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Lecture	15:	
Object	Detection

Lecture	15	- 1
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Reminder:	A4

Lecture	14	- 2

A4	due	Wednesday,	November	13,	11:59pm

A4	covers:
- PyTorch autograd
- Residual	networks
- Recurrent	neural	networks
- Attention
- Feature	visualization
- Style	transfer
- Adversarial	examples
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Last	Time:	Visualizing	and	Understanding	CNNs

Lecture	15	- 3

Nearest	Neighbor

Maximally	Activating	Patches

(Guided)	Backprop Feature	Inversion

Synthetic	Images	via	
Gradient	Ascent
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Last	Time:	Making	art	with	CNNs

Lecture	15	- 4

DeepDream

Style	Transfer
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So	far:	Image	Classification

Lecture	15	- 5

Class	Scores
Cat:	0.9
Dog:	0.05
Car:	0.01
...This	image is	CC0	public	domain Vector:

4096

Fully-Connected:
4096	to	1000

Figure	copyright	Alex	Krizhevsky,	Ilya	Sutskever,	and	
Geoffrey	Hinton,	2012.	Reproduced	with	permission.	
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Computer	Vision	Tasks

Lecture	15	- 6

Classification	 Semantic
Segmentation

Object	
Detection

Instance	
Segmentation

CAT GRASS,	CAT,	TREE,	
SKY

DOG,	DOG,	CAT DOG,	DOG,	CAT

No	spatial	extent Multiple	ObjectsNo	objects,	just	pixels
This	image is	CC0	public	domain
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Today:	Object	Detection

Lecture	15	- 7

Classification	 Semantic
Segmentation

Object	
Detection

Instance	
Segmentation

CAT GRASS,	CAT,	TREE,	
SKY

DOG,	DOG,	CAT DOG,	DOG,	CAT

No	spatial	extent Multiple	ObjectsNo	objects,	just	pixels
This	image is	CC0	public	domain



Justin	Johnson November	6,	2019

Object	Detection:	Task	Definition

Lecture	15	- 8

Input:	Single	RGB	Image

Output:	A	set of	detected	objects;
For	each	object	predict:

1. Category	label	(from	fixed,	
known	set	of	categories)

2. Bounding	box	(four	numbers:	
x,	y,	width,	height)



Justin	Johnson November	6,	2019

Object	Detection:	Challenges

Lecture	15	- 9

- Multiple	outputs:	Need	to	output	
variable	numbers	of	objects	per	image

- Multiple	types	of	output:	Need	to	
predict	”what”	(category	label)	as	well	
as	“where”	(bounding	box)

- Large	images:	Classification	works	at	
224x224;	need	higher	resolution	for	
detection,	often	~800x600
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Detecting	a	single	object

Lecture	15	- 10

Vector:
4096

This	image is	CC0	public	domain
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Detecting	a	single	object

Lecture	15	- 11

Class	Scores
Cat:	0.9
Dog:	0.05
Car:	0.01
...

Vector:
4096

Fully
Connected:
4096	to	1000

Softmax
Loss

Correct	label:
Cat

This	image is	CC0	public	domain

“What”
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Detecting	a	single	object

Lecture	15	- 12

Class	Scores
Cat:	0.9
Dog:	0.05
Car:	0.01
...

Vector:
4096

Fully
Connected:
4096	to	1000

Box	
Coordinates
(x,	y,	w,	h)

Fully
Connected:
4096	to	4

Softmax
Loss

L2	Loss

Correct	label:
Cat

Correct	box:
(x’,	y’,	w’,	h’)

This	image is	CC0	public	domain

“Where”

“What”

Treat	localization	as	a	
regression	problem!
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Detecting	a	single	object

Lecture	15	- 13

Class	Scores
Cat:	0.9
Dog:	0.05
Car:	0.01
...

Vector:
4096

Fully
Connected:
4096	to	1000

Box	
Coordinates
(x,	y,	w,	h)

Fully
Connected:
4096	to	4

Softmax
Loss

L2	Loss

Loss

Correct	label:
Cat

Correct	box:
(x’,	y’,	w’,	h’)

Weighted	
Sum

This	image is	CC0	public	domain

“Where”

“What”

Treat	localization	as	a	
regression	problem!
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Detecting	a	single	object

Lecture	15	- 14

Class	Scores
Cat:	0.9
Dog:	0.05
Car:	0.01
...

Vector:
4096

Fully
Connected:
4096	to	1000

Box	
Coordinates
(x,	y,	w,	h)

Fully
Connected:
4096	to	4

Softmax
Loss

L2	Loss

Loss

Correct	label:
Cat

Correct	box:
(x’,	y’,	w’,	h’)

Weighted	
Sum

This	image is	CC0	public	domain

Multitask	
Loss

“Where”

“What”

Treat	localization	as	a	
regression	problem!
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Detecting	a	single	object

Lecture	15	- 15

Class	Scores
Cat:	0.9
Dog:	0.05
Car:	0.01
...

Vector:
4096

Fully
Connected:
4096	to	1000

Box	
Coordinates
(x,	y,	w,	h)

Fully
Connected:
4096	to	4

Softmax
Loss

L2	Loss

Loss

Correct	label:
Cat

Correct	box:
(x’,	y’,	w’,	h’)

Weighted	
Sum

This	image is	CC0	public	domain

Multitask	
Loss

Often	pretrained
on	ImageNet
(Transfer	learning)

“Where”

“What”

Treat	localization	as	a	
regression	problem!
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Detecting	a	single	object

Lecture	15	- 16

Class	Scores
Cat:	0.9
Dog:	0.05
Car:	0.01
...

Vector:
4096

Fully
Connected:
4096	to	1000

Box	
Coordinates
(x,	y,	w,	h)

Fully
Connected:
4096	to	4

Softmax
Loss

L2	Loss

Loss

Correct	label:
Cat

Correct	box:
(x’,	y’,	w’,	h’)

Weighted	
Sum

This	image is	CC0	public	domain

Multitask	
Loss

Often	pretrained
on	ImageNet
(Transfer	learning)

“Where”

“What”

Problem:	Images	can	have	
more	than	one	object!

Treat	localization	as	a	
regression	problem!
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Detecting	Multiple	Objects

Lecture	15	- 17

CAT:	(x,	y,	w,	h)

DOG:	(x,	y,	w,	h)
DOG:	(x,	y,	w,	h)
CAT:	(x,	y,	w,	h)

DUCK:	(x,	y,	w,	h)
DUCK:	(x,	y,	w,	h)
….

4	numbers

16	numbers

Many	
numbers!

Duck	image	is	free	to	use	under	the	Pixabay license

Need	different	numbers	
of	outputs	per	image
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Detecting	Multiple	Objects:	Sliding	Window

Lecture	15	- 18

Dog?	NO
Cat?	NO
Background?	YES

Apply	a	CNN	to	many	different	
crops	of	the	image,	CNN	classifies	
each	crop	as	object	or	background
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Detecting	Multiple	Objects:	Sliding	Window

Lecture	15	- 19

Dog?	YES
Cat?	NO
Background?	NO

Apply	a	CNN	to	many	different	
crops	of	the	image,	CNN	classifies	
each	crop	as	object	or	background
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Detecting	Multiple	Objects:	Sliding	Window

Lecture	15	- 20

Dog?	YES
Cat?	NO
Background?	NO

Apply	a	CNN	to	many	different	
crops	of	the	image,	CNN	classifies	
each	crop	as	object	or	background
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Detecting	Multiple	Objects:	Sliding	Window

Lecture	15	- 21

Dog?	NO
Cat?	YES
Background?	NO

Apply	a	CNN	to	many	different	
crops	of	the	image,	CNN	classifies	
each	crop	as	object	or	background
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Detecting	Multiple	Objects:	Sliding	Window

Lecture	15	- 22

Apply	a	CNN	to	many	different	
crops	of	the	image,	CNN	classifies	
each	crop	as	object	or	background

Question:	How	many	possible	boxes	
are	there	in	an	image	of	size	H	x	W?
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Detecting	Multiple	Objects:	Sliding	Window

Lecture	15	- 23

Apply	a	CNN	to	many	different	
crops	of	the	image,	CNN	classifies	
each	crop	as	object	or	background

Question:	How	many	possible	boxes	
are	there	in	an	image	of	size	H	x	W?

Consider	a	box	of	size	h	x	w:
Possible	x	positions:	W	– w	+	1
Possible	y	positions:	H	– h	+	1
Possible	positions:	
(W	– w	+	1)	*	(H	– h	+	1)
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Detecting	Multiple	Objects:	Sliding	Window

Lecture	15	- 24

Apply	a	CNN	to	many	different	
crops	of	the	image,	CNN	classifies	
each	crop	as	object	or	background

Question:	How	many	possible	boxes	
are	there	in	an	image	of	size	H	x	W?

Consider	a	box	of	size	h	x	w:
Possible	x	positions:	W	– w	+	1
Possible	y	positions:	H	– h	+	1
Possible	positions:	
(W	– w	+	1)	*	(H	– h	+	1)

Total	possible	boxes:

! !(𝑊 −𝑤 + 1)(𝐻 − ℎ + 1)
+

,-.

/

0-.

=
𝐻(𝐻 + 1)

2
𝑊(𝑊 + 1)

2
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Detecting	Multiple	Objects:	Sliding	Window

Lecture	15	- 25

Apply	a	CNN	to	many	different	
crops	of	the	image,	CNN	classifies	
each	crop	as	object	or	background

Question:	How	many	possible	boxes	
are	there	in	an	image	of	size	H	x	W?

Consider	a	box	of	size	h	x	w:
Possible	x	positions:	W	– w	+	1
Possible	y	positions:	H	– h	+	1
Possible	positions:	
(W	– w	+	1)	*	(H	– h	+	1)

Total	possible	boxes:

! !(𝑊 −𝑤 + 1)(𝐻 − ℎ + 1)
+

,-.

/

0-.

=
𝐻(𝐻 + 1)

2
𝑊(𝑊 + 1)

2

800	x	600	image	
has	~58M	boxes!	
No	way	we	can	
evaluate	them	all
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Region	Proposals

Lecture	15	- 26

Alexe et	al,	“Measuring	the	objectness of	image	windows”,	TPAMI	2012
Uijlings et	al,	“Selective	Search	for	Object	Recognition”,	IJCV	2013
Cheng	et	al,	“BING:	Binarized normed	gradients	for	objectness estimation	at	300fps”,	CVPR	2014
Zitnick and	Dollar,	“Edge	boxes:	Locating	object	proposals	from	edges”,	ECCV	2014

● Find	a	small	set	of	boxes	that	are	likely	to	cover	all	objects
● Often	based	on	heuristics:	e.g.	look	for	“blob-like”	image	regions
● Relatively	fast	to	run;	e.g.	Selective	Search	gives	2000	region	

proposals	in	a	few	seconds	on	CPU
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R-CNN:	Region-Based	CNN

Lecture	15	- 27

Input	
image

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	
semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.
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R-CNN:	Region-Based	CNN

Lecture	15	- 28

Input	
image

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k) Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	

semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.
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R-CNN:	Region-Based	CNN

Lecture	15	- 29

Input	
image

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k) Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	

semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.
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R-CNN:	Region-Based	CNN

Lecture	15	- 30

Input	
image

Conv
Net

Conv
Net

Conv
Net Warped	image	

regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	
semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.
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R-CNN:	Region-Based	CNN

Lecture	15	- 31

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	
semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

Classify	each	region
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R-CNN:	Region-Based	CNN

Lecture	15	- 32

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	
semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

Classify	each	region

Bbox
Bounding	box	regression:
Predict	“transform”	to correct the	
RoI: 4	numbers	(tx,	ty,	th,	tw)Bbox

Bbox
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R-CNN:	Region-Based	CNN

Lecture	15	- 33

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	
semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

Classify	each	region

Bbox
Bounding	box	regression:
Predict	“transform”	to correct the	
RoI: 4	numbers	(tx,	ty,	th,	tw)Bbox

Bbox
Region	proposal:	(px,	py,	ph,	pw)
Transform:	(tx,	ty,	th,	tw)
Output	box:	(bx,	by,	bh,	bw)

Translate	relative	to	box	size:
bx =	px +	pwtx by =	py +	phty

Log-space	scale	transform:
bw =	pwexp(tw) bh =	phexp(th)
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R-CNN:	Test-time

Lecture	15	- 34

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	
semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

Bbox
Bbox

Bbox

Input:	Single	RGB	Image

1. Run	region	proposal	method	to	
compute	~2000	region	proposals

2. Resize	each	region	to	224x224	and	run	
independently	through	CNN	to	predict	
class	scores	and	bbox transform

3. Use	scores	to	select	a	subset	of	region	
proposals	to	output	
(Many	choices	here:	threshold	on	
background,	or	per-category?	Or	take	
top	K	proposals	per	image?)

4. Compare	with	ground-truth	boxes
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Comparing	Boxes:	Intersection	over	Union	(IoU)

Lecture	15	- 35

Puppy	image	is	licensed	under	CC-A	2.0	Generic	license.	Bounding	boxes	and	text	added	by	Justin	Johnson.

Our	Prediction

Ground	
Truth

How	can	we	compare	our	
prediction	to	the	ground-truth	box?
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Comparing	Boxes:	Intersection	over	Union	(IoU)

Lecture	15	- 36

Puppy	image	is	licensed	under	CC-A	2.0	Generic	license.	Bounding	boxes	and	text	added	by	Justin	Johnson.

Our	Prediction

Ground	
Truth

How	can	we	compare	our	
prediction	to	the	ground-truth	box?

Intersection	over	Union	(IoU)
(Also	called	“Jaccard similarity”	or	
“Jaccard index”):

𝑨𝒓𝒆𝒂	𝒐𝒇	𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂	𝒐𝒇	𝑼𝒏𝒊𝒐𝒏



Justin	Johnson November	6,	2019

Comparing	Boxes:	Intersection	over	Union	(IoU)

Lecture	15	- 37

Puppy	image	is	licensed	under	CC-A	2.0	Generic	license.	Bounding	boxes	and	text	added	by	Justin	Johnson.

Our	Prediction

Ground	
Truth

How	can	we	compare	our	
prediction	to	the	ground-truth	box?

Intersection	over	Union	(IoU)
(Also	called	“Jaccard similarity”	or	
“Jaccard index”):

𝑨𝒓𝒆𝒂	𝒐𝒇	𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂	𝒐𝒇	𝑼𝒏𝒊𝒐𝒏

IoU =	0.54

IoU >	0.5	is	“decent”
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Comparing	Boxes:	Intersection	over	Union	(IoU)

Lecture	15	- 38

Puppy	image	is	licensed	under	CC-A	2.0	Generic	license.	Bounding	boxes	and	text	added	by	Justin	Johnson.

Our	Prediction

Ground	
Truth

How	can	we	compare	our	
prediction	to	the	ground-truth	box?

Intersection	over	Union	(IoU)
(Also	called	“Jaccard similarity”	or	
“Jaccard index”):

𝑨𝒓𝒆𝒂	𝒐𝒇	𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂	𝒐𝒇	𝑼𝒏𝒊𝒐𝒏

IoU =	0.71

IoU >	0.5	is	“decent”,
IoU >	0.7	is	“pretty	good”,
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Comparing	Boxes:	Intersection	over	Union	(IoU)

Lecture	15	- 39

Puppy	image	is	licensed	under	CC-A	2.0	Generic	license.	Bounding	boxes	and	text	added	by	Justin	Johnson.

Our	Prediction

Ground	
Truth

How	can	we	compare	our	
prediction	to	the	ground-truth	box?

Intersection	over	Union	(IoU)
(Also	called	“Jaccard similarity”	or	
“Jaccard index”):

𝑨𝒓𝒆𝒂	𝒐𝒇	𝑰𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒊𝒐𝒏
𝑨𝒓𝒆𝒂	𝒐𝒇	𝑼𝒏𝒊𝒐𝒏

IoU =	0.91

IoU >	0.5	is	“decent”,
IoU >	0.7	is	“pretty	good”,
IoU >	0.9	is	“almost	perfect”
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Overlapping	Boxes

Lecture	15	- 40

P(dog)	=	0.9
Problem:	Object	detectors	often	
output	many	overlapping	detections:

P(dog)	=	0.8

P(dog)	=	0.75

P(dog)	=	0.7

Puppy	image	is	CC0	Public	Domain
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Overlapping	Boxes:	Non-Max	Suppression	(NMS)

Lecture	15	- 41

P(dog)	=	0.9
Problem:	Object	detectors	often	
output	many	overlapping	detections:

Solution:	Post-process	raw	
detections	using	Non-Max	
Suppression (NMS)

1. Select	next	highest-scoring	box
2. Eliminate	lower-scoring	boxes	

with	IoU >	threshold	(e.g.	0.7)
3. If	any	boxes	remain,	GOTO	1

P(dog)	=	0.8

P(dog)	=	0.75

P(dog)	=	0.7

Puppy	image	is	CC0	Public	Domain
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Overlapping	Boxes:	Non-Max	Suppression	(NMS)

Lecture	15	- 42

P(dog)	=	0.9
Problem:	Object	detectors	often	
output	many	overlapping	detections:

Solution:	Post-process	raw	
detections	using	Non-Max	
Suppression (NMS)

1. Select	next	highest-scoring	box
2. Eliminate	lower-scoring	boxes	

with	IoU >	threshold	(e.g.	0.7)
3. If	any	boxes	remain,	GOTO	1

P(dog)	=	0.8

P(dog)	=	0.75

P(dog)	=	0.7

IoU(■,	■)	=	0.78
IoU(■,	■)	=	0.05
IoU(■,	■)	=	0.07

Puppy	image	is	CC0	Public	Domain
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Overlapping	Boxes:	Non-Max	Suppression	(NMS)

Lecture	15	- 43

Problem:	Object	detectors	often	
output	many	overlapping	detections:

Solution:	Post-process	raw	
detections	using	Non-Max	
Suppression (NMS)

1. Select	next	highest-scoring	box
2. Eliminate	lower-scoring	boxes	

with	IoU >	threshold	(e.g.	0.7)
3. If	any	boxes	remain,	GOTO	1

P(dog)	=	0.75

P(dog)	=	0.7

IoU(■,	■)	=	0.74

P(dog)	=	0.9

Puppy	image	is	CC0	Public	Domain
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Overlapping	Boxes:	Non-Max	Suppression	(NMS)

Lecture	15	- 44

Puppy	image	is	CC0	Public	Domain

Problem:	Object	detectors	often	
output	many	overlapping	detections:

Solution:	Post-process	raw	
detections	using	Non-Max	
Suppression (NMS)

1. Select	next	highest-scoring	box
2. Eliminate	lower-scoring	boxes	

with	IoU >	threshold	(e.g.	0.7)
3. If	any	boxes	remain,	GOTO	1

P(dog)	=	0.75P(dog)	=	0.9
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Overlapping	Boxes:	Non-Max	Suppression	(NMS)

Lecture	15	- 45

Crowd	image	is	free	for	commercial	use	under	the	Pixabay license

Problem:	Object	detectors	often	
output	many	overlapping	detections:

Solution:	Post-process	raw	
detections	using	Non-Max	
Suppression (NMS)

1. Select	next	highest-scoring	box
2. Eliminate	lower-scoring	boxes	

with	IoU >	threshold	(e.g.	0.7)
3. If	any	boxes	remain,	GOTO	1

Problem:	NMS	may	eliminate	”good”	
boxes	when	objects	are	highly	
overlapping… no	good	solution	=(
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 46

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 47

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

0.99 0.95 0.90

All	dog	detections	sorted	by	score

0.10

All	ground-truth	dog	boxes

0.5
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 48

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative

0.99 0.95 0.90

All	dog	detections	sorted	by	score

0.10

All	ground-truth	dog	boxes

Match:	IoU >	0.5

0.5
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 49

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative
3. Plot	a	point	on	PR	Curve

0.99 0.95 0.90

All	dog	detections	sorted	by	score

0.10

All	ground-truth	dog	boxes

Match:	IoU >	0.5

Precision	=	1/1	=	1.0
Recall	=	1/3	=	0.33

0.5

Pr
ec
isi
on

Recall 1.0
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 50

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative
3. Plot	a	point	on	PR	Curve

0.99 0.95 0.90

All	dog	detections	sorted	by	score

0.10

All	ground-truth	dog	boxes

Match:	IoU >	0.5

Precision	=	2/2	=	1.0
Recall	=	2/3	=	0.67

0.5

Pr
ec
isi
on

Recall 1.0
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 51

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative
3. Plot	a	point	on	PR	Curve

0.99 0.95 0.90

All	dog	detections	sorted	by	score

0.10

All	ground-truth	dog	boxes

No	match	>	0.5	IoU with	GT

Precision	=	2/3	=	0.67
Recall	=	2/3	=	0.67

0.5

Pr
ec
isi
on

Recall 1.0
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 52

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative
3. Plot	a	point	on	PR	Curve

0.99 0.95 0.90

All	dog	detections	sorted	by	score

0.10

All	ground-truth	dog	boxes

No	match	>	0.5	IoU with	GT

Precision	=	2/4	=	0.5
Recall	=	2/3	=	0.67

0.5

Pr
ec
isi
on

Recall 1.0
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 53

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative
3. Plot	a	point	on	PR	Curve

0.99 0.95 0.90

All	dog	detections	sorted	by	score

0.10

All	ground-truth	dog	boxes

Match:	>	0.5	IoU

Precision	=	3/5	=	0.6
Recall	=	3/3	=	1.0

0.5

Pr
ec
isi
on

Recall 1.0
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 54

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative
3. Plot	a	point	on	PR	Curve

2. Average	Precision	(AP)	=	area	under	PR	curve

0.99 0.95 0.90

All	dog	detections	sorted	by	score

0.10

All	ground-truth	dog	boxes

0.5

Pr
ec
isi
on

Recall 1.0

Dog	AP	=	0.86
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 55

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative
3. Plot	a	point	on	PR	Curve

2. Average	Precision	(AP)	=	area	under	PR	curve

0.99 0.95 0.90

All	dog	detections	sorted	by	score

0.10

All	ground-truth	dog	boxes

0.5

Pr
ec
isi
on

Recall 1.0

Dog	AP	=	0.86
How	to	get	AP	=	1.0:	Hit	all	GT	
boxes	with	IoU >	0.5,	and	have	no	
“false	positive”	detections	ranked	
above	any	“true	positives”
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 56

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative
3. Plot	a	point	on	PR	Curve

2. Average	Precision	(AP)	=	area	under	PR	curve
3. Mean	Average	Precision	(mAP)	=	average	of	AP	for	

each	category

Dog	AP	=	0.86
Cat	AP	=	0.80
Car	AP	=	0.65

mAP@0.5	=	0.77
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Evaluating	Object	Detectors:	
Mean	Average	Precision	(mAP)

Lecture	15	- 57

mAP@0.5	=	0.77
mAP@0.55	=	0.71
mAP@0.60	=	0.65
…
mAP@0.95	=	0.2

COCO	mAP =	0.4

1. Run	object	detector	on	all	test	images	(with	NMS)
2. For	each	category,	compute	Average	Precision	(AP)	=	

area	under	Precision	vs	Recall	Curve
1. For	each	detection	(highest	score	to	lowest	score)

1. If	it	matches	some	GT	box	with	IoU >	0.5,	
mark	it	as	positive	and	eliminate	the	GT

2. Otherwise	mark	it	as	negative
3. Plot	a	point	on	PR	Curve

2. Average	Precision	(AP)	=	area	under	PR	curve
3. Mean	Average	Precision	(mAP)	=	average	of	AP	for	

each	category
4. For	“COCO	mAP”:	Compute	mAP@thresh for	each	IoU

threshold	(0.5,	0.55,	0.6,	…,	0.95)	and	take	average
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R-CNN:	Region-Based	CNN

Lecture	15	- 58

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	
semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

Classify	each	region

Bbox
Bounding	box	regression:
Predict	“transform”	to correct the	
RoI: 4	numbers	(tx,	ty,	th,	tw)Bbox

Bbox
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R-CNN:	Region-Based	CNN

Lecture	15	- 59

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	
semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

Classify	each	region

Bbox
Bounding	box	regression:
Predict	“transform”	to correct the	
RoI: 4	numbers	(tx,	ty,	th,	tw)Bbox

Bbox
Problem:	Very	slow!	
Need	to	do	~2k	forward	
passes	for	each	image!
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R-CNN:	Region-Based	CNN

Lecture	15	- 60

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class

Class
Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	
semantic	segmentation”,	CVPR	2014.
Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

Classify	each	region

Bbox
Bounding	box	regression:
Predict	“transform”	to correct the	
RoI: 4	numbers	(tx,	ty,	th,	tw)Bbox

Bbox
Problem:	Very	slow!	
Need	to	do	~2k	forward	
passes	for	each	image!

Solution: Run	CNN	
*before*	warping!
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Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow”	R-CNN
Process	each	region	

independently
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Fast	R-CNN

Lecture	15	- 62

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow”	R-CNN
Process	each	region	

independently

Input	image
Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.
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Fast	R-CNN

Lecture	15	- 63

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow”	R-CNN
Process	each	region	

independently

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.
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Fast	R-CNN

Lecture	15	- 64

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow”	R-CNN
Process	each	region	

independently

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image	features

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.
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Fast	R-CNN

Lecture	15	- 65

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow”	R-CNN
Process	each	region	

independently

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image	features

Crop	+	Resize	features

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.
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Fast	R-CNN

Lecture	15	- 66

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow”	R-CNN
Process	each	region	

independently

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image	features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

CN
N

CN
N

CN
N



Justin	Johnson November	6,	2019

Fast	R-CNN

Lecture	15	- 67

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

ClassBbox
Bbox

Bbox

“Slow”	R-CNN
Process	each	region	

independently

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region
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Fast	R-CNN

Lecture	15	- 68

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region

Most	of	the	computation	
happens	in	backbone	
network;	this	saves	work	for	
overlapping	region	proposals

Per-Region	network	is	
relatively	lightweight
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Fast	R-CNN

Lecture	15	- 69

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region Example:

When	using	
AlexNet for	
detection,	five	
conv	layers	are	
used	for	
backbone	and	
two	FC	layers	are	
used	for	per-
region	network
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Input

Softmax

3x3 conv, 64

7x7 conv, 64, / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

..

.

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

PoolFast	R-CNN

Lecture	15	- 70

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region Example:

For	ResNet,	last	
stage	is	used	as	
per-region	
network;	the	rest	
of	the	network	is	
used	as	backbone
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Fast	R-CNN

Lecture	15	- 71

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features

Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

Girshick,	“Fast	R-CNN”,	ICCV	2015.	Figure	copyright	Ross	Girshick,	2015;	source.	Reproduced	with	permission.

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class

Category	and	box	
transform	per	region

How	to	crop	
features?
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Cropping	Features:	RoI Pool

Lecture	15	- 72

Input	Image
(e.g.	3	x	640	x	480)

Girshick,	“Fast	R-CNN”,	ICCV	2015.
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Cropping	Features:	RoI Pool

Lecture	15	- 73

Input	Image
(e.g.	3	x	640	x	480)

CNN

Girshick,	“Fast	R-CNN”,	ICCV	2015.

Image	features
(e.g.	512	x	20	x	15)
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Cropping	Features:	RoI Pool

Lecture	15	- 74

Input	Image
(e.g.	3	x	640	x	480)

CNN

Girshick,	“Fast	R-CNN”,	ICCV	2015.

Image	features
(e.g.	512	x	20	x	15)

Project	proposal	
onto	features
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Cropping	Features:	RoI Pool

Lecture	15	- 75

Input	Image
(e.g.	3	x	640	x	480)

CNN

Girshick,	“Fast	R-CNN”,	ICCV	2015.

Image	features
(e.g.	512	x	20	x	15)

Project	proposal	
onto	features

“Snap”	to	
grid	cells
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Cropping	Features:	RoI Pool

Lecture	15	- 76

Input	Image
(e.g.	3	x	640	x	480)

CNN

Girshick,	“Fast	R-CNN”,	ICCV	2015.

Image	features
(e.g.	512	x	20	x	15)

Project	proposal	
onto	features

“Snap”	to	
grid	cells

Divide	into	2x2	
grid	of	(roughly)	
equal	subregions
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Cropping	Features:	RoI Pool

Lecture	15	- 77

Input	Image
(e.g.	3	x	640	x	480)

CNN

Girshick,	“Fast	R-CNN”,	ICCV	2015.

Image	features
(e.g.	512	x	20	x	15)

Project	proposal	
onto	features

“Snap”	to	
grid	cells

Divide	into	2x2	
grid	of	(roughly)	
equal	subregions

Max-pool	within	
each	subregion

Region	features
(here	512	x	2	x	2;

In	practice	e.g 512	x	7	x	7)

Region	features	always	the	
same	size	even	if	input	

regions	have	different	sizes!
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Cropping	Features:	RoI Pool

Lecture	15	- 78

Input	Image
(e.g.	3	x	640	x	480)

CNN

Girshick,	“Fast	R-CNN”,	ICCV	2015.

Image	features
(e.g.	512	x	20	x	15)

Project	proposal	
onto	features

“Snap”	to	
grid	cells

Divide	into	2x2	
grid	of	(roughly)	
equal	subregions

Max-pool	within	
each	subregion

Region	features
(here	512	x	2	x	2;

In	practice	e.g 512	x	7	x	7)

Region	features	always	the	
same	size	even	if	input	

regions	have	different	sizes!
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Cropping	Features:	RoI Pool

Lecture	15	- 79

Input	Image
(e.g.	3	x	640	x	480)

CNN

Girshick,	“Fast	R-CNN”,	ICCV	2015.

Image	features
(e.g.	512	x	20	x	15)

Project	proposal	
onto	features

“Snap”	to	
grid	cells

Divide	into	2x2	
grid	of	(roughly)	
equal	subregions

Max-pool	within	
each	subregion

Region	features
(here	512	x	2	x	2;

In	practice	e.g 512	x	7	x	7)

Region	features	always	the	
same	size	even	if	input	

regions	have	different	sizes!
Problem:	Slight	misalignment	due	to	
snapping;	different-sized	subregions is	weird
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Cropping	Features:	RoI Align

Lecture	15	- 80

Input	Image
(e.g.	3	x	640	x	480)

CNN

Image	features
(e.g.	512	x	20	x	15)

Project	proposal	
onto	features

He	et	al,	“Mask	R-CNN”,	ICCV	2017

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)
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Cropping	Features:	RoI Align

Lecture	15	- 81

Input	Image
(e.g.	3	x	640	x	480)

CNN

Image	features
(e.g.	512	x	20	x	15)

Project	proposal	
onto	features

He	et	al,	“Mask	R-CNN”,	ICCV	2017

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation
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Cropping	Features:	RoI Align

Lecture	15	- 82

CNN

Project	proposal	
onto	features

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation

Feature	fxy for	point	(x,	y)	is	a	
linear	combination	of	features	
at	its	four	neighboring	grid	cells:

Input	Image
(e.g.	3	x	640	x	480)

Image	features
(e.g.	512	x	20	x	15)
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Cropping	Features:	RoI Align

Lecture	15	- 83

CNN

Project	proposal	
onto	features

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation

Feature	fxy for	point	(x,	y)	is	a	
linear	combination	of	features	
at	its	four	neighboring	grid	cells:

f6,6 f7,6

f6,5 f7,5

f6.5,5.8
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Cropping	Features:	RoI Align

Lecture	15	- 84

CNN

Project	proposal	
onto	features

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation

Feature	fxy for	point	(x,	y)	is	a	
linear	combination	of	features	
at	its	four	neighboring	grid	cells:

f6,6 f7,6

f6,5 f7,5

f6.5,5.8

f6.5,5.8 =	(f6,5	*	0.5	*	0.2)	+	(f7,5	*	0.5	*	0.2)
+	(f6,6	*	0.5	*	0.8)	+	(f7,6	*	0.5	*	0.8)		
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Cropping	Features:	RoI Align

Lecture	15	- 85

CNN

Project	proposal	
onto	features

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation

Feature	fxy for	point	(x,	y)	is	a	
linear	combination	of	features	
at	its	four	neighboring	grid	cells:

f6,6 f7,6

f6,5 f7,5

f6.5,5.8

f6.5,5.8 =	(f6,5 *	0.5 *	0.2)	+	(f7,5	*	0.5	*	0.2)
+	(f6,6	*	0.5	*	0.8)	+	(f7,6	*	0.5	*	0.8)		

0.5
0.8
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Cropping	Features:	RoI Align

Lecture	15	- 86

CNN

Project	proposal	
onto	features

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation

Feature	fxy for	point	(x,	y)	is	a	
linear	combination	of	features	
at	its	four	neighboring	grid	cells:

f6,6 f7,6

f6,5 f7,5

f6.5,5.8

f6.5,5.8 =	(f6,5	*	0.5	*	0.2)	+	(f7,5 *	0.5 *	0.2)
+	(f6,6	*	0.5	*	0.8)	+	(f7,6	*	0.5	*	0.8)		

0.5

0.8
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Cropping	Features:	RoI Align

Lecture	15	- 87

CNN

Project	proposal	
onto	features

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation

Feature	fxy for	point	(x,	y)	is	a	
linear	combination	of	features	
at	its	four	neighboring	grid	cells:

f6,6 f7,6

f6,5 f7,5

f6.5,5.8

f6.5,5.8 =	(f6,5	*	0.5	*	0.2)	+	(f7,5	*	0.5	*	0.2)
+	(f6,6 *	0.5 *	0.8)	+	(f7,6	*	0.5	*	0.8)		

0.50.2
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Cropping	Features:	RoI Align

Lecture	15	- 88

CNN

Project	proposal	
onto	features

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation

Feature	fxy for	point	(x,	y)	is	a	
linear	combination	of	features	
at	its	four	neighboring	grid	cells:

f6,6 f7,6

f6,5 f7,5

f6.5,5.8

f6.5,5.8 =	(f6,5	*	0.5	*	0.2)	+	(f7,5	*	0.5	*	0.2)
+	(f6,6	*	0.5	*	0.8)	+	(f7,6 *	0.5 *	0.8)		

0.5
0.2
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Cropping	Features:	RoI Align

Lecture	15	- 89

CNN

Project	proposal	
onto	features

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation

Feature	fxy for	point	(x,	y)	is	a	
linear	combination	of	features	
at	its	four	neighboring	grid	cells:

f6,6 f7,6

f6,5 f7,5

f6.5,5.8

This	is	differentiable!	Upstream	gradient	for	sampled	feature	will	
flow	backward	into	each	of	the	four	nearest-neighbor	gridpoints
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Cropping	Features:	RoI Align

Lecture	15	- 90

Input	Image
(e.g.	3	x	640	x	480)

CNN

Image	features
(e.g.	512	x	20	x	15)

Project	proposal	
onto	features

He	et	al,	“Mask	R-CNN”,	ICCV	2017

No	“snapping”!

Divide	into	equal-sized	subregions
(may	not	be	aligned	to	grid!)

Sample	features	at	
regularly-spaced	points	
in	each	subregion using	
bilinear	interpolation

After	sampling,	max-
pool	in	each	subregion

Region	features
(here	512	x	2	x	2;

In	practice	e.g 512	x	7	x	7)
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Fast	R-CNN	vs	“Slow”	R-CNN

Lecture	15	- 91

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features
Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class
Category	and	box	
transform	per	region

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast	R-CNN:	Apply	differentiable	
cropping	to	shared	image	features

“Slow”	R-CNN:	Apply	differentiable	
cropping	to	shared	image	features
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Fast	R-CNN	vs	“Slow”	R-CNN

Lecture	15	- 92

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	semantic	segmentation”,	CVPR	2014.
He	et	al,	“Spatial	pyramid	pooling	in	deep	convolutional	networks	for	visual	recognition”,	ECCV	2014
Girshick,	“Fast	R-CNN”,	ICCV	2015



Justin	Johnson November	6,	2019

Fast	R-CNN	vs	“Slow”	R-CNN

Lecture	15	- 93

Problem: Runtime	
dominated	by	
region	proposals!

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	semantic	segmentation”,	CVPR	2014.
He	et	al,	“Spatial	pyramid	pooling	in	deep	convolutional	networks	for	visual	recognition”,	ECCV	2014
Girshick,	“Fast	R-CNN”,	ICCV	2015
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Fast	R-CNN	vs	“Slow”	R-CNN

Lecture	15	- 94

Problem: Runtime	
dominated	by	
region	proposals!

Girshick et	al,	“Rich	feature	hierarchies	for	accurate	object	detection	and	semantic	segmentation”,	CVPR	2014.
He	et	al,	“Spatial	pyramid	pooling	in	deep	convolutional	networks	for	visual	recognition”,	ECCV	2014
Girshick,	“Fast	R-CNN”,	ICCV	2015

Recall:	Region	proposals	computed	by	
heuristic	”Selective	Search”	algorithm	on	
CPU	-- let’s	learn	them	with	a	CNN	instead!
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Ren	et	al,	“Faster	R-CNN:	Towards	Real-Time	Object	Detection	with	Region	Proposal	Networks”,	NIPS	2015
Figure	copyright	2015,	Ross	Girshick;	reproduced	with	permission

Insert	Region	Proposal	
Network	(RPN) to	predict	
proposals	from	features

Otherwise	same	as	Fast	R-CNN:	
Crop	features	for	each	
proposal,	classify	each	one

Faster R-CNN:	Learnable	Region	Proposals
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Region	Proposal	Network	(RPN)

Lecture	15	- 96

CNN

Input	Image
(e.g.	3	x	640	x	480) Image	features

(e.g.	512	x	20	x	15)

Run	backbone	CNN	to	get	
features	aligned	to	input	image



Justin	Johnson November	6,	2019

Region	Proposal	Network	(RPN)

Lecture	15	- 97

CNN

Input	Image
(e.g.	3	x	640	x	480) Image	features

(e.g.	512	x	20	x	15)

Imagine	an	anchor	box of	
fixed	size	at	each	point	in	

the	feature	mapRun	backbone	CNN	to	get	
features	aligned	to	input	image
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Region	Proposal	Network	(RPN)

Lecture	15	- 98

CNN

Input	Image
(e.g.	3	x	640	x	480) Image	features

(e.g.	512	x	20	x	15)

Imagine	an	anchor	box	of	
fixed	size	at	each	point	in	

the	feature	mapRun	backbone	CNN	to	get	
features	aligned	to	input	image

At	each	point,	predict	whether	
the	corresponding	anchor	
contains	an	object	(per-cell	
logistic	regression,	predict	
scores	with	conv	layer)

Conv

Anchor	is	an	
object?

1	x	20	x	15
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Region	Proposal	Network	(RPN)

Lecture	15	- 99

CNN

Input	Image
(e.g.	3	x	640	x	480) Image	features

(e.g.	512	x	20	x	15)

Imagine	an	anchor	box	of	
fixed	size	at	each	point	in	

the	feature	mapRun	backbone	CNN	to	get	
features	aligned	to	input	image

Anchor	is	an	
object?

1	x	20	x	15

For	positive	boxes,	also	predict	
a	box	transform	to	regress	

from	anchor	box	to	object	box

Conv
Box	transforms
4 x	20	x	15
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Region	Proposal	Network	(RPN)

Lecture	15	- 100

CNN

Input	Image
(e.g.	3	x	640	x	480) Image	features

(e.g.	512	x	20	x	15)

Problem:	Anchor	box	may	
have	the	wrong	size	/	shape
Solution:	Use	K different	

anchor	boxes	at	each	point!Run	backbone	CNN	to	get	
features	aligned	to	input	image

Anchor	is	an	
object?

K x	20	x	15

At	test	time:	sort	all	
K*20*15	boxes	by	their	

score,	and	take	the	top	~300	
as	our	region	proposals

Conv
Box	transforms
4K x	20	x	15
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Ren	et	al,	“Faster	R-CNN:	Towards	Real-Time	Object	Detection	with	Region	Proposal	Networks”,	NIPS	2015
Figure	copyright	2015,	Ross	Girshick;	reproduced	with	permission

Jointly	train	with	4	losses:

1. RPN	classification:	anchor	box	is	
object	/	not	an	object

2. RPN	regression:	predict	transform	
from	anchor	box	to	proposal	box

3. Object	classification:	classify	
proposals	as	background	/	object	
class

4. Object	regression:	predict	transform	
from	proposal	box	to	object	box

Faster R-CNN:	Learnable	Region	Proposals
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Faster R-CNN:	Learnable	Region	Proposals
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Faster R-CNN:	Learnable	Region	Proposals

Faster	R-CNN	is	a	
Two-stage	object	detector

First	stage:	Run	once	per	image
- Backbone	network
- Region	proposal	network

Second	stage:	Run	once	per	region
- Crop	features:	RoI pool	/	align
- Predict	object	class
- Prediction	bbox offset
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Faster R-CNN:	Learnable	Region	Proposals

Faster	R-CNN	is	a	
Two-stage	object	detector

First	stage:	Run	once	per	image
- Backbone	network
- Region	proposal	network

Second	stage:	Run	once	per	region
- Crop	features:	RoI pool	/	align
- Predict	object	class
- Prediction	bbox offset

Question:	Do	we	really	
need	the	second	stage?
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Single-Stage	Object	Detection

Lecture	15	- 105

CNN

Input	Image
(e.g.	3	x	640	x	480) Image	features

(e.g.	512	x	20	x	15)

RPN:	Classify	each	anchor	as	
object	/	not	object

Single-Stage	Detector:	Classify	
each	object	as	one	of	C	

categories	(or	background)
Run	backbone	CNN	to	get	
features	aligned	to	input	image

Anchor	category
(C+1)	x	K x	20	x	15

Conv
Box	transforms
4K x	20	x	15

Remember:	K	anchors	
at	each	position	in	
image	feature	map
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Single-Stage	Object	Detection

Lecture	15	- 106

CNN

Input	Image
(e.g.	3	x	640	x	480) Image	features

(e.g.	512	x	20	x	15)

RPN:	Classify	each	anchor	as	
object	/	not	object

Single-Stage	Detector:	Classify	
each	object	as	one	of	C	

categories	(or	background)
Run	backbone	CNN	to	get	
features	aligned	to	input	image

Anchor	category
(C+1)	x	K x	20	x	15

Conv
Box	transforms
C x	4K x	20	x	15

Sometimes	use	category-
specific	regression:	Predict	
different	box	transforms	for	
each	categoryRedmon et	al,	“You	Only	Look	Once:	 Unified,	Real-Time	Object	Detection”,	CVPR	2016

Liu	et	al,	“SSD:	Single-Shot	MultiBox Detector”,	ECCV	2016
Lin	et	al,	“Focal	Loss	for	Dense	Object	Detection”,	ICCV	2017
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Object	Detection:	Lots	of	variables!

Lecture	15	- 107

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017
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Object	Detection:	Lots	of	variables!

Lecture	15	- 108

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

Takeaways:
- Two	stage	method	(Faster	

R-CNN)	get	the	best	
accuracy,	but	are	slower
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Object	Detection:	Lots	of	variables!

Lecture	15	- 109

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

Takeaways:
- Two	stage	method	(Faster	

R-CNN)	get	the	best	
accuracy,	but	are	slower

- Single-stage	methods	
(SSD)	are	much	faster,	but	
don’t	perform	as	well
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Object	Detection:	Lots	of	variables!

Lecture	15	- 110

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

Takeaways:
- Two	stage	method	(Faster	

R-CNN)	get	the	best	
accuracy,	but	are	slower

- Single-stage	methods	
(SSD)	are	much	faster,	but	
don’t	perform	as	well

- Bigger	backbones	improve	
performance,	but	are	
slower
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Object	Detection:	Lots	of	variables!

Lecture	15	- 111

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

Takeaways:
- Two	stage	method	(Faster	

R-CNN)	get	the	best	
accuracy,	but	are	slower

- Single-stage	methods	
(SSD)	are	much	faster,	but	
don’t	perform	as	well

- Bigger	backbones	improve	
performance,	but	are	
slower

- Diminishing	returns	for	
slower	methods
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Object	Detection:	Lots	of	variables!

Lecture	15	- 112

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

These	results	are	a	few	years	old	… since	
then	GPUs	have	gotten	faster,	and	we’ve	
improved	performance	with	many	tricks:

Wu	et	al,	Detectron2,	GitHub	2019
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Object	Detection:	Lots	of	variables!

Lecture	15	- 113

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

Faster	R-CNN	
w/ResNet-101-FPN,	
longer	training
(63ms,	42.0	mAP)

These	results	are	a	few	years	old	… since	
then	GPUs	have	gotten	faster,	and	we’ve	
improved	performance	with	many	tricks:
- Train	longer!
- Multiscale	backbone:	Feature	Pyramid	

Networks

Wu	et	al,	Detectron2,	GitHub	2019
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Object	Detection:	Lots	of	variables!

Lecture	15	- 114

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

Faster	R-CNN	
w/ResNet-101-FPN,	
longer	training
(63ms,	42.0	mAP)

Faster	R-CNN	
w/ResNeXt-101-
FPN,	longer	training
(120ms,	43.0	mAP)

These	results	are	a	few	years	old	… since	
then	GPUs	have	gotten	faster,	and	we’ve	
improved	performance	with	many	tricks:
- Train	longer!
- Multiscale	backbone:	Feature	Pyramid	

Networks
- Better	backbone:	ResNeXt

Wu	et	al,	Detectron2,	GitHub	2019
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Object	Detection:	Lots	of	variables!

Lecture	15	- 115

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

RetinaNet (SSD-like)	
w/ResNet-101
(80ms,	39.9	mAP)

These	results	are	a	few	years	old	… since	
then	GPUs	have	gotten	faster,	and	we’ve	
improved	performance	with	many	tricks:
- Train	longer!
- Multiscale	backbone:	Feature	Pyramid	

Networks
- Better	backbone:	ResNeXt
- Single-Stage	methods	have	improved

Wu	et	al,	Detectron2,	GitHub	2019
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Object	Detection:	Lots	of	variables!

Lecture	15	- 116

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

Mask	R-CNN	
w/RexNeXt-152
(281	ms,	49.3	mAP)

These	results	are	a	few	years	old	… since	
then	GPUs	have	gotten	faster,	and	we’ve	
improved	performance	with	many	tricks:
- Train	longer!
- Multiscale	backbone:	Feature	Pyramid	

Networks
- Better	backbone:	ResNeXt
- Single-Stage	methods	have	improved
- Very	big	models	work	better

Wu	et	al,	Detectron2,	GitHub	2019
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Object	Detection:	Lots	of	variables!

Lecture	15	- 117

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

These	results	are	a	few	years	old	… since	
then	GPUs	have	gotten	faster,	and	we’ve	
improved	performance	with	many	tricks:
- Train	longer!
- Multiscale	backbone:	Feature	Pyramid	

Networks
- Better	backbone:	ResNeXt
- Single-Stage	methods	have	improved
- Very	big	models	work	better
- Test-time	augmentation	pushes	

numbers	up

Mask	R-CNN	
w/RexNeXt-152
(281	ms,	49.3	mAP)

Mask	R-CNN	w/RexNeXt-152
+Test-time	augmentation
(?	ms,	51.4	mAP)

Wu	et	al,	Detectron2,	GitHub	2019
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Object	Detection:	Lots	of	variables!

Lecture	15	- 118

Huang	et	al,	“Speed/accuracy	trade-offs	for	modern	convolutional	object detectors”,	CVPR	2017

These	results	are	a	few	years	old	… since	
then	GPUs	have	gotten	faster,	and	we’ve	
improved	performance	with	many	tricks:
- Train	longer!
- Multiscale	backbone:	Feature	Pyramid	

Networks
- Better	backbone:	ResNeXt
- Single-Stage	methods	have	improved
- Very	big	models	work	better
- Test-time	augmentation	pushes	

numbers	up
- Big	ensembles,	more	data,	etc

Mask	R-CNN	
w/RexNeXt-152
(281	ms,	49.3	mAP)

Current	leaderboard	
winner:	55	mAP
Method	???
Runtime	???

https://competitions.codalab.org/competitions/20794#results
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Object	Detection:	Open-Source	Code

Lecture	15	- 119

Object	detection	is	hard!	Don’t	implement	it	yourself
(Unless	you	are	working	on	A5…)

TensorFlow Detection	API:	
https://github.com/tensorflow/models/tree/master/research/object_detection
Faster	R-CNN,	SSD,	RFCN,	Mask	R-CNN

Detectron2	(PyTorch):
https://github.com/facebookresearch/detectron2
Fast	/	Faster	/	Mask	R-CNN,	RetinaNet
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Summary

Lecture	15	- 120

Input	
image

Conv
Net

Conv
Net

Conv
Net

Class
Class

Class

Warped	image	
regions	(224x224)

Regions	of	
Interest	(RoI)	
from	a	proposal	
method (~2k)

Forward	each	
region	through	
ConvNet

Bbox
Bbox

Bbox

Fast	R-CNN:	Apply	
differentiable	
cropping	to	shared	
image	features

“Slow”	R-CNN:	Run	
CNN	independently	
for	each	region

Faster	R-CNN:	
Compute	proposals	
with	CNN

ConvNet

Input	image

Run	whole	image
through	ConvNet

Image features
Crop	+	Resize	features

Per-Region Network

“Backbone”	
network:	
AlexNet,	VGG,	
ResNet,	etc

Regions	of
Interest	(RoIs)
from	a	proposal
method

CN
N

CN
N

CN
N

Bbox

Class

Bbox

Class

Bbox

Class
Category	and	box	
transform	per	region

Single-Stage:
Fully	convolutional	
detector
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Next	Time:
More	localization	methods:

Segmentation,	Keypoint Estimation

Lecture	15	- 121


