representations

Camera Systems

Metrics

Datasets



Justin Johnson November 13, 2019

3D Datasets: Object-Centric

Lecture 17 - 87

ShapeNet

~50 categories, ~50k 3D CAD models
Standard split has 13 categories, ~44k 
models, 25 rendered images per model
Many papers show results here
(-) Synthetic, isolated objects; no context
(-) Lots of chairs, cars, airplanes

Chang et al, “ShapeNet: An Information-Rich 3D Model Repository”, arXiv 2015
Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016
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3D Datasets: Object-Centric

Lecture 17 - 88

ShapeNet

~50 categories, ~50k 3D CAD models
Standard split has 13 categories, ~44k 
models, 25 rendered images per model
Many papers show results here
(-) Synthetic, isolated objects; no context
(-) Lots of chairs, cars, airplanes

Chang et al, “ShapeNet: An Information-Rich 3D Model Repository”, arXiv 2015
Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016

Pix3D

9 categories, 219 3D models of IKEA furniture 
aligned to ~17k real images
Some papers train on ShapeNet and show 
qualitative results here, but use ground-truth 
segmentation masks
(+) Real images! Context!
(-) Small, partial annotations – only 1 obj/image

Sun et al, “Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling”, CVPR 2018
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3D Shape Prediction: Mesh R-CNN

He, Gkioxari, Dollár, and 
Girshick, “Mask R-CNN”, 
ICCV 2017

Mask R-CNN: 
2D Image -> 2D shapes

Mesh R-CNN: 
2D Image -> Triangle Meshes

Gkioxari, Malik, and Johnson, 
“Mesh R-CNN”, ICCV 2019
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Mesh R-CNN: Task
Input: Single RGB image

Output:
A set of detected objects
For each object:
- Bounding box
- Category label
- Instance segmentation
- 3D triangle mesh

Mask R-CNN

Mesh head
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Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good 
results, but the topology (verts, faces, 
genus, connected components) fixed 

by the initial mesh
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Mesh R-CNN: Hybrid 3D shape representation

Mesh deformation gives good 
results, but the topology (verts, faces, 
genus, connected components) fixed 

by the initial mesh

Our approach: Use voxel 
predictions to create 

initial mesh prediction!
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Mesh R-CNN Pipeline

Lecture 17 - 93

Input image
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Mesh R-CNN Pipeline

Lecture 17 - 94

Input image 2D object recognition
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Mesh R-CNN Pipeline

Lecture 17 - 95

Input image 2D object recognition

3D object voxels
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Mesh R-CNN Pipeline

Lecture 17 - 96

Input image 2D object recognition

3D object voxels3D object meshes



Justin Johnson November 13, 2019

Mesh R-CNN: ShapeNet Results

Lecture 17 - 97
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Mesh R-CNN: Shape Regularizers

Lecture 17 - 98

Using Chamfer as only mesh 
loss gives degenerate meshes. 
Also need ”mesh regularizer” 
to encourage nice predictions: 
Ledge = minimize L2 norm of 
edges in the predicted mesh
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Mesh R-CNN: Pix3D Results

Lecture 17 - 99
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Mesh R-CNN: Pix3D Results

Lecture 17 - 100

Box & Mask Predictions Mesh Predictions

Predicting many objects per scene
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Mesh R-CNN: Pix3D Results

Lecture 17 - 101

Box & Mask Predictions Mesh Predictions

Amodal completion: predict 
occluded parts of objects
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Mesh R-CNN: Pix3D Results

Lecture 17 - 102

Box & Mask Predictions Mesh Predictions

Segmentation failures 
propagate to meshes
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Recap

Lecture 17 - 103

Predicting 3D Shapes 
from single image

Processing 3D 
input data

Input Image 3D Shape 3D Shape

Chair

∞
∞
2

2
2

2

Depth 
Map

Voxel 
Grid

Implicit 
Surface

Pointcloud Mesh

3D Shape Representations
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Next Time:
Videos

Lecture 17 - 104


