Lecture 13:
Attention

Justin Johnson Lecture 13 -1 October 23, 2019



Midterm

Grades will be out in ~1 week
Please do not discuss midterm questions on Piazza

Someone left a waterbottle in exam room — Post on Piazza if it is yours
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Assignment 4

A4 will be released today or tomorrow
Due 2 weeks from the time it is released

Will cover:

- PyTorch autograd

- Residual networks

- Recurrent neural networks
- Attention

- Feature visualization

- Style transfer

- Adversarial examples
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Last Time: Recurrent Neural Networks

one to one one to many many to one many to many many to many
f tt ! Pt 1 tt 1
! ! ot Pt tt
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Sequence-to-Sequence with RNNs

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Y

Encoder: h, = f,(x,, hi,)

h, h, * hj h,
X1 X5 X3 X4
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Y

From final hidden state predict:

Encoder: h, = fy(x, h,,) Initial decoder state s,
Context vector c (often c=h;)

h; > h, " hs " hy " So
X4 X5 X3 X4 " C
we are eating bread

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Justin Johnson Lecture 13 -6 October 23, 2019



Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(yi.1, he1, €)
Output: Sequenceyy, ..., Y

estamos
From final hidden state predict:
Encoder: h, = f,y(x,, h.4) Initial decoder state s, Y1
Context vector c (often c=h;) ‘
hy " h, " hs " hy > So > S,
Xl Xz X3 X4 > C yo
we are eating  bread [START]

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(yi.1, he1, €)
Output: Sequenceyy, ..., Y

estamos comiendo

From final hidden state predict:

Encoder: h, = f,,(x,, h,,) Initial decoder state s, Y1 Y2
Context vector c (often c=h,) ‘ ‘

h; > h, " hs " hy " So "S5 T S

I S

X1 X, X3 X4 " C Yo Y1

we are eating bread [START] estamos

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(yi.1, he1, €)
Output: Sequenceyy, ..., Y

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fy(x, h,,) Initial decoder state s, Y1 Y2 ¥s Ya
Context vector c (often c=h;) ‘ ‘ ‘ ‘
h; > h, " hs " hy " So *S1 T S2 T T S3 T T %
T (R
X1 X5 X3 Xq " C Yo Y1 Y2 Y3
we are eating bread [START] estamos comiendo pan

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014
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Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(yi.1, he1, €)
Output: Sequenceyy, ..., Y

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fy(x, h,,) Initial decoder state s, Y1 Y2 Ys Ya
Context vector c (often c=h;) ‘ ‘ ‘ ‘
h; > h, " hs " hy " So *S1 T S2 T T S3 T T %
T (R
X1 X, X3 X4 " C Yo Y1 Y> Y3
we are eating bread Problem: Input sequence [START] estamos comiendo pan

bottlenecked through fixed-
sized vector. What if T=1000?

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014

Justin Johnson Lecture 13 - 10 October 23, 2019



Sequence-to-Sequence with RNNs

Input: Sequence X, ... X7 Decoder: s; = gy(yi.1, he1, €)
Output: Sequenceyy, ..., Y

estamos comiendo pan [STOP]
From final hidden state predict:
Encoder: h, = fy(x, h,,) Initial decoder state s, Y1 Y2 Ys Ya
Context vector c (often c=h;) ‘ ‘ ‘ ‘
h; > h, " hs " hy " So *S1 T S2 T T S3 T T %
T (R
X1 X, X3 X4 " C Yo Y1 Y> Y3
we are eating bread Problem: Input sequence [START] estamos comiendo pan

bottlenecked through fixed-
sized vector. What if T=1000?

Sutskever et al, “Sequence to sequence learning with neural networks”, NeurIPS 2014
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Sequence-to-Sequence with RNNs and Attention

Input: Sequence Xy, ... Xt
Output: Sequenceyy, ..., Y

From final hidden state:

Encoder: h, = fy,(x;, hy4) Initial decoder state s,

h; > h, " hs " hy " So
X1 X5 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€t = Fare(Se.1, i) (for is an MLP)

From final hidden state:

(911T e1z1 e13T €14 | Initial decoder state s,
I .

h; > h, " hs " hy " So

X1 X5 X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€t = Fare(Se.1, i) (for is an MLP)

dig d1y di3 dig
1 1 = 1 1 Normalize alignment scores
5 150 maxT f . _ to get attention weights
From final hidden state: _
. O<a;i<1l 2a,=0
€11 €12 €13 €14 | Initial decoder state s,
O 1 A | |
h; > h, " hs " hy " So
X1 X X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequenc
X X X X
4 4 4 4
diy di /313 dig
t t t t
soﬂ!max
1 1 1 | From final hidden state:
(911T e121 e13T \ €14 | Initial decoder state s,
I \ \ 1
hl hz i h3 h4 > SO
X1 X5 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

estamos

Y1

Yo

e-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€t = Fare(Se.1, i) (for is an MLP)

Normalize alignment scores
to get attention weights
O<a;;<1 2a,=0

Compute context vector as linear
combination of hidden states
Ci = Ziat,ihi

Use context vector in
decoder: s, = 8y(Yr.1, St-1, Ct)

Justin Johnson

Lecture 13 - 15

October 23, 2019



Sequenc
X X X X
4 4 4 4
diy di /313 dig
t t t t
soﬂ!max
1 1 1 1 From final hidden state:
(911T e1z1 e13T \ €14 | Initial decoder state s,
I \ \ 1
hl hz i h3 h4 > SO
X1 X5 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

e-to-Sequence with RNNs and Attention

Compute (scalar) alignment scores
€t = Fare(Se.1, i) (for is an MLP)

Normalize alignment scores
to get attention weights
O<a;;<1 2a,=0

Compute context vector as linear
combination of hidden states
Ci = Ziat,ihi

Justin Johnson
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Sequence-to-Sequence with RNNs and Attention

[ [ [ .
X X X X Compute (scalar) alignment scores
4 4 4 4 .
3 5 5 - €i = Fau(Se.1, N (for is an MLP)
111 %2 ;3 %4 estamos ) )
ﬂl Normalize alignment scores
soffmax i :
to get attention weights
t 1 | | From final hidden state: Y1 0 <ga <1 Sa, = Og
€11 \ €12 €13 \ €14 Initial decoder state s, v o
I T 1 T 1 : ‘ Compute context vector as linear
H \ " \ o \ " " combination of hidden states
> . > > S S
: ? > i 0 ' Ce = 2aih
] ‘ ‘ ‘ Intuition: Context vector ‘ ‘ Use context vector in
y y y y attends to the relevant e ||y decoder: s; = gy(Yr.1, St1, €1
' 2 > i part of the input sequence ' 0

“estamos” = “we are”
so maybe a;;=a,,=0.45,
a13=a1,=0.05

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

we are eating bread
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Sequence-to-Sequence with RNNs Repeat: Use s, to compute

new context vector c,

X b ¢ X P ¢

N I\ N I\
a121 a;z af a%“ estamos

soffmax

i 1 \ i i Ve
€71 \ €77 €53 \ €24 ! T

1 1 1 +

\r A\ !
hl hz o h3 h4 SO Sl

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Att

ention

X X X X
4 4 4 4
dy1 ChY) /323 dyg .
t t % f estamos comiendo
f 150 maxT 0 Repeat: Use s, to
e e e o Y1 Y2 | compute new context
it £l . 1 ‘ vector ¢,

I . 1N,

X1 X3 X3 Xy Ci1 || Yo C Y1

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Use c, to compute s,, v,
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Sequence-to-

<

X X X X
4 4 4 4
Gl M sl A il M &
sofimax
t f | |
€21 \ €22 €3 €24 ,
r 3 S S « +
h, \ h, > sy > h, > So
] ‘ ‘ ‘ Intuition: Context vector
attends to the relevant
X1 X2 X3 X4 part of the input sequence
“comiendo” = “eating”
we are eating bread

estamos

Sequence with RNNs and Attention

comiendo

Repeat: Use s, to
Y2 compute new context

so maybe a,;=a,,=0.05,
a,»,=0.1, a,3=0.8

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Ci1 1| Yo

[START]

‘ vector c,

|

Use c, to compute s,, v,

C 1 Y1

estamos

Justin Johnson
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Sequence-to-Sequence with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector estamos comiendo pan [STOP]

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

Y1 Y> Y3 Ya
h, > h, * hj h, So S — > S — > 53 — 5,
X1 Xy X3 X4 Ci | Yo C || Y1 C3 | Y2 Cs || Y3
we are eating bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French 2 g E o )
o (- 8 5 (N -8
translation é’%ggg’ﬁg@%s?% v
L
Input: “The agreement on the accord
sur
European Economic Area was la
signed in August 1992” zone
économique
européenne
Output: “l'accord sur la zone a
, . , été
économique européenne a signé
été signé en ao(t 1992.” en

ao(t
1992

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French g : §
o Q o =
translation o ° 5
© il wl

Input: “The agreement on the Diagonal attention means  Jaccord

. words correspond in order
European Economic Area was

signed in August 1992

zone
économique
européenne

Output: “L'accord sur la zone
économique européenne a
été signé en aout 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French 2 5 i
. @ C
translation 2 25 8
© W w <
Input: “The agreement on the Diagonal attention means accord
words correspond in order
was
signed in August 1992” zone
économique
européenne
Output: “L'accord sur la
a

été signé en aout 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

Visualize attention weights a ;

Example: English to French 2 5 i
. @ C
translation 2 ° 5
© i
Input: “The agreement on the Diagonal attention means accord
words correspond in order
was
signed in August 1992 zone
économique
européenne
Output: “L'accord sur la
3 Verb conjugation

été signé en aolt 1992

Diagonal attention means
words correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Sequence-to-Sequence with RNNs and Attention

The decoder doesn’t use the fact that
h, form an ordered sequence — it just
treats them as an unordered set {h;}

estamos comiendo pan [STOP]
Can use similar architecture given any
. . | Y1 Y2 Y3 Ya
set of input hidden vectors {h}!
h, > h, * hj * h, > S, S — > S — > 53 — 5,
X1 X5 X3 Xq Ci | Yo G| Y1 G|l Y2 Cs| Y3
we are eating bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
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Image Captioning with RNNs and Attention

CNN hy1 | hyy|hys > So

Use a CNN to compute a
grid of features for an image

Cat image is free to use under the Pixabay License

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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https://pixabay.com/photos/cat-young-animal-curious-wildcat-2083492/
https://pixabay.com/service/license/

Image Captioning with RNNs and Attention

Alignment scores
et,i,j - fatt(st—ll h|,J) €111 €112 €113
€121 | €122 | €123

€131 | €132 | €133

CNN hy1 | hyy|hys > So

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights

et,i,j - fatt(st—ll h|,J) €111 €112 | €113 111 | 9,12 | 9113

softmax

at L= SOftmaX(et,,) €121 €122 €123 T A1 122 123

2°7°

€131 €132 €133 131 | 9132 | 9133
h 1,1 h 1,2 h 1,3
CNN hy1 | hyy|hys > So
h 3,1 h 3,2 h 3,3

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights
et |,J = fatt(st 1, h,J) €111 | €112 | €113 111  A1,12 9113
softmax
at, e - SOftmaX(et ) €121 €122 €123 T > Q121 Q127 9123
Ct = ZI,Jat I,Jhi,j €131 €132 €133 131 | 9132 | 9133
h 1,1 h 1,2 h 1,3

CNN hy1|hys | hys

v
%)
o

<
«

) 4
Q)
[y

Use a CNN to compute a
grid of features for an image

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights
et |,J = fatt(st 12 h,J) €111 | €112 €113 9111 9112 9113
softmax
at, L SOftmaX(et ) €121 €122 €123 T d121 3122 3123 cat
Ct = ZI,Jat I,Jhi,j €131 €132 €133 d131 9132 9133
1 Y1
hia | hiz h\ [
CNN hy1 | hyy|hys > So
hss [N | hss |
Na
Use a CNN to compute a O— ¢ || Yo

grid of features for an image

[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Ceij = fatt(Se.1, h',j)

a; .. = softmax(e; . .) cat
Ce= 2,,ijNi
Y1
hl 1 hl 2 h1,3 ‘
CNN h2,1 hz,z h2,3 > So S1
hi, | hs; | hss \ ‘ ‘
Use a CNN to compute a C1 | Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores

et I,J = fatt(st 1, h,J) €11 | €212 (€213
at’ - - SOftmaX(et ) €21 | €222 | €223 cat
Ct - ZI’Jat |,_]hi,j €231 | €232 €233
! Y1
hii|hyy | hys ‘
CNN hy1 | hyp | hys > So S1
hs, | hss  hss \ ‘ ‘
Use a CNN to compute a C1 | Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights
et |,J = fatt(st 1) h,J) €11 €212 | €213 11 9212 3213
ft
at - SOftmaX(et ) €221 | €222 | €223 m: 21 | 9222 | 223 cat
Ct — ZI’Jat |,_]hi,j €31 | €232 | €233 331 dz32 | 4233
! Y1
hl 1 hl 2 h1,3 ‘
CNN h2,1 hz,z h2,3 > So S1
s | sz | hss o
Use a CNN to compute a C1 | Yo
grid of features for an image
[START]

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights
et N = fatt(st 1, h,]) €11 | €212 | €213 11 | 3212 | 213
a;.. = softmax(e;..) e ew e T as as cat
Ct — zl,jat I,jhi,j S | Gosn | Boge Bnsa Bnza Eans

! ‘\ Y1

hii|hyo | hys \ ‘

CNN hy1 | hyp | hys

So S1
h3,1 h3,2 h3,3 \ ‘ ‘

Use a CNN to compute a Ci | Yo!| | G
grid of features for an image f

[START]

Ve
U

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

Alignment scores Attention weights
et |;J = fatt(st 1, h,J) €11 €12 €13 11 9212 9213
ft ceas
at - SOftmaX(et ) €21 €22 €23 m: 22,1 | 22 223 cat Slthng
Ct = ZI,Jat |;Jhi;j €31 | €32 €233 331 | 3232 | 233 y y
1 \ 1 2
hii|hyo | hys \ ‘ ‘
CNN h2,1 hz,z h2,3 So S1 S
N33 P32 s \ ‘ ‘ ‘ ‘
Use a CNN to compute a Yo| |G| V1
grid of features for an image f
[START] cat
O
g

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Justin Johnson
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Image Captioning with RNNs and Attention

Each timestep of decoder

e...=f..(s.. h:. :
t,i) aft( -1 'J) uses a different context

cat sitting outside [STOP]

A, = softmax(e;..)  yector that looks at different
C= Z,Jat I,jhi,j parts of the input image
Y1 Y> Y3 Ys
hll I"112 I"113 ‘ ‘ ‘ ‘
CNN hy1 | hyy|hys > Sg S ——> S, —> S, —> 5,
Use a CNN to compute a Ci 1/ Yo| |G| Y1 |G| VY2 Ca || Y3
grid of features for an image u $
[START] cat sitting outside

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

bird flying over body of water

s o[ v]wlv

~71%

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Image Captioning with RNNs and Attention

A dog is standing on a hardwood floor. A stop sign is on a road with a
- mountain in the background.

—-

A group of people sitting on a boat A giraffe standing in a forest with
in the water. trees in the background.

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
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Human Vision: Fovea

Light enters eye

Anterior chamber

(aqueous humour)

Posterior chamber )
Ins

Ciliary

body

N\ Choroid |

Suspersory
ligament
of lens

Sclera

Retina A
detects light \\ 4
el Reira

vessels

Optic disc

Optic nerve

Lecture 13 - 40
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Acuity graph is licensed under CC A-SA 3.0 Unported
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https://commons.wikimedia.org/wiki/File:AcuityHumanEye.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Human Vision: Fovea

Light enters eye

Anterior chamber
(aqueous humour)
Postenor chamber

Suspersory
ligament
of lers

Retina
detects light \

Retinal /
blood
vessels

‘ Optic nerve Optic disc

Eye image is licensed under CC A-SA 3.0 Unported (added black arrow, green arc, and white circle)

Justin Johnson

The fovea is a tiny region of the
retina that can see with high acuity

1.0

10.8

10.6

10.4

0.2

10.0

<«— Fovea

Blind Spot\

60° 40° 20°10° 0°10°20° 40°
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https://en.wikipedia.org/wiki/File:Schematic_diagram_of_the_human_eye_en.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:AcuityHumanEye.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Human Vision: Saccades

Human eyes are constantly moving so we don’t notice

Saccade video is licensed under CC A-SA 4.0 International (no changes made)

The fovea is a tiny region of the
retina that can see with high acuity

1.0

10.8

10.6

10.4

0.2

10.0

Blind Spot\

<«— Fovea

60°

40°

20°10° 0°10°20° 40°

Acuity graph is licensed under CC A-SA 3.0 Unported (No changes made)

Justin Johnson
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https://commons.wikimedia.org/wiki/File:AcuityHumanEye.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://en.wikipedia.org/wiki/File:This_shows_a_recording_of_the_eye_movements_of_a_participant_looking_freely_at_a_picture.webm
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Image Captioning with RNNs and Attention

. bird flying over body of water
¥/
) . & . .
Attention weights at each ﬁ

timestep kind of like
saccades of human eye

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015 Saccade video sed under CC A-SA 4.0 International (no changes made)
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https://en.wikipedia.org/wiki/File:This_shows_a_recording_of_the_eye_movements_of_a_participant_looking_freely_at_a_picture.webm
https://creativecommons.org/licenses/by-sa/4.0/deed.en

X, Attend, and Y

“Show, attend, and tell” (Xu et al, ICML 2015)
Look at image, attend to image regions, produce question

“Ask, attend, and answer” (Xu and Saenko, ECCV 2016)
“Show, ask, attend, and answer” (Kazemi and Elqursh, 2017)
Read text of question, attend to image regions, produce answer

“Listen, attend, and spell” (Chan et al, ICASSP 2016)
Process raw audio, attend to audio regions while producing text

“Listen, attend, and walk” (Mei et al, AAAI 2016)
Process text, attend to text regions, output navigation commands

“Show, attend, and interact” (Qureshi et al, ICRA 2017)
Process image, attend to image regions, output robot control commands

“Show, attend, and read” (Li et al, AAAI 2019)
Process image, attend to image regions, output text
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Att ti I— Alignment scores Attention weights

e n O n aye r et,i,j = fatt(st-l’ hi,j) €11 | €212 | €213 Bnag | Bana | Banz
at’:’: = SOftmaX(etl') €221 | €222 | €223 m( 221 | 3222 | 3223 seagull
C = H a H h H €31 | €232 | €233 3231 | 232 | A233

Inputs: £ 21720 S v

Query vector: g (Shape: Dg)
Input vectors: X (Shape: Ny x Dy)

TET - ‘ CNN | | hyi|hy, | by 4 J <
Similarity function: f_; e gl ] s 0 1
haa | haz | has S ] ]
I G| Yo |G
f
[START]
O

Computation:

Similarities: e (Shape: Ny) e, =f..(d, X;)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.aX, (Shape: Dy)
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Alignment scores Attention weights

Attention Layer e fudsen M) ol ol

Elt,i,l SOftl Y |aX( et,:,:) €221 | €222 | €223 —PSOftmaX 221 | 3222 | A223 seagull
C = H a H h H €31 | €37 €33 31 332 | 33
|ng : t Zl,j t,i,j' i, 31| €232 | €, 31 3232 | A3,

Query vector: g (Shape: Dg)
Input vectors: X (Shape: Ny x Dg)

e er . . ‘ CNN | | hyy|hyy | hys - g > s,
Similarity function:[dot product v il Bt S i i
sz | haz | s o]
I G| Yo| |G

)

[START]
Computation:
Similarities: e (Shape: Ny) |e;=q - X, Changes:
Attention weights: a = softmax{e] (Shape: Ny) - Use dot product for similarity

Output vector: y = >.aX, (Shape: Dy)
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Att ti I— Alignment scores Attention weights

e n O n aye r et,i,j = fatt(st-l’ hi,j) €11 | €212 | €213 Bnag | Bana | Banz
at’:’: = SOftmaX(etl') €221 | €222 | €223 m( 221 | 3222 | 3223 seagull
C = H a H h H €31 | €232 | €233 3231 | 232 | A233

Inputs: £ 21720 S v

Query vector: g (Shape: Dg)
Input vectors: X (Shape: Ny x Dq)

‘ hot | haa | has > 5o - s,
Similarity function:|scaled dot product \/ N R i i
s sy | hss ~ | ]
I G| Yo| |G
)
[START]
Computation:
Similarities: e (Shape: Ny) e, =q- Xi|/ sqrt(Dg) Changes:
Attention weights: a = softmax(e) (Shape: Ny) - Use scaled dot product for similarity

Output vector: y = >.aX, (Shape: Dy)
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Atte n ti O n La e r Alignment scores Attention weights
y et,|,] = att(st_]_; h|,J) €11 | €212 | €213 11 | 3212 | 3213
at,:,: = SOftmaX(etl') €21 €22 €23 ima: 21 | 322  A223 SeagU”
C = H a H h H €31 | €232 | €233 3231 | 232 | A233
Inputs: £ 21720 S v
Query vector: g (Shape: Dg) het | hes [hes \ |
Input vectors: X (Shape: Ny x D
P ( P X Q) CNN hyt | hyy|hys > So g

Similarity function:|scaled dot product

Large similarities will cause softmax to

saturate and give vanishing gradients ] allvel |o
Recalla-b=|a||b]| cos(angle) f

Suppose that a and b are constant vectors of [START]
dimension D O

Then |a] = (5,a2)¥2= a sqrt(D)

Computation:

Similarities: e (Shape: Ny) e, =q- Xi|/ sqrt(Dg) Changes:

Attention weights: a = softmax(e) (Shape: Ny) - Use scaled dot product for similarity

Output vector: y = >.aX, (Shape: Dy)
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* Alignment scores Attention weights
Attention Layer T I

€11 €12 €13 @11 @12 | A3
at’:’: = SOftmaX(etl') €21 €222 €23 m( 221 | 22 | A3 SeagU”
C = z a H h H €31 | €37 €33 3231 | 3232 | 3233
Inputs: tSTLITY b T~ Vi

Query vectors:|Q (Shape: Ny x Dg)
Input vectors: X (Shape: Ny x Dg)

‘ \/ CNN hyt | hyy|hys > So g

I Ci || Yo
|

[START]
Computation:
Similarities: E = OX" (Shape: Nq x Ny) E;; = Q; - X;/ sqrt(Dg) Changes:
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny) - Use dot product for similarity
Output vectors: Y = AX (Shape: Ng x Dy) Y; = 3A; X - Multiple query vectors
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Att e n ti O n I—a e r Alignment scores Attention weights
y et,|,] = att(st.]_) h |,J) €11 | €12 €213 11 A212 | 213
at’:’: = SOftmaX(etl') €221 | €222 | €223 m( 221 | 3222 | 3223 seagull
C = H a H h H €31 | €232 | €233 3231 | 232 | A233
Inputs: £ 21720 S v

Query vectors: O (Shape: Ny x Dg)
Input vectors: X (Shape: Ny x Dy)

i | CNN | oy |hy; | has - 5, -
Key matrix: W, (Shape: Dy x Dg) e a|haz | by s s

Value matrix: W, (Shape: Dy x Dy) 2 | hs,
I G| Yo
f

[START]
Computation: O
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = QK" (Shape: Nq x Ny) E;; = Q; - K,/ sqrt(Dq) Changes:
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny) - Use dot product for similarity
Output vectors: Y = AV (Shape: Nq x Dy) Y, = 3 A}V, - Multiple query vectors

- Separate and value
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Attention Layer

Inputs:

Query vectors: O (Shape: Ny x Dg)
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Computation: X4
Key vectors: (. = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D) X,
Similarities: E = (Shape: Nq x Ny) E;; = Q; - K,/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) X3

Output vectors: Y = AV (Shape: Nq x Dy) Y, = 3 A}V,
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Attention Layer

Inputs:

Query vectors: O (Shape: Ny x Dg)
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Computation: X, ™ K;
Key vectors: (. = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D) X, ™ K,
Similarities: E = (Shape: Nq x Ny) E;; = Q; - K,/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) X3 ™ K3

Output vectors: Y = AV (Shape: Nq x Dy) Y, = 3 A}V,
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Attention Layer

Inputs:

Query vectors: O (Shape: Ny x Dg)
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Computation: Xy ™ Ky = By E;q Es, Esq
Key vectors: (. = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x D) X, ™ Ky, ™ Ep) E,» Es» Es
Similarities: E = (Shape: Nq x Ny) E;; = Q; - K,/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) X3 1 K3 — B3| Bz Esz | Eu3
Output vectors: Y = AV (Shape: Nq x Dy) Y, = 3 A}V, I t t {
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Attention Layer

Inputs:
Query vectors: O (Shape: Ng x D) A Ayt A Agg

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Softmax( 1)
Computation: Xy ™ Ky = By E;q Es, Esq
Key vectors: (. = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) X, ™ Ky, ™ Ep) E,» Es» Es
Similarities: E = (Shape: Nq x Ny) E;; = Q; - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) X3 1 K3 — B3| Bz Esz | Eu3
Output vectors: Y = AV (Shape: Nq x Dy) Y, = 3 A}V, I t t {
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Attention Layer

Inputs:
Query vectors: O (Shape: Ng x D) Vi ™ A A (Asp A
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

" V3 Az A3 Asz3 Ay 3
Softmax( 1)

Computation: 1 X ™ Ko ™ Ea | [ BEan| | Esa| | Bag
Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) X, ™ Ky, ™ Ep) E,» Es, Es>
Similarities: E = (Shape: Nq x Ny) E;; = Q; - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) X3 1 K3 — B3| Bz Esz | Eu3
Output vectors: Y = AV (Shape: Nq x Dy) Y, = 3 A}V, I t t t
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Attention Layer

Inputs:

Y, Y, Y, Y,

| I 1 |

Product(—), Sum(1t)

Query vectors: O (Shape: Ny x Dg)
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Computation:
Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = (Shape: Nq x Ny) E;; = Q; - K,/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Y, = 3 A}V,
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Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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Q| Q [Q
t t t
X1 X3 X3
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Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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Ks
Ky
Ky
Q| Q [Q
t t t
X1 X3 X3
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Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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Ks = Eis E;s Ess
Ky = Ep) E,, Es>
Ky = Eis E,, Es,
) 1) 1)
Q, Q, Q;
t ) )
X, | 1% | X
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Self-Attention Layer

One per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,

Justin Johnson Lecture 13 - 61

A1,3 AZ 3 A3,3
A1,2 A2,2 A3,2
A1,1 A2,1 Az,
t
Softmax(1T")
t
E1,3 E2 3 E3,3
E1,2 E2,2 E3,2
El,l E2,1 E3,1
t t t
Q, Q, Qs
t t t
X X, X3
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Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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A1,3 A2,3 A3,3
A1,2 A2,2 A3,2
Al,l A2,1 A3,1
t
Softmax(1T")
t
E1,3 E2 3 E3,3
E1,2 E2,2 E3,2
El,l E2,1 E3,1
t t t
Q, Q, Qs
t t )
X X, X3
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Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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Y, Y, Y3
4 4 1
Product(->), Sum(1)
t
A1,3 A2 3 A3,3
A1,2 A2,2 A3,2
A1,1 A2,1 Az,
t
Softmax(1T")
t
E1,3 E2 3 E3,3
E1,2 E2,2 E3,2
El,l E2,1 E3,1
t t t
Q, Q, Qs
t t )
X X, X3
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Self-Attention Layer TR —r1

Consider permuting R — !

the input vectors:
Inputs: > -
Input vectors: X (Shape: Ny x Dy) -
Key matrix: (Shape: Dy x Dg) ;
Value matrix: W, (Shape: Dy x D) Softmax( )
Query matrix: W, (Shape: Dy x Dg) t
Computation: —
Query vectors: O = XW,
Key vectors: [{ = X (Shape: Ny x Dg) —
Value Vectors: V = XW,, (Shape: Ny x Dy) t t t
Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq) ; ; ;
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X X X
Output vectors: Y = AV (Shape: Ny x D) Y; = 3,A;}V, & : 2
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Self-Attention Layer TR —r1

Consider permuting , — !

the input vectors:
Inputs: > —
Input vectors: X (Shape: Ny x Dy) Queries and Keys will be -
Key matrix: W, (Shape: Dy x D) the same, but permuted .
Value matrix: W,, (Shape: Dy x D) Softmax( 1)
Query matrix: W, (Shape: Dy x Dg) t

K, |1

Computation: K, +
Query vectors: O = XW,
Key vectors: I{ = X (Shape: Ny x Dg) Ks I T
Value Vectors: V = XW,, (Shape: Ny x Dy) t t t
Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq) %3 0;1 0;2
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X X X
Output vectors: Y = AV (Shape: Ny x D) Y; = 3,A;}V, & : 2
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Self-Attention Layer

Consider permuting
the input vectors:

Inputs:
Input vectors: X (Shape: Ny x Dy) Similarities will be the
Key matrix: W, (Shape: Dy x Dg) same, but permuted

Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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1 1 %

Product(->), Sum(1)

t

t

Softmax(1T")

Q) Q) &
t 1 f
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Self-Attention Layer TR —r1

Consider permuting
the input vectors:

Inputs: ” T Asp A A
Input vectors: X (Shape: Ny x Dy) Attention weights will be 1
Key matrix: W, (Shape: Dy x Dg) the same, but permuted Aas| [Ais Aas
Value matrix: W,, (Shape: D, x D) Softm];ax(/]\)
Query matrix: W, (Shape: Dy x Dg) t

Ky = Esp Eq) Es»
Computation: K, = Es E. E, 1
Query vectors: O = XW,
Key vectors: (. = X (Shape: Ny x Dg) Ks 1= B3 By Eas
Value Vectors: V = XW,, (Shape: Ny x Dy) t t t
Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq) ?3 0;1 Ci*z
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X X X
Output vectors: Y = AV (Shape: Ny x D) Y; = 3,A;}V, & : 2
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Self-Attention Layer TR —r1

t
Consider permuting , iR
the input vectors: Uz As 2 A2 Az 2
Inputs: Vi T As 4 A11 Az
Input vectors: X (Shape: Ny x Dy) Values will be the
' Vs 1T Ass ) (Asl Ay
Key matrix: W, (Shape: Dy x Dq) same, but permuted : .
Value matrix: W, (Shape: Dy x Dy) Softmax(11)
Query matrix: W, (Shape: Dy x D) t
Ky = Esp Es» E,
Computation: K, | = Es, E, 4 E, |
Query vectors: O = XW,
Key vectors: K = XW, (Shape: Ny x Dq) Ks |= B33 Eis Eys
Value Vectors: V = XW,, (Shape: Ny x D) t t t
Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq) c%s 0;1 C%z
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X X X
Output vectors: Y = AV (Shape: Ny x Dy) Y; = YAV, 3 1 2
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Se |f_Atte ntl O n I_a ye r :Product(ég, Sum(’P;

t
Consider permutin
the input‘\)/ectors: : 1V |7 Az, A A2
Inputs: VL ™ A3,1 A1,1 A2,1
Input vectors: X (Shape: Ny x Dy) Outputs will be the Ve |—|la A A
Key matrix: (Shape: Dy x Dg) same, but permuted 3 3.3 ?3 2.3
Value matrix: W,, (Shape: Dy x D) Softmax(1)
Query matrix: \W, (Shape: Dy x Dg) t
Ky |7 Esp Ein Es»
Computation: K, |— Es, Ey s E, .
Query vectors: O = XW,
Key vectors: K = XW, (Shape: Ny x D) Ks |=|[Esa] [Eis Ey 3
Value Vectors: V = XW,, (Shape: Ny x Dy) t t t
Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq) ?3 0;1 C%Z
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X X X
Output vectors: Y = AV (Shape: Ny x D) Y; = 3,A;}V, & : 2
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Self-Attention Layer R

t

Consider permutin

the input‘\)/ectors: : V2 7 [ Asp Ax) Az
Inputs: Vi |7 As 4 A11 Az
Input vectors: X (Shape: Ny x Dy) Outputs will be the TV, |=I[a A A
Key matrix: W, (Shape: Dy x Dg) same, but permuted : 3.3 ;'3 23
Value matrix: W,, (Shape: Dy x D) _ . Softmax(T)
Query matrix: W, (Shape: Dy x Dg) Self‘aﬁentﬂon Iay?r > t

Permutation Equivariant K, — Es, E,, E,,

. f(s(x)) = s(f(x))

Computation: Ki = Esq B e
Query vectors: O = XW, Self-Attention layer works . |— [ E e e
Key vectors: [{ = X (Shape: Ny xDg)  on sets of vectors - 3.5 L3 2o
Value Vectors: V = XW,, (Shape: Ny x Dy) t t t
Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq) ?3 0;1 01‘2
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) X X X
Output vectors: Y = AV (Shape: Ny x D) Y; = 3,A;}V, & : 2
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Self-Attention Layer

Self attention doesn’t
“know” the order of the

Inputs: vectors it is processing!
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)

Value matrix: W,, (Shape: D, x D)

Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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Y, Y, Y3
4 4 1
Product(->), Sum(1)
t
A1,3 AZ 3 A3,3
A1,2 A2,2 A3,2
A1,1 A2,1 Az,
t
Softmax(1T")
t
E1,3 E2 3 E3,3
E1,2 E2,2 E3,2
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_ 1 $ 4 t
Self-Attention Layer —t
t

Self attention doesn’t

“know” the order of the Vs Ais Ays Ass
Inputs: vectors it is processing! V, — A1,2 A2,2 A3,2
Input vectors: X (Shape: Ny x Dy)

. Vi, |— A A A
Key matrix: W, (Shape: Dy x D) In Order_ to ma'fe_ . 11 i’l 3.1
Value matrix: W, (Shape: Dy x D processing position-
v ( P X V) aware, concatenate input SOﬁmfaX(/]\)

Query matrix: (Shape: Dy x Do) with positional encoding

Ks |7 Eyi3 Eys Ess
Computation: E can be learned lookup Ky || Eq, E, >, Es >,
Query vectors: O = X table, or fixed function
Key vectors: (. = X (Shape: Ny x Dg) Ky = By Eaa Es
Value Vectors: V = XW,, (Shape: Ny x Dy) t t t
Similarities: E = (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dq) ci*l 0{2 %3

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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Masked Self-Attention Layer

Don’t let vectors “look ahead” in the sequence

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW,

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = OK' (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,
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t
0 0 A; 3
0 A, A3,2
A1,1 A2,1 A3,1
t
Softmax(1T")
t
-0o -co E3,3
-9 E,» E5»
E1,1 E2,1 E3,1
) 1) 1)
Q, Q, Q;
t 1) t
X1 X, )&
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Masked Self-Attention Layer

Don’t let vectors “look ahead” in the sequence
Used for language modeling (predict next word)

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)

Value Vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,

Justin Johnson Lecture 13 - 74

Big cat [END]

4 4 1t
Product(->), Sum(1)
t
0 0 A;;

Al,l A2,1 A3,1

t
Softmax(1T")
t
-0o -co E3’3
-9 E,, Es>

El,l E2,1 E3,1

t t t
Q Q) |Q
f f f

[START] Big cat
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Multihead Self-Attention Layer

Use H independent
“Attention Heads” in parallel

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dg)
Value matrix: W,, (Shape: D, x D)

Hyperparameters:
Query matrix: (Shape: Dy x Dg) yPerp

Query dimension D
Number of heads H

Computation:

Query vectors: O =X

Key vectors: [{ = X (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x Dy)
Similarities: E = (Shape: Ny x Ny) E;; = / sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A}V,

1 Y, Y3 Y. Y, Ys 1 Y, Y3

Product(->), Sum(T) Product(->), Sum(T") Product(=>), Sum(T)

Vs Az | Az | (Ass Vs Azl (A ] (A Vs Az | (A | [Ass
vy Al (A | (A3 Va Az | (A2 ] (A Vv, Az | (A (A2
=l (A Ay V= Al Ay = Au] (A [As
Ks =/ Ei3 Eys Ess Ky |=| Ei3 Eys Ess Ky |= Ei3 Exs Ess
Ky = Eia En Es, Ky |=| Ei2 Ey, Es, Ky |= 1 E1p Exp Es,
Ki = [[Ea [Eon E Ki |=[[Eia| [Esn E Ki |=[Eia| (Epn| Ess
t t t t t t t

Q Q, Q, Q, Q, Q, Q Q, Q;

t t t t t t t

a
Split
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Example: CNN with Self-Attention

Input Image

CNN

Features:
CxHxW

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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https://pixabay.com/photos/cat-young-animal-curious-wildcat-2083492/
https://pixabay.com/service/license/

Example: CNN with Self-Attention

Queries:
C'xHxW

Input Image 1x1 Conv

_ Keys:
CNN C’'xHxW

1x1 Conv

Features:
CxHxW

Values:
C'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018

Justin Johnson Lecture 13 - 77
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https://pixabay.com/photos/cat-young-animal-curious-wildcat-2083492/
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Example: CNN with Self-Attention

Queries: Attention Weights
C’xHxW Transpose (Hx W) x (H x W)

1x1 Con :
Iput Image X Vv softmax

_ Keys:
CNN C’'xHxW

1x1 Conv

Features:
CxHxW

Values:
C'xHxW

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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Example: CNN with Self-Attention

Attention Weights

Queries:
Transpose (Hx W) x (H x W)

C'xHxW

Input Image 1x1 Conv

softmax

_ Keys:
CNN C’'xHxW

1x1 Conv

Features:
CxHxW C’'xHxW

Cat image is free to use under the Pixabay License

Values: !

C’xHxW: ﬁ;®_.

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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Example: CNN with Self-Attention

Attention Weights

Queries:
Transpose (Hx W) x (H x W)

C'xHxW

Input Image 1x1 Conv

softmax

CxHxH
_ Keys:
CNN C'xHxW

1x1 Conv .

Features:
CxHxW C’'xHxW

Cat image is free to use under the Pixabay License

Values: !

" Hx W Ve
CxHXW —~(x }— 1x1 Conv

1x1 Conv

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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Example: CNN with Self-Attention

Residual Connection

e Attention Weights
C’ x Hx W Transpose (Hx W) x (H x W)

Input Image 1x1 Conv softmax

m CxHxW

| Keys: Y
CNN C’'xHxW —@—
! Features: 1x1 Conv 3
Cat image is f touseunderthe‘;;;baxLicense C X H X W C’ X H X W
Values: f
C’'xHxW >
X, ~(x — 1x1 Conv

1x1 Conv

Self-Attention Module

Zhang et al, “Self-Attention Generative Adversarial Networks”, ICML 2018
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Three Ways of Processing Sequences
Recurrent Neural Network

YiT— Yo Y3 " VY4

I R

X4 X, X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; “sees” the whole
sequence

(-) Not parallelizable: need to
compute hidden states sequentially

Justin Johnson Lecture 13 - 82 October 23, 2019



Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Y1 > Y2 > Y3 > Ya Y1 Y> Y3 Ys

X1 X5 X3 X4 X1 X5 X3 X4
Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need to
one RNN layer, h; ”sees” the whole stack many conv layers for outputs
sequence to “see” the whole sequence
(-) Not parallelizable: need to (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel
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Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution Self-Attention

Y1 " Y2 " Y3 " Yy Y1 Y2 Y3 Ya [ A R

‘ ‘ ‘ ‘ I ] x ‘ I _’_> Al'l A;J Aa'l

X1 X5 X3 X4 X1 X5 X3 X4 S
Works on Ordered Sequences Works on Multidimensional Grids Works on Sets of Vectors
(+) Good at long sequences: After (-) Bad at long sequences: Need to (-) Good at long sequences: after one
one RNN layer, h; ”sees” the whole stack many conv layers for outputs self-attention layer, each output
sequence to “see” the whole sequence “sees” all inputs!
(-) Not parallelizable: need to (+) Highly parallel: Each output can (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel be computed in parallel

(-) Very memory intensive
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Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Self-Attention

Attention is all you

Vaswani et al, NeurlPS 2017

need

Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need to
one RNN layer, h; ”sees” the whole stack many conv layers for outputs
sequence to “see” the whole sequence

(-) Not parallelizable: need to (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel

Works on Sets of Vectors

(-) Good at long sequences: after one
self-attention layer, each output
“sees” all inputs!

(+) Highly parallel: Each output can
be computed in parallel

(-) Very memory intensive

Justin Johnson Lecture 13 - 85
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The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Justin Johnson Lecture 13 - 86 October 23, 2019



The Transformer

All vectors interact Se|f_At:enﬁon

with each other f t t t
| 1 1 |
X1 X5 X3 X4

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer

Residual connection {?
All vectors interact Self-Attention
with each other - t t t
I I I
X1 X, X3 X4

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer

Recall Layer Normalization:
Given hy, ..., hy  (Shape: D)
scale:y (Shape: D)
shift: (Shape: D)
u; = (1/D)3; h; (scalar)

g; = (5 (h;; - 1:)?)¥? (scalar)

z; = (hi- ) / o

Vi=y ¥+

Ba et al, 2016

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Justin Johnson

Residual connection

All vectors interact
with each other

Layer Normalization

Lecture 13 - 89

:$

Self-Attention

t
|

t t
I I
X3 X,
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The Transformer

Recall Layer Normalization:

Given hy, ..., hy  (Shape: D) N
5C5_3|93 Y (Shape: D) MLp independently MlLP MILP MILP MILP
shift: 5 (Shape: D)  on each vector | * f
u; = (1/D)3; hy; (scalar) |
o, = (3; (h;; - w)?)Y? (scalar) Layer Normalization
Zi = (hi*' w)/ o Residual connection =(J:r)
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
I I I I

Ba et al, 2016

X4 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer

Recall Layer Normalization:

Given h,, .. hy  (Shape: D) Residual connection {?
5C5_3|95 Y (Shape: D) MLP independently MlLP MILP MILP MILP
shift: 5 (Shape: D)  on each vector f * f
u; = (1/D)3; h; (scalar)
o, = (3; (h;; - w)?)Y? (scalar) Layer Normalization
Zi = (hi*' ) / o Residual connection =(J:r)
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
Ba et al, 2016 I ! ! I
X1 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer wl lwl [vwl v
i t 1 1

Layer Normalization

Recall Layer Normalization: Aual . ‘
Given hy, ..., hy  (Shape: D) Residual connection Q:r)
: : | |
scz?le. Y (Shape: D) MLp independently MLP MILP MLP MILP
shift: 5 (Shape: D)  on each vector f * f
u; = (1/D)3; h; (scalar)
o, = (3; (h;; - w)?)Y? (scalar) Layer Normalization
2= (hi- W) / oy Residual connection =(J:r)
—_ *
Vizy 7+ B All vectors interact Self-Attention
with each other - t t t
Ba et al, 2016 I ! ! I
X4 X, X3 X,

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer ”

Y2 Y3 Ya
I i I I
Transformer Block: Layer Normalization
Input: Set of vectors x :Q:r)
Output: Set of vectors y

| | | |
MLP MLP MLP MLP

Self-attention is the only
interaction between vectors!

Layer Normalization

Layer norm and MLP work =Q:,)
independently per vector

Self-Attention
ot f t t
Highly scalable, highly t t ! !
parallelizable X X X x
1 2 3 4

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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The Transformer

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Justin Johnson

A Transformer is a sequence
of transformer blocks

Vaswani et al:
12 blocks, Dg=512, 6 heads

Lecture 13-94

t t t |

Layer Normalization

[ I I
M| (M| M| [
t t
]
Layer Normalization
Self-Attention
Lt 1 1 t
t t t t
t t t t
Layer Normalization
[ I
M| (mep | (mp | e
t i f
]
Layer Normalization
Self-Attention
t t t 1

B N
I

Layer Normalization

l

‘MW“MW“MW“MW‘

Layer Normalization

il

Self-Attention
1 1 1 1

B N
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The Transformer: Transfer Learning

“ImageNet Moment for Natural Language Processing”

Pretraining:
Download a lot of text from the internet

Train a giant Transformer model for language modeling

Finetuning:
Fine-tune the Transformer on your own NLP task

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018

Justin Johnson Lecture 13 - 95

t t t |

Layer Normalization

|

I
‘Me | M| mee | MLP |

Layer Normalization

Self-Attention

Layer Normalization

Mp | M| mee | ML |

Layer Normalization

Self-Attention

Layer Normalization

‘MW“MW“MW“MW‘

Layer Normalization

Self-Attention
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base 8x P100 (12 hours)

Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB
BERT-Large 24 1024 16 340M 13 GB

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", EMNLP 2018
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)

Yang et al, XLNet: Generalized Autoregressive Pretraining for Language Understanding", 2019
Liu et al, "RoBERTa: A Robustly Optimized BERT Pretraining Approach", 2019
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Scaling up Transformers
N S S S S S 2 S

Transformer-Base

Transformer-Large 12
BERT-Base 12
BERT-Large 24
XLNet-Large 24
RoBERTa 24
GPT-2 12
GPT-2 24
GPT-2 36
GPT-2 48

1024
768

1024
1024
1024
768

1024
1280
1600

Radford et al, "Language models are unsupervised multitask learners", 2019

16
12
16
16

16
?

213M
110M
340M
~340M
355M
117M
345M
762M
1.5B

13 GB
13 GB
126 GB
160 GB
40 GB
40 GB
40 GB
40 GB

8x P100 (12 hours)
8x P100 (3.5 days)

512x TPU-v3 (2.5 days)
1024x V100 GPU (1 day)

Justin Johnson

Lecture 13 - 99
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Scaling up Transformers
m—mmmm

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)
GPT-2 12 768 ? 117M 40 GB

GPT-2 24 1024 ? 345M 40 GB

GPT-2 36 1280 ? 762M 40 GB

GPT-2 48 1600 ? 1.5B 40 GB

Megatron-LM 40 1536 16 1.2B 174 GB 64x V100 GPU
Megatron-LM 54 1920 20 2.5B 174 GB 128x V100 GPU
Megatron-LM 64 2304 24 4.2B 174 GB 256x V100 GPU (10 days)
Megatron-LM 72 3072 32 8.3B 174 GB 512x V100 GPU (9 days)

Shoeybi et al, "Megatron-LM: Training Multi-Billion Parameter Languge Models using Model Parallelism", 2019
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Scaling up Transformers ~$430,000 on Amazon AWS!
T S S S S S 7 S

Transformer-Base 8x P100 (12 hours)
Transformer-Large 12 1024 16 213M 8x P100 (3.5 days)
BERT-Base 12 768 12 110M 13 GB

BERT-Large 24 1024 16 340M 13 GB

XLNet-Large 24 1024 16 ~340M 126 GB 512x TPU-v3 (2.5 days)
RoBERTa 24 1024 16 355M 160 GB 1024x V100 GPU (1 day)
GPT-2 12 768 ? 117M 40 GB

GPT-2 24 1024 ? 345M 40 GB

GPT-2 36 1280 ? 762M 40 GB

GPT-2 48 1600 ? 1.5B 40 GB

Megatron-LM 40 1536 16 1.2B 174 GB 64x V100 GPU
Megatron-LM 54 1920 20 2.5B 174 GB 128x V100 GPU
Megatron-LM 64 2304 24 4.2B 174 GB 256x V100 GPU (10 days)
Megatron-LM 72 3072 32 8.3B 174 GB 512x V100 GPU (9 days)

Shoeybi et al, "Megatron-LM: Training Multi-Billion Parameter Languge Models using Model Parallelism", 2019
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PROMPT (Human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

OpenAl, “Better Language Models and their Implications”, 2019, https://openai.com/blog/better-language-models/
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PROMPT (Human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.
COMPLETION (Transformer-written): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-
horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes
Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to
be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue,
with some crystals on top,” said Pérez.

Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to
move too much to see them — they were so close they could touch their horns.

While examining these bizarre creatures the scientists discovered that the creatures also spoke some fairly regular English. Pérez
stated, “We can see, for example, that they have a common ‘language,” something like a dialect or dialectic.”

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a
lost race of people who lived there before the arrival of humans in those parts of South America.

While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each
other in a time before human civilization. According to Pérez, “In South America, such incidents seem to be quite common.”
However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a
lost alien race is through DNA. “But they seem to be able to communicate in English quite well, which | believe is a sign of
evolution, or at least a change in social organization,” said the scientist.

OpenAl, “Better Language Models and their Implications”, 2019, https://openai.com/blog/better-language-models/
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PROMPT (Human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.
COMPLETION (Transformer-written): The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-
horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

’7 . . . .
D orge Perez. an evolutiong olle][e]- Oom the Unlive 0 3 Paz. and several companion Nere exploring the Ande

to

. Try it yourself: |
https://talktotransformer.com

1”4

pZ

Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a

lost race of people who lived there before the arrival of humans in those parts of South America.
While their origins are still unclear, some believe that perhaps the creatures were created when a human and a unicorn met each

other in a time before human civilization. According to Pérez, “In South America, such incidents seem to be quite common.”
However, Pérez also pointed out that it is likely that the only way of knowing for sure if unicorns are indeed the descendants of a
lost alien race is through DNA. “But they seem to be able to communicate in English quite well, which | believe is a sign of

evolution, or at least a change in social organization,” said the scientist.

OpenAl, “Better Language Models and their Implications”, 2019, https://openai.com/blog/better-language-models/
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Ssummary

Adding Attention to RNN
models lets them look at
different parts of the
input at each timestep

A dog is standing on a hardwood floor.

Generalized Self-Attention
is new, powerful neural
network primitive

| Product(->), Sum(1) |
t

Vi = Az Ay As
Vo |7 AL Ay As,

vV, = A, A, Asq

t
| Softmax(1T) |

"_’ Eiq Eoq Esq
t t t
Q, Q, Qs
t t t
Xy X, X3
1 |

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Justin Johnson

Lecture 13 - 105

Transformers are a new
neural network model
that only uses attention

Y1 Y2 Y3 Ya

! 1 1 1

Layer Normalization

+

I | | |
MLP MLP MLP MLP

t t _t  f
1

Layer Normalization

e
L Self-Attention

t t t t
! ! ! !

October 23, 2019



Next Week: Guest Lectures

P (1A W ,_Am . i & / fl \ \ A<

Monday 10/28 Wednesday 10/30

Luowei Zhou Prof. Atul Prakash
Vision and Language Adversarial Machine Learning
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