
Justin	Johnson October	2,	2019

Lecture	9:
Hardware	and	Software

Lecture	9	- 1

Justin	Johnson October	2,	2019

Assignment	3	Released

Lecture	8	- 2

We	released	Assignment	3	last	night

Modular	backprop API
Fully-connected	networks
Dropout
Convolutional	Networks
Batch	Normalization

Due	Monday,	October	14,	11:59pm
Remember	to	validate	your	submission

We	had	a	few	hotfixes	today;	
check	Piazza	for	details

Justin	Johnson October	2,	2019

Deep	Learning	Hardware

Lecture	9	- 3

Justin	Johnson October	2,	2019

Inside	a	computer

Lecture	8	- 4

This	image	copyright	2017,	Justin	Johnson

Justin	Johnson October	2,	2019

Inside	a	computer

Lecture	8	- 5

This	image is	in	the	public	domain

GPU:	“Graphics	Processing	Unit”

This	image	copyright	2017,	Justin	Johnson

Justin	Johnson October	2,	2019

Inside	a	computer

Lecture	8	- 6

This	image is	licensed	under	CC-BY	2.0

CPU:	“Central	
Processing	Unit”

This	image is	in	the	public	domain

GPU:	“Graphics	Processing	Unit”

This	image	copyright	2017,	Justin	Johnson

Justin	Johnson October	2,	20197

NVIDIA AMDvs

Justin	Johnson October	2,	20198

NVIDIA AMDvs

Justin	Johnson October	2,	2019Lecture	8	- 9

Justin	Johnson October	2,	2019

CPU	vs	GPU

Lecture	8	- 10

Cores Clock	
Speed
(GHz)

Memory Price TFLOP/sec

CPU
Ryzen 9	
3950X

16
(32 threads with
hyperthreading)

3.5
(4.7	
boost)

System	RAM $749 ~4.8	FP32

GPU
NVIDIA	
Titan	RTX

4608 1.35
(1.77	
boost)

24 GB	GDDR6 $2499 ~16.3	FP32

CPU:	Fewer	
cores,	but	each	
core	is	much	
faster	and	much	
more	capable;	
great	at
sequential	tasks

GPU:	More	
cores,	but	each	
core	is	much	
slower	and	
“dumber”;	
great	for	
parallel	tasks

Justin	Johnson October	2,	2019

Inside	a	GPU:
RTX	Titan

Lecture	8	- 11

Justin	Johnson October	2,	2019

Inside	a	GPU:
RTX	Titan

Lecture	8	- 12

12x	2GB	
memory	
modules

Justin	Johnson October	2,	2019

Inside	a	GPU:
RTX	Titan

Lecture	8	- 13

12x	2GB	
memory	
modules

Processor

Justin	Johnson October	2,	2019

Inside	a	GPU:	
RTX	Titan

Lecture	8	- 14

Justin	Johnson October	2,	2019

Inside	a	GPU:	
RTX	Titan

Lecture	8	- 15

72	Streaming	
multiprocessors	

(SMs)

Justin	Johnson October	2,	2019

Inside	a	GPU:	RTX	Titan

Lecture	8	- 16

72	Streaming	
multiprocessors	(SMs)

Justin	Johnson October	2,	2019

Inside	a	GPU:	RTX	Titan

Lecture	8	- 17

72	Streaming	
multiprocessors	(SMs)

64	FP32	cores	
per	SM

Justin	Johnson October	2,	2019

Inside	a	GPU:	RTX	Titan

Lecture	8	- 18

72	Streaming	
multiprocessors	(SMs)

64	FP32	cores	
per	SM(72	SM)	*	(64	FP32	core	per	SM)	*	(2	FLOP/cycle)		

*	(1.77	Gcycle/sec)	=	16.3	TFLOP/sec

Justin	Johnson October	2,	2019

Inside	a	GPU:	RTX	Titan

Lecture	8	- 19

72	Streaming	
multiprocessors	(SMs)

64	FP32	cores	
per	SM

8	Tensor	Core	
per	SM

Tensor	core:	
Special	
hardware!

Let	A,B,C	be	
4x4	matrices;	
computes	AB+C	
in	one	clock	
cycle!	
(128	FLOP)

(72	SM)	*	(64	FP32	core	per	SM)	*	(2	FLOP/cycle)		
*	(1.77	Gcycle/sec)	=	16.3	TFLOP/sec

Tensor	cores	use	mixed	precision:	Multiplication	
is	done	in	FP16,	and	addition	is	done	in	FP32

Justin	Johnson October	2,	2019

Inside	a	GPU:	RTX	Titan

Lecture	8	- 20

72	Streaming	
multiprocessors	(SMs)

64	FP32	cores	
per	SM

8	Tensor	Core	
per	SM

Tensor	core:	
Special	
hardware!

Let	A,B,C	be	
4x4	matrices;	
computes	AB+C	
in	one	clock	
cycle!	
(128	FLOP)

(72	SM)	*	(64	FP32	core	per	SM)	*	(2	FLOP/cycle)		
*	(1.77	Gcycle/sec)	=	16.3	TFLOP/sec

(72	SM)	*	(8	tensor	core	per	SM)	
*	(128	FLOP/cycle)		*	(1.77	Gcycle/sec)
=	130	TFLOP/sec!

Justin	Johnson October	2,	2019

CPU	vs	GPU

Lecture	8	- 21

Cores Clock	
Speed
(GHz)

Memory Price TFLOP/sec

CPU
Ryzen 9	
3950X

16
(32 threads with
hyperthreading)

3.5
(4.7	
boost)

System	RAM $749 ~4.8	FP32

GPU
NVIDIA	
Titan	RTX

4608 1.35
(1.77	
boost)

24 GB	GDDR6 $2499 ~16.3	FP32
~130 with	
Tensor Cores

CPU:	Fewer	
cores,	but	each	
core	is	much	
faster	and	much	
more	capable;	
great	at
sequential	tasks

GPU:	More	
cores,	but	each	
core	is	much	
slower	and	
“dumber”;	
great	for	
parallel	tasks

Justin	Johnson October	2,	2019Lecture	8	- 22

Justin	Johnson October	2,	2019

Example:	Matrix	Multiplication

Lecture	8	- 23

A	x	B B	x	C A	x	C

=

Perfect	for	GPUs!	All	output	
elements	are	independent,	
can	be	trivially	parallelized	

Justin	Johnson October	2,	2019

Programming	GPUs

Lecture	8	- 24

• CUDA	(NVIDIA	only)
• Write	C-like	code	that	runs	directly	on	the	GPU
• NVIDIA	provides	optimized	APIs:	cuBLAS,	cuFFT,	
cuDNN,	etc

• OpenCL
• Similar	to	CUDA,	but	runs	on	anything
• Usually	slower	on	NVIDIA	hardware

• EECS	598.009:	Applied	GPU	Programming

Justin	Johnson October	2,	2019

Scaling	up:	Typically	8	GPUs	per	server

Lecture	8	- 25

NVIDIA	DGX-1:	8x	V100	GPUs

Justin	Johnson October	2,	2019

Google	Tensor	Processing	Units	(TPU)

Lecture	8	- 26

Cloud	TPU	v2
180	TFLOPs

64	GB	HBM	memory
$4.50	/	hour

(free	on	Colab!)

Special	hardware	for	matrix	
multiplication,	similar	to	

NVIDIA	Tensor	Cores;	also	runs	
in	mixed	precision	(bfloat16)

Justin	Johnson October	2,	2019

Google	Tensor	Processing	Units	(TPU)

Lecture	8	- 27

Cloud	TPU	v2
180	TFLOPs

64	GB	HBM	memory
$4.50	/	hour

(free	on	Colab!)

Cloud	TPU	v2	Pod
64	TPU-v2
11.5	PFLOPs
$384	/	hour

Justin	Johnson October	2,	2019

Google	Tensor	Processing	Units	(TPU)

Lecture	8	- 28

Cloud	TPU	v3
420	TFLOPs

128	GB	HBM	memory
$8	/	hour

TPU-v3	imageis released	under	a	CC-SA	4.0	International	license

Justin	Johnson October	2,	2019

Google	Tensor	Processing	Units	(TPU)

Lecture	8	- 29

TPU-v3	imageis released	under	a	CC-SA	4.0	International	license

Cloud	TPU	v3
420	TFLOPs

128	GB	HBM	memory
$8	/	hour

Cloud	TPU	v3	Pod
256	TPU-v3
107	PFLOPs

Justin	Johnson October	2,	2019

Google	Tensor	Processing	Units	(TPU)

Lecture	8	- 30

In	order	to	use	TPUs,	you	have	to	use	TensorFlow

Justin	Johnson October	2,	2019

Google	Tensor	Processing	Units	(TPU)

Lecture	8	- 31

In	order	to	use	TPUs,	you	have	to	use	TensorFlow

… For	now!

Justin	Johnson October	2,	2019

Deep	Learning	Software

Lecture	9	- 32

Justin	Johnson October	2,	2019

A	zoo	of	frameworks!

Lecture	8	- 33

Caffe	
(UC	Berkeley)

Torch	
(NYU	/	Facebook)

Theano	
(U	Montreal)

TensorFlow	
(Google)

Caffe2	
(Facebook)

PyTorch	
(Facebook)

CNTK	
(Microsoft)

PaddlePaddle
(Baidu)

MXNet	
(Amazon)
Developed	by	U	Washington,	CMU,	MIT,	Hong	
Kong	U,	etc	but	main	framework	of	choice	at	
AWS

Chainer	

JAX
(Google)

Justin	Johnson October	2,	2019

A	zoo	of	frameworks!

Lecture	8	- 34

Caffe	
(UC	Berkeley)

Torch	
(NYU	/	Facebook)

Theano	
(U	Montreal)

TensorFlow	
(Google)

Caffe2	
(Facebook)

PyTorch	
(Facebook)

CNTK	
(Microsoft)

PaddlePaddle
(Baidu)

MXNet	
(Amazon)
Developed	by	U	Washington,	CMU,	MIT,	Hong	
Kong	U,	etc	but	main	framework	of	choice	at	
AWS

Chainer	

JAX
(Google)

We’ll	focus	on	these

Justin	Johnson October	2,	2019

Recall:	Computational	Graphs

Lecture	8	- 35

x

W

hinge	
loss

R

+ Ls (scores)*

Justin	Johnson October	2,	2019

The	point	of	deep	learning	frameworks

Lecture	8	- 36

1. Allow	rapid	prototyping	of	new	ideas
2. Automatically	compute	gradients	for	you
3. Run	it	all	efficiently	on	GPU	(or	TPU)

Justin	Johnson October	2,	2019

PyTorch

Lecture	9	- 37

Justin	Johnson October	2,	2019

PyTorch:	Versions

Lecture	8	- 38

For	this	class	we	are	using	PyTorch version	1.2
(Released	August	2019)

Be	careful	if	you	are	looking	at	older	PyTorch code –
the	API	changed	a	lot	before	1.0	
(0.3	to	0.4	had	big	changes!)

Justin	Johnson October	2,	2019

PyTorch:	Fundamental	Concepts

Lecture	8	- 39

Tensor:	Like	a	numpy array,	but	can	run	on	GPU

Module:	A	neural	network	layer;	may	store	state	or	
learnable	weights

Autograd:	Package	for	building	computational	graphs	
out	of	Tensors,	and	automatically	computing	gradients

Justin	Johnson October	2,	2019

PyTorch:	Fundamental	Concepts

Lecture	8	- 40

Tensor:	Like	a	numpy array,	but	can	run	on	GPU

Module:	A	neural	network	layer;	may	store	state	or	
learnable	weights

Autograd:	Package	for	building	computational	graphs	
out	of	Tensors,	and	automatically	computing	gradients

A1,	A2,	A3

A4,	A5,	A6

Justin	Johnson October	2,	2019

PyTorch:	Tensors

Lecture	8	- 41

Running	example:	Train	a	
two-layer	ReLU network	on	
random	data	with	L2	loss

Justin	Johnson October	2,	2019

PyTorch:	Tensors

Lecture	8	- 42

Create	random	tensors	
for	data	and	weights

Justin	Johnson October	2,	2019

PyTorch:	Tensors

Lecture	8	- 43

Forward	pass:	compute	
predictions	and	loss

Justin	Johnson October	2,	2019

PyTorch:	Tensors

Lecture	8	- 44

Backward	pass:	manually	
compute	gradients

Justin	Johnson October	2,	2019

PyTorch:	Tensors

Lecture	8	- 45

Gradient	descent	
step	on	weights

Justin	Johnson October	2,	2019

PyTorch:	Tensors

Lecture	8	- 46

To	run	on	GPU,	just	use	a	
different	device!

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 47

Creating	Tensors	with	
requires_grad=True enables	autograd

Operations	on	Tensors	with	
requires_grad=True	cause	PyTorch to	
build	a	computational	graph

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 48

We	will	not	want	gradients	
(of	loss)	with	respect	to	data

Do	want	gradients	with	
respect	to	weights	

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 49

Forward	pass	looks	exactly	the	
same	as	before,	but	we	don’t	
need	to	track	intermediate	
values	- PyTorch keeps	track	of	
them	for	us	in	the	graph

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 50

Computes	gradients	with	
respect	to	all	inputs	that	
have	requires_grad=True!

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 51

x w1
mm

Every	operation	on	a	tensor	with	
requires_grad=True	will	add	to	
the	computational	graph,	and	the	
resulting	tensors	will	also	have	
requires_grad=True

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 52

x w1
mm

clamp

Every	operation	on	a	tensor	with	
requires_grad=True	will	add	to	
the	computational	graph,	and	the	
resulting	tensors	will	also	have	
requires_grad=True

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 53

x w1
mm

clamp

mm

y_pred

w2

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 54

x w1
mm

clamp

mm

y_pred

-

w2

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 55

x w1
mm

clamp

mm

y_pred

-

pow

yw2

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 56

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 57

x w1 w2 y
mm

clamp

mm

y_pred

-

pow sum loss

Backprop to	
all	inputs	that	
require	grad

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 58

x w1 w2 y

After	backward	finishes,	gradients	
are	accumulated into	w1.grad	and	
w2.grad	and	the	graph	is	destroyed

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 59

x w1 w2 y

After	backward	finishes,	gradients	
are	accumulated into	w1.grad	and	
w2.grad	and	the	graph	is	destroyed

Make	gradient	step	on	weights

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 60

x w1 w2 y

After	backward	finishes,	gradients	
are	accumulated into	w1.grad	and	
w2.grad	and	the	graph	is	destroyed

Set	gradients	to	zero	– forgetting	
this	is	a	common	bug!

Justin	Johnson October	2,	2019

PyTorch:	Autograd

Lecture	8	- 61

x w1 w2 y

After	backward	finishes,	gradients	
are	accumulated into	w1.grad	and	
w2.grad	and	the	graph	is	destroyed

Tell	PyTorch not	to	build	a	
graph	for	these	operations

Justin	Johnson October	2,	2019

PyTorch:	New	functions

Lecture	8	- 62

Can	define	new	operations	
using	Python	functions

Justin	Johnson October	2,	2019

PyTorch:	New	functions

Lecture	8	- 63

Can	define	new	operations	
using	Python	functions

x

*	-1

exp

+1 1.0	/	

When	our	function	runs,	
it	will	add	to	the	graph

Gradients	computed	
with	autograd

Justin	Johnson October	2,	2019

PyTorch:	New	functions

Lecture	8	- 64

Define	new	autograd operators	
by	subclassing Function,	define	
forward	and	backwardCan	define	new	operations	

using	Python	functions

x

*	-1

exp

+1 1.0	/	

When	our	function	runs,	
it	will	add	to	the	graph

Gradients	computed	
with	autograd

Recall:

Justin	Johnson October	2,	2019

PyTorch:	New	functions

Lecture	8	- 65

Define	new	autograd operators	
by	subclassing Function,	define	
forward	and	backward

x Sigmoid

Can	define	new	operations	
using	Python	functions

x

*	-1

exp

+1 1.0	/	

When	our	function	runs,	
it	will	add	to	the	graph

Gradients	computed	
with	autograd

Now	when	our	function	runs,	
it	adds	one	node	to	the	graph!

Justin	Johnson October	2,	2019

PyTorch:	New	functions

Lecture	8	- 66

Define	new	autograd operators	
by	subclassing Function,	define	
forward	and	backwardCan	define	new	operations	

using	Python	functions

x

*	-1

exp

+1 1.0	/	

When	our	function	runs,	
it	will	add	to	the	graph

Gradients	computed	
with	autograd

In	practice	this	is	pretty	rare	– in	most	
cases	Python	functions	are	good	enough

Justin	Johnson October	2,	2019

PyTorch:	nn

Lecture	8	- 67

Higher-level	wrapper	for	
working	with	neural	nets

Use	this!	It	will	make	your	
life	easier

Justin	Johnson October	2,	2019

PyTorch:	nn

Lecture	8	- 68

Object-oriented	API:	Define	
model	object	as	sequence	
of	layers	objects,	each	of	
which	holds	weight	tensors

Justin	Johnson October	2,	2019

PyTorch:	nn

Lecture	8	- 69

Forward	pass:	Feed	data	to	
model	and	compute	loss

Justin	Johnson October	2,	2019

PyTorch:	nn

Lecture	8	- 70

Forward	pass:	Feed	data	to	
model	and	compute	loss

torch.nn.functional has	useful	
helpers	like	loss	functions

Justin	Johnson October	2,	2019

PyTorch:	nn

Lecture	8	- 71

Backward	pass:	compute	
gradient	with	respect	to	all	
model	weights	(they	have	
requires_grad=True)

Justin	Johnson October	2,	2019

PyTorch:	nn

Lecture	8	- 72

Make	gradient	step	on	
each	model	parameter	
(with	gradients	disabled)

Justin	Johnson October	2,	2019

PyTorch:	optim

Lecture	8	- 73

Use	an	optimizer for	
different	update	rules

Justin	Johnson October	2,	2019

PyTorch:	optim

Lecture	8	- 74

After	computing	
gradients,	use	optimizer	to	
update	and	zero	gradients

Justin	Johnson October	2,	2019

PyTorch:	nn
Defining	Modules

Lecture	8	- 75

A	PyTorchModule is	a	neural	net	
layer;	it	inputs	and	outputs	Tensors

Modules	can	contain	weights	or	
other	modules

Very	common	to	define	your	own	
models	or	layers	as	custom	Modules

Justin	Johnson October	2,	2019

PyTorch:	nn
Defining	Modules

Lecture	8	- 76

Define	our	whole	model	as	
a	single	Module

Justin	Johnson October	2,	2019

PyTorch:	nn
Defining	Modules

Lecture	8	- 77

Initializer	sets	up	two	
children	(Modules	can	
contain	modules)

Justin	Johnson October	2,	2019

PyTorch:	nn
Defining	Modules

Lecture	8	- 78

Define	forward	pass	using	child	
modules and	tensor	operations

No	need	to	define	backward	-
autograd will	handle	it

Justin	Johnson October	2,	2019

PyTorch:	nn
Defining	Modules

Lecture	8	- 79

Very	common	to	mix	and	match	
custom	Module	subclasses	and	
Sequential	containers

Justin	Johnson October	2,	2019

PyTorch:	nn
Defining	Modules

Lecture	8	- 80

Define	network	component	
as	a	Module	subclass

x

Linear Linear

*

relu

Linear

Justin	Johnson October	2,	2019

PyTorch:	nn
Defining	Modules

Lecture	8	- 81

Stack	multiple	instances	of	the	
component	in	a	sequential

x

Linear Linear

*

relu

x

Linear Linear

*

relu

Linear

Very	easy	to	quickly	
build	complex	network	
architectures!

Justin	Johnson October	2,	2019

PyTorch:	DataLoaders

Lecture	8	- 82

A	DataLoader wraps	a	
Dataset and	provides	
minibatching,	shuffling,	
multithreading,	for	you

When	you	need	to	load	
custom	data,	just	write	your	
own	Dataset	class

Justin	Johnson October	2,	2019

PyTorch:	DataLoaders

Lecture	8	- 83

Iterate	over	loader	to	
form	minibatches

Justin	Johnson October	2,	2019

PyTorch:	DataLoaders

Lecture	8	- 84

Iterate	over	loader	to	
form	minibatches

Justin	Johnson October	2,	2019

PyTorch:	Pretrained Models

Lecture	8	- 85

Super	easy	to	use	pretrained	models	with	torchvision	
https://github.com/pytorch/vision

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 86

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 87

x w1 w2 y

Create	Tensor	objects

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 88

x w1
mm

clamp

mm

y_pred

w2

Build	graph	data	structure	
AND	perform	computation

y

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 89

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build	graph	data	structure	
AND	perform	computation

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 90

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform	backprop,	
throw	away	graph

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 91

x w1 yw2

Perform	backprop,	
throw	away	graph

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 92

x w1
mm

clamp

mm

y_pred

w2

Build	graph	data	structure	
AND	perform	computation

y

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 93

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Build	graph	data	structure	
AND	perform	computation

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 94

x w1
mm

clamp

mm

y_pred

-

pow

yw2

sum loss
Perform	backprop,	
throw	away	graph

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 95

Dynamic	graphs	let	you	use	
regular	Python	control	flow	
during	the	forward	pass!

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 96

Dynamic	graphs	let	you	use	
regular	Python	control	flow	
during	the	forward	pass!

Initialize	two	different	
weight	matrices	for	
second	layer

Justin	Johnson October	2,	2019

PyTorch:	Dynamic Computation	Graphs

Lecture	8	- 97

Dynamic	graphs	let	you	use	
regular	Python	control	flow	
during	the	forward	pass!

Decide	which	one	to	use	
at	each	layer	based	on	
loss	at	previous	iteration

(this	model	doesn’t	
makes	sense!	Just	a	
simple	dynamic	example)

Justin	Johnson October	2,	2019

Alternative:	Static	Computation	Graphs

Lecture	8	- 98

Alternative:	Static graphs

Step	1:	Build	computational	graph	
describing	our	computation	
(including	finding	paths	for	backprop)

Step	2:	Reuse	the	same	graph	on	
every	iteration

Justin	Johnson October	2,	2019

PyTorch:	Static	Graphs	with	JIT

Lecture	8	- 99

Define	model	as	a	
Python	function

Justin	Johnson October	2,	2019

PyTorch:	Static	Graphs	with	JIT

Lecture	8	- 100

Just-In-Time	compilation:	
Introspect	the	source	code	
of	the	function,	compile it	
into	a	graph	object.

Lots	of	magic	here!

Justin	Johnson October	2,	2019

PyTorch:	Static	Graphs	with	JIT

Lecture	8	- 101

x w1
mm

clamp

mm

y_pred

-

pow

yw2a

sum loss

w2b prev
loss

if	<	5.0

Graph	includes	a	conditional	
node	to	handle	both	caes!

Justin	Johnson October	2,	2019

PyTorch:	Static	Graphs	with	JIT

Lecture	8	- 102

Use	our	compiled	graph	
object	at	each	forward	pass

Justin	Johnson October	2,	2019

PyTorch:	Static	Graphs	with	JIT

Lecture	8	- 103

Even	easier:	add	annotation
to	function,	Python	function	
compiled	to	a	graph	when	it	
is	defined

Calling	function	uses	graph

Justin	Johnson October	2,	2019

Static vs	Dynamic	Graphs:	Optimization

Lecture	8	- 104

With	static	graphs,	
framework	can	
optimize	the	graph	
for	you	before	it	runs!

Conv

ReLU

Conv

ReLU

Conv

ReLU

The	graph	you	wrote

Conv+ReLU

Equivalent	graph	with	
fused	operations

Conv+ReLU

Conv+ReLU

Justin	Johnson October	2,	2019

Static vs	Dynamic	Graphs:	Serialization

Lecture	8	- 105

Once	graph	is	built,	can	
serialize it	and	run	it	
without	the	code	that	
built	the	graph!

e.g.	train	model	in	
Python,	deploy	in	C++

Graph	building	and	execution	are	
intertwined,	so	always	need	to	
keep	code	around

Static Dynamic

Justin	Johnson October	2,	2019

Static	vs	Dynamic	Graphs:	Debugging

Lecture	8	- 106

Lots	of	indirection	
between	the	code	you	
write	and	the	code	that	
runs	– can	be	hard	to	
debug,	benchmark,	etc

The	code	you	write	is	the	code	
that	runs!	Easy	to	reason	about,	
debug,	profile,	etc

Static Dynamic

Justin	Johnson October	2,	2019

Dynamic	Graph	Applications

Lecture	8	- 107

Karpathy and	Fei-Fei,	“Deep	Visual-Semantic	Alignments	
for	Generating	Image	Descriptions”,	CVPR	2015

Model	structure	
depends	on	the	input:
- Recurrent	Networks

Justin	Johnson October	2,	2019

Dynamic	Graph	Applications

Lecture	8	- 108

Karpathy and	Fei-Fei,	“Deep	Visual-Semantic	Alignments	
for	Generating	Image	Descriptions”,	CVPR	2015

The	cat	ate	a	big	rat

Model	structure	
depends	on	the	input:
- Recurrent	Networks
- Recursive	Networks

Justin	Johnson October	2,	2019

Dynamic	Graph	Applications

Lecture	8	- 109

Model	structure	
depends	on	the	input:
- Recurrent	Networks
- Recursive	Networks
- Modular	Networks

Andreas	et	al,	“Neural	Module	Networks”,	CVPR	2016
Andreas	et	al,	“Learning	to	Compose	Neural	Networks	for	Question	Answering”,	NAACL	2016
Johnson	et	al,	“Inferring	and	Executing	Programs	for	Visual	Reasoning”,	ICCV	2017

Justin	Johnson October	2,	2019

Dynamic	Graph	Applications

Lecture	8	- 110

Model	structure	
depends	on	the	input:
- Recurrent	Networks
- Recursive	Networks
- Modular	Networks
- (Your	idea	here!)

Andreas	et	al,	“Neural	Module	Networks”,	CVPR	2016
Andreas	et	al,	“Learning	to	Compose	Neural	Networks	for	Question	Answering”,	NAACL	2016
Johnson	et	al,	“Inferring	and	Executing	Programs	for	Visual	Reasoning”,	ICCV	2017

Justin	Johnson October	2,	2019

TensorFlow

Lecture	9	- 111

Justin	Johnson October	2,	2019

TensorFlow Versions

Lecture	8	- 112

TensorFlow 1.0
- Final	release:	1.15.0-rc2

- Released	yesterday!	
- Default:	static	graphs
- Optional:	dynamic	graphs	
(eager	mode)

TensorFlow 2.0
- Released	Monday	9/30!
- Default:	dynamic	graphs
- Optional:	static	graphs

Justin	Johnson October	2,	2019

TensorFlow 1.0:	
Static	Graphs

Lecture	8	- 113

(Assume	imports	at	the	
top	of	each	snippet)

Justin	Johnson October	2,	2019

TensorFlow 1.0:	
Static	Graphs

Lecture	8	- 114

First	define computational	
graph

Then	run the	graph	many	
times

Justin	Johnson October	2,	2019

TensorFlow 2.0:	
Dynamic	Graphs

Lecture	8	- 115

Create	TensorFlow
Tenssors for	data	and	
weights

Weights	need	to	be	
wrapped	in	tf.Variable
so	we	can	mutate	them

Justin	Johnson October	2,	2019

TensorFlow 2.0:	
Dynamic	Graphs

Lecture	8	- 116

Scope	forward	pass	
under	a	GradientTape to	
tell	TensorFlow to	start	
building	a	graph

Justin	Johnson October	2,	2019

TensorFlow 2.0:	
Dynamic	Graphs

Lecture	8	- 117

Ask	the	tape	to	
compute	gradients

Justin	Johnson October	2,	2019

TensorFlow 2.0:	
Dynamic	Graphs

Lecture	8	- 118

Gradient	descent	
step,	update	weights

Justin	Johnson October	2,	2019Lecture	8	- 119

TensorFlow 2.0:	
Static	Graphs

Define	a	function	that	
implements	forward,	
backward,	and	update

Annotating	with	
tf.function will	compile	
the	function	into	a	graph!	
(similar	to	torch.jit.script)

Justin	Johnson October	2,	2019Lecture	8	- 120

TensorFlow 2.0:	
Static	Graphs

Define	a	function	that	
implements	forward,	
backward,	and	update

Annotating	with	
tf.function will	compile	
the	function	into	a	graph!	
(similar	to	torch.jit.script)

(note	TF	graph	can	
include	gradient	
computation	and	update,	
unlike	PyTorch)

Justin	Johnson October	2,	2019Lecture	8	- 121

TensorFlow 2.0:	
Static	Graphs

Call	the	compiled	step	
function	in	the	training	
loop

Justin	Johnson October	2,	2019

Keras:	High-level	API

Lecture	8	- 122

Justin	Johnson October	2,	2019

Keras:	High-level	API

Lecture	8	- 123

Object-oriented	API:	
build	the	model	as	a	
stack	of	layers

Justin	Johnson October	2,	2019

Keras:	High-level	API

Lecture	8	- 124

Keras gives	you	
common	loss	
functions	and	
optimization	
algorithms

Justin	Johnson October	2,	2019

Keras:	High-level	API

Lecture	8	- 125

Forward	pass:	
Compute	loss,	
build	graph

Backward	pass:	
compute	gradients

Justin	Johnson October	2,	2019

Keras:	High-level	API

Lecture	8	- 126

Optimizer	object	
updates	parameters

Justin	Johnson October	2,	2019

Keras:	High-level	API

Lecture	8	- 127

Define	a	function	
that	returns	the	loss

Justin	Johnson October	2,	2019

Keras:	High-level	API

Lecture	8	- 128

Optimizer	computes	
gradients	and	
updates	parameters

Justin	Johnson October	2,	2019

TensorBoard

Lecture	8	- 129

Add	logging	to	code	to	record	loss,	stats,	etc
Run	server	and	get	pretty	graphs!

Justin	Johnson October	2,	2019

TensorBoard

Lecture	8	- 130

Also	works	with	PyTorch:	torch.utils.tensorboard

Justin	Johnson October	2,	2019

PyTorch vs	TensorFlow

Lecture	8	- 131

PyTorch
- My	personal	favorite
- Clean,	imperative	API
- Easy	dynamic	graphs	for	debugging
- JIT	allows	static	graphs	for	production
- Cannot	use	TPUs
- Not	easy	to	deploy	on	mobile

TensorFlow 1.0
- Static	graphs	by	default
- Can	be	confusing	to	debug
- API	a	bit	messy

TensorFlow 2.0
- Dynamic	by	default
- Standardized	on	Keras API
- Just	came	out,	no	consensus	yet

Justin	Johnson October	2,	2019

Summary:	Hardware

Lecture	8	- 132

CPU GPU TPU

Justin	Johnson October	2,	2019

Summary:	Software

Lecture	8	- 133

Static	Graphs	vs	Dynamic	Graphs

PyTorch vs	TensorFlow

Justin	Johnson October	2,	2019

Next	time:	
Training	Neural	Networks

Lecture	9	- 134

