Lecture 8: CNN Architectures

Justin Johnson

Lecture 8 - 1

Reminder: A2 due today!

Due at 11:59pm

Remember to **run the validation script**!

Justin Johnson

Lecture 8 - 2

Soon: Assignment 3!

Modular API for backpropagation

Fully-connected networks Dropout Update rules: SGD+Momentum, RMSprop, Adam Convolutional networks Batch normalization

Will be released today or tomorrow Will be due two weeks from the day it is released

Last Time: Components of Convolutional Networks

Convolution Layers

Pooling Layers

Fully-Connected Layers

Activation Function

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

September 30, 2019

Justin Johnson

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 5

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 6

227 x 227 inputs
5 Convolutional layers
Max pooling
3 fully-connected layers
ReLU nonlinearities

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

September 30, 2019

227 x 227 inputs
5 Convolutional layers
Max pooling
3 fully-connected layers
ReLU nonlinearities

Used "Local response normalization"; Not used anymore

Trained on two GTX 580 GPUs – only 3GB of memory each! Model split over two GPUs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

Lecture 8 - 9

AlexNet Citations per year

(As of 9/30/2019)

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

September 30, 2019

Justin Johnson

Citation Counts

Darwin, "On the origin of species", 1859: 50,007

Shannon, "A mathematical theory of communication", 1948: **69,351**

Watson and Crick, "Molecular Structure of Nucleic Acids", 1953: **13,111**

ATLAS Collaboration, "Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC", 2012: **14,424**

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

Lectur<u>e 8 - 11</u>

		Input	size		Lay	er			Outpu	ut si	ze
Layer	С	ŀ	4 / W	filters	kernel	stride	pad	С	ł	- /	W
conv1		3	227	64	. 11	. 4	2		?		

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

	lr	nput si	ze		Lay	er		Outp	out size
Layer	С	Н	/ W	filters	kernel	stride	pad	С	H / W
conv1		3	227	64	11	. 4	2	64	?

Recall: Output channels = number of filters

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

	Inpu	ıt siz	е		Lay	er			Outp	ut si	ze
Layer	С	н /	W	filters	kernel	stride	pa	d <mark>C</mark>		н /	W
conv1		3	227	64	1	1	4	2	64		56

Recall: W' =
$$(W - K + 2P) / S + 1$$

= 227 - 11 + 2*2) / 4 + 1
= 220/4 + 1 = 56

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

September 30, 2019

Justin Johnson

		Inpu	t si	ze		Laye	er		Outp	ut size	
Layer	С		Н	/ W	filters	kernel	stride	pad	С	н / W	memory (KB)
conv1		3		227	64	11	. 4	2	64	56	?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

Number of output elements = C * H' * W'= 64*56*56 = 200,704

Bytes per element = 4 (for 32-bit floating point)

KB = (number of elements) * (bytes per elem) / 1024 = 200704 * 4 / 1024

= 784

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

September 30, 2019

		Inpu	t s	ize			La	ayo	er				Outp	ut	size			
Layer	С		Η	/γ	V	filters	kernel		stride	r	bad	С		Η	/ W	memory (KB)	ра	rams (k)
conv1		3		22	27	64		11		4	2	2	64		56	5 78 ⁴	4	?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

	Inp	out si	ze		Laye	er		Out	put size		
Layer	С	Н	/ W	filters	kernel	stride	pad	С	н / W	memory (KB)	params (k)
conv1		3	227	64	11	. 4	2	64	4 50	5 784	23

Weight shape =
$$C_{out} \times C_{in} \times K \times K$$

= 64 x 3 x 11 x 11
Bias shape = C_{out} = 64
Number of weights = 64*3*11*11 + 64
= **23,296**

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

September 30, 2019

Justin Johnson

	l I	nput	size	2		Lay	er			Outp	ut size	3			
Layer	С	Н	/	W	filters	kernel	stride	pad	l C		н / v	V	memory (KB)	params (k)	flop (M)
conv1		3	2	227	64	. 1	1	4	2	64		56	784	- 23	?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

Number of floating point operations (multiply+add) = (number of output elements) * (ops per output elem) = $(C_{out} \times H' \times W') * (C_{in} \times K \times K)$ = (64 * 56 * 56) * (3 * 11 * 11)= 200,704 * 363 = **72,855,552**

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

September 30, 2019

		Inpu	t s	ize		Lay	er			Outpu	ut size			
Layer	С		Η	/ W	filters	kernel	stride	pad	С	ł	+ / W	memory (KB)	params (k)	flop (M)
conv1		3	6	227	64	11		4 2	2	64	56	784	23	73
pool1		64	ļ	56		3	8	2 (0		?			

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

		Inpu	t si	ize		Laye	er		C	Dutp	ut size			
Layer	С		Η	/ W	filters	kernel	stride	pad	С		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	. 4	4 2	2	64	56	784	23	73
pool1		64		56		3		2 (D	64	27	,		

For pooling layer:

1

#output channels = #input channels = 64

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

Lecture 8 - 22

		Inpu	t si	ize		Lay	er		(Outp	ut size			
Layer	С		Η	/ W	filters	kernel	stride	pad	С		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	. 2	1 2	2	64	56	5 784	23	73
pool1		64		56		3	8 2	2 (C	64	27	/ 182	?	

```
#output elems = C_{out} \times H' \times W'
Bytes per elem = 4
KB = C_{out} * H' * W' * 4 / 1024
= 64 * 27 * 27 * 4 / 1024
= 182.25
```

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

Lecture 8 - 23

		Inpu	t si	ize		Lay	er			Outp	ut size			
Layer	С		Н	/ W	filters	kernel	stride	pad	С		H / W	memory (KB)	params (k)	flop (M)
conv1		3	•	227	64	11	L ·	4 2	2	64	56	5 784	23	73
pool1		64	-	56			3	2 (C	64	27	⁷ 182	2 O	?

Pooling layers have no learnable parameters!

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Justin Johnson

		Inpu	t si	ze		Lay	er			Outp	ut size			
Layer	С		Н	/ W	filters	kernel	stride	pad	С		H / W	memory (KB)	params (k)	flop (M)
conv1		3		227	64	11	L Z	4 2	2	64	56	5 784	. 23	73
pool1		64	-	56		3	3	2 (0	64	27	7 182	. 0	0

Floating-point ops for pooling layer

= (number of output positions) * (flops per output position)

- = 419,904
- = **0.4 MFLOP**

September 30, 2019

	Inpu	ıt size	Layer				(Outp	ut size			
Layer	С	н / W	filters	kernel	stride	pad	С		н / w	memory (KB)	params (k)	flop (M)
conv1	3	227	64	11	4	. 2	2	64	56	784	23	73
pool1	64	56		3	2	. C)	64	27	182	0	0
conv2	64	27	192	5	1	. 2	2	192	27	547	307	224
pool2	192	27		3	2	C C)	192	13	127	0	0
conv3	192	. 13	384	3	1	. 1	L	384	13	254	664	112
conv4	384	13	256	3	1	. 1	L	256	13	169	885	145
conv5	256	5 13	256	3	1	. 1	L	256	13	169	590	100
pool5	256	5 13		3	2	. C)	256	6	36	0	0
flatten	256	6 6					Ç	9216		36	0	0

Flatten output size = $C_{in} x H x W$

= 9216

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

September 30, 2019

	Inpu	t size		Laye	er		Outp	ut size			
Layer	С	H / W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1	3	227	64	11	4	2	64	56	784	23	73
pool1	64	56		3	2	С	64	27	182	0	0
conv2	64	27	192	5	1	2	192	27	547	307	224
pool2	192	27		3	2	C	192	13	127	0	0
conv3	192	13	384	3	1	1	. 384	13	254	664	112
conv4	384	13	256	3	1	1	. 256	13	169	885	145
conv5	256	13	256	3	1	1	. 256	13	169	590	100
pool5	256	13		3	2	C	256	6	36	0	0
flatten	256	6					9216		36	0	0
fc6	9216		4096				4096		16	37,749	38
FC params = $C_{in} * C_{out} + C_{out}$ FC = 9216 * 4096 + 4096 = 37,725,832										FC flops = C = 92 = 3	_{in} * C _{out} 216 * 4096 7,748,736

Justin Johnson

Lecture 8 - 27

	Inpu	t size		Laye	er		Outp	out size			
Layer	С	H / W	filters	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1	3	227	64	11	4	. 2	64	56	784	23	73
pool1	64	56		3	2	. C	64	27	182	0	0
conv2	64	27	192	5	1	. 2	2 192	27	547	307	224
pool2	192	27		3	2	. C) 192	13	127	0	0
conv3	192	13	384	3	1	. 1	384	13	254	664	112
conv4	384	13	256	3	1	. 1	256	13	169	885	145
conv5	256	13	256	3	1	. 1	256	13	169	590	100
pool5	256	13		3	2	. C	256	6	36	0	0
flatten	256	6					9216		36	0	0
fc6	9216		4096				4096		16	37,749	38
fc7	4096		4096				4096		16	16,777	17
fc8	4096		1000				1000		4	4,096	4

Justin Johnson

Lecture 8 - 28

AlexNet How to choose this? Trial and error =(

	Input size				Lay	er		Outp	out size			
Layer	С		H / W	filters	kernel	stride	pad	C	н / W	memory (KB)	params (k)	flop (M)
conv1		3	227	64	11	. 4	- 2	64	56	784	23	73
pool1		64	56		3	2	. 0	64	. 27	182	0	0
conv2		64	27	192	5	5 1	. 2	192	. 27	547	307	224
pool2		192	27		3	2	. 0	192	13	127	0	0
conv3		192	13	384	3	8 1	. 1	384	. 13	254	664	112
conv4		384	13	256	3	8 1	. 1	256	13	169	885	145
conv5		256	13	256	3	8 1	. 1	256	13	169	590	100
pool5		256	13		3	2	. 0	256	6	36	0	0
flatten		256	6					9216		36	0	0
fc6	9	216		4096				4096		16	37,749	38
fc7	4	096		4096				4096		16	16,777	17
fc8	4	096		1000				1000		4	4,096	4

Justin Johnson

Lecture 8 - 29

Interesting trends here!

	Input size			Layer				Outp	out size			
Layer	С	н / v	/ filte	ers	kernel	stride	pad	С	H / W	memory (KB)	params (k)	flop (M)
conv1		3 22	.7	64	11	4	2	64	- 56	784	23	73
pool1	6	4 5	6		3	2	2 C	64	- 27	182	0	0
conv2	6	4 2	.7	192	5	1	. 2	192	. 27	547	307	224
pool2	19	2 2	.7		3	2	2 C) 192	13	127	0	0
conv3	19	2 1	.3	384	3	1	. 1	. 384	. 13	254	664	112
conv4	38	4 1	.3	256	3	1	. 1	256	5 13	169	885	145
conv5	25	6 1	.3	256	3	1	. 1	256	5 13	169	590	100
pool5	25	6 1	.3		3	2	2 C	256	6	36	0	0
flatten	25	6	6					9216		36	0	0
fc6	921	6	4	1096				4096		16	37,749	38
fc7	409	6	4	1096				4096		16	16,777	17
fc8	409	6	1	.000				1000		4	4,096	4

Justin Johnson

Lecture 8 - 30

Most of the **memory usage** is in the early convolution layers

Memory (KB)

Nearly all **parameters** are in the fully-connected layers

Params (K)

Max pooling Max pooling Most floating-point ops occur in the convolution layers

192

128

Max

pooling

\dense

2048

2048

2048

dense

128

MFLOP

September 30, 2019

Justin Johnson

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 32

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 33

ZFNet: A Bigger AlexNet

ImageNet top 5 error: 16.4% -> 11.7%

AlexNet but: CONV1: change from (11x11 stride 4) to (7x7 stride 2) CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512 More trial and error =(

Zeiler and Fergus, "Visualizing and Understanding Convolutional Networks", ECCV 2014

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 35

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 36
VGG: Deeper Networks, Regular Design

<u>VGG Design rules:</u> All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Justin Johnson

Softmax FC 1000 FC 4096

FC 4096

Pool

Pool

Pool

11x11 conv, 96

AlexNet

Lecture 8 - 37

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

VGG: Deeper Networks, Regular Design

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Network has 5 convolutional **stages**: Stage 1: conv-conv-pool Stage 2: conv-conv-pool Stage 3: conv-conv-pool Stage 4: conv-conv-conv-[conv]-pool Stage 5: conv-conv-conv-[conv]-pool

(VGG-19 has 4 conv in stages 4 and 5)

Softmax FC 1000 FC 4096 FC 4096 Pool

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input

AlexNet

Pool

Pool

Input

VGG16 **VGG19**

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Justin Johnson

Lecture 8 - 38

Softmax VGG: Deeper Networks, Regular Design FC 1000 Softmax FC 4096 FC 1000 FC 4096 FC 4096 Pool VGG Design rules: FC 4096 Pool All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 Pool Pool After pool, double #channels Softmax FC 1000 FC 4096 Pool FC 4096 Pool Option 1: Pool Conv(5x5, C -> C) Pool Pool Pool Pool Pool Pool Params: 25C² Input Input Input FLOPs: 25C²HW AlexNet VGG16 VGG19 Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015 Justin Johnson September 30, 2019 Lecture 8 - 39

VGG: Deepe	Softmax	Softmax FC 1000 FC 4096		
VGG Design rules All conv are 3x3 All max pool are 2	FC 1000 FC 4096 FC 4096 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512	FC 4096 Pool 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 Pool		
After pool, doubl	Pool 3x3 conv, 512 3x3 conv, 512	3x3 conv, 512 3x3 conv, 512 3x3 conv, 512 3x3 conv, 512		
<u>Option 1:</u> Conv(5x5, C -> C)	<u>Option 2:</u> Conv(3x3 <i>,</i> C -> C)	FC 4096 FC 4096 Pool 3x3 conv, 256 3x3 conv, 384	3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 Pool	3x3 conv, 512 Pool 3x3 conv, 256 3x3 conv, 256 Pool
	Conv(3x3, C -> C)	Pool 3x3 conv, 384 Pool 5x5 conv, 256	3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64	3x3 conv, 128 3x3 conv, 128 Pool 3x3 conv, 64
Params: 25C ² FLOPs: 25C ² HW	Params: 18C ² FLOPs: 18C ² HW	11x11 conv, 96 Input	3x3 conv, 64 Input VGG16	3x3 conv, 64 Input VGG19

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

	nc	

Lecture 8 - 40

VGG: Deeper Networks, Regular Desi

Lecture 8 - 41

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

<u>Option 1:</u> Conv(5x5, C -> C)	<u>Option 2:</u> Conv(3x3, C -> C) Conv(3x3, C -> C)
Params: 25C ²	Params: 18C ²
FLOPs: 25C ² HW	FLOPs: 18C ² HW

Justin Johnson

	—		Continest
Regula	ar Design		FC 1000
, negun		Softmax	FC 4096
		FC 1000	FC 4096
Two 3x3 conv	has same	FC 4096	Pool
		FC 4096	3x3 conv, 512
receptive field	as a single 5x5	Pool	3x3 conv, 512
conv. but has '	fewer parameters	3x3 conv, 512	3x3 conv, 512
and takes loss	computation	3x3 conv, 512	3x3 conv, 512
and takes less	computation!	3x3 conv, 512	Pool
		Pool	3x3 conv, 512
	Softmax	3x3 conv, 512	3x3 conv, 512
	FC 1000	3x3 conv, 512	3x3 conv, 512
	FC 4096	3x3 conv, 512	3x3 conv, 512
	FC 4096	Pool	Pool
	Pool	3x3 conv, 256	3x3 conv, 256
()	3x3 conv, 256	3x3 conv, 256	3x3 conv, 256
Cj	3x3 conv, 384	Pool	Pool
()	Pool	3x3 conv, 128	3x3 conv, 128
Cj	3x3 conv, 384	3x3 conv, 128	3x3 conv, 128
	Pool	Pool	Pool
	5x5 conv, 256	3x3 conv, 64	3x3 conv, 64
	11x11 conv, 96	3x3 conv, 64	3x3 conv, 64
	Input	Input	Input
V	AlexNet	VGG16	VGG19

Softmax

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

VGG: Deeper Networks, Regular Design

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Input: C x 2H x 2W Layer: Conv(3x3, C->C)

Memory: 4HWC Params: 9C² FLOPs: 36HWC²

Justin Johnson

September 30, 2019

Softmax FC 1000 FC 4096

FC 4096

Pool

Pool

Pool

Input

Lecture 8 - 42

Softmax

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

VGG: Deeper Networks, Regular Design										
VGG Design rules: All conv are 3x3 stric All max pool are 2x2 After pool, double #	de 1 pad 1 2 stride 2 schannels	Softmax FC 1000								
Input: C x 2H x 2W Layer: Conv(3x3 <i>,</i> C->C)	Input: 2C x H x W Conv(3x3 <i>,</i> 2C -> 2C)	FC 4096 FC 4096 Pool 3x3 conv, 256 3x3 conv, 384 Pool								
Memory: 4HWC Params: 9C ² FLOPs: 36HWC ²	Memory: 2HWC Params: 36C ² FLOPs: 36HWC ²	Pool 5x5 conv, 256 11x11 conv, 96 Input AlexNet								

	Softmax
	FC 1000
Softmax	FC 4096
FC 1000	FC 4096
FC 4096	Pool
FC 4096	3x3 conv, 512
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	Pool
Pool	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
3x3 conv, 512	3x3 conv, 512
Pool	Pool
3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256
Pool	Pool
3x3 conv, 128	3x3 conv, 128
3x3 conv, 128	3x3 conv, 128
Pool	Pool
3x3 conv, 64	3x3 conv, 64
3x3 conv, 64	3x3 conv, 64
Input	Input
VGG16	VGG19

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Justin Johnson

Lecture 8 - 43

September 30, 2019

VGG: Deeper Networks, Regular Design

VGG Design rules: All conv are 3x3 stride 1 pad 1 All max pool are 2x2 stride 2 After pool, double #channels

Input: C x 2H x 2W Layer: Conv(3x3, C->C)

Memory: 4HWC Params: 9C² FLOPs: 36HWC²

Justin Johnson

Input: 2C x H x W Conv(3x3, 2C -> 2C)

Memory: 2HWC Params: 36C² FLOPs: 36HWC²

Lecture 8 - 44

Simonyan and Zissermann, "Very Deep Convolutional Networks for Large-Scale Image Recognition", ICLR 2015

Conv layers at each spatial resolution take the same amount of computation!

AlexNet vs VGG-16: Much bigger network!

VGG-16 total: 48.6 MB (25x)

AlexNet vs VGG-16

AlexNet vs VGG-16 (MFLOPs)

VGG-16 total: 138M (2.3x)

Justin Johnson

Lecture 8 - 45

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 46

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 47

GoogLeNet: Focus on Efficiency

Many innovations for efficiency: reduce parameter count, memory usage, and computation

Szegedy et al, "Going deeper with convolutions", CVPR 2015

Justin Johnson

Lecture 8 - 48

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

Szegedy et al, "Going deeper with convolutions", CVPR 2015

Justin Johnson

Lecture 8 - 49

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inp	out	size		Laye	er		Outp	ut size			
Layer	С	Н	/ W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
conv		3	224	64	7	2	. 3	64	112	3136	9	118
max-pool	64	4	112		3	2	2 1	64	56	784	0	2
conv	64	4	56	64	1	. 1	. 0	64	56	784	. 4	13
conv	64	4	56	192	3	1	. 1	192	56	2352	111	347
max-pool	192	2	56		3	2	2 1	192	28	588	0	1

Total from 224 to 28 spatial resolution: Memory: 7.5 MB Params: 124K MFLOP: 418

Szegedy et al, "Going deeper with convolutions", CVPR 2015

Justin Johnson

Lecture 8 - 50

GoogLeNet: Aggressive Stem

Stem network at the start aggressively downsamples input (Recall in VGG-16: Most of the compute was at the start)

	Inp	ut size		Laye	er		Outpu	ut size			
Layer	С	н / w	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
conv	3	224	64	7	2	. 3	64	112	3136	9	118
max-pool	64	112		3	2	. 1	. 64	56	784	0	2
conv	64	56	64	1	1	. 0	64	56	784	4	13
conv	64	56	192	3	1	. 1	192	56	2352	111	347
max-pool	192	56		3	2	1	192	28	588	0	1

Total from 224 to 28 spatial resolution: Memory: 7.5 MB Params: 124K MFLOP: 418 Compare VGG-16: Memory: 42.9 MB (5.7x) Params: 1.1M (8.9x) MFLOP: 7485 (17.8x)

Szegedy et al, "Going deeper with convolutions", CVPR 2015

Lecture 8 - 52

Szegedy et al, "Going deeper with convolutions", CVPR 2015

Justin Johnson

Lecture 8 - 53

Justin Johnson

GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses **global average pooling** to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Input	size	Layer				Outpu	t size			
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	0	0
fc	1024		1000				1000		0	1025	1

Justin Johnson

Lecture 8 - 54

GoogLeNet: Global Average Pooling

No large FC layers at the end! Instead uses "global average pooling" to collapse spatial dimensions, and one linear layer to produce class scores (Recall VGG-16: Most parameters were in the FC layers!)

	Input	size	Layer			Output size					
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	params (k)	flop (M)
avg-pool	1024	7		7	1	0	1024	1	4	0	0
fc	1024		1000				1000		0	1025	1

Compare with VGG-16:

Layer	С	H/M	filters	kernel	stride	pad	С	H/W	memory (KB)	params (K)	flop (M)
flatten	512	7					25088		98		
fc6	25088			4096			4096		16	102760	103
fc7	4096			4096			4096		16	16777	17
fc8	4096			1000			1000		4	4096	4

Justin Johnson

Lecture 8 - 55

GoogLeNet: Auxiliary Classifiers

Training using loss at the end of the network didn't work well: Network is too deep, gradients don't propagate cleanly

As a hack, attach "auxiliary classifiers" at several intermediate points in the network that also try to classify the image and receive loss

GoogLeNet was before batch normalization! With BatchNorm no longer need to use this trick

Justin Johnson

Lecture 8 - 56

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 57

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 58

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 59

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

Deeper model does worse than shallow model!

Initial guess: Deep model is **overfitting** since it is much bigger than the other model

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 60

Once we have Batch Normalization, we can train networks with 10+ layers. What happens as we go deeper?

In fact the deep model seems to be **underfitting** since it also performs worse than the shallow model on the training set! It is actually **underfitting**

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 61

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

A deeper model can <u>emulate</u> a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow models

Hypothesis: This is an <u>optimization</u> problem. Deeper models are harder to optimize, and in particular don't learn identity functions to emulate shallow models

Solution: Change the network so learning identity functions with extra layers is easy!

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Solution: Change the network so learning identity functions with extra layers is easy!

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 64

Solution: Change the network so learning identity functions with extra layers is easy!

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 65

A residual network is a stack of many residual blocks

Regular design, like VGG: each residual block has two 3x3 conv

Network is divided into **stages**: the first block of each stage halves the resolution (with stride-2 conv) and doubles the number of channels

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 66

Uses the same aggressive **stem** as GoogleNet to downsample the input 4x before applying residual blocks:

	lr	put					Οι	Itput			
	size		Layer				S	ize			
										params	flop
Layer	С	H/W	filters	kernel	stride	pad	С	H/W	memory (KB)	(k)	(M)
conv	3	224	64	7	2	3	64	112	3136	9	118
max-pool	64	112		3	2	1	64	56	784	0	2

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

September 30, 2019

Lecture 8 - 67

Like GoogLeNet, no big fully-connected-layers: instead use **global average pooling** and a single linear layer at the end

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

September 30, 2019

Lecture 8 - 68

ResNet-18:

Stem: 1 conv layer Stage 1 (C=64): 2 res. block = 4 conv Stage 2 (C=128): 2 res. block = 4 conv Stage 3 (C=256): 2 res. block = 4 conv Stage 4 (C=512): 2 res. block = 4 conv Linear

ImageNet top-5 error: 10.92 GFLOP: 1.8

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

Justin Johnson

Lecture 8 - 69

ResNet-18:

```
Stem: 1 conv layer
Stage 1 (C=64): 2 res. block = 4 conv
Stage 2 (C=128): 2 res. block = 4 conv
Stage 3 (C=256): 2 res. block = 4 conv
Stage 4 (C=512): 2 res. block = 4 conv
Linear
```

ResNet-34: Stem: 1 conv layer Stage 1: 3 res. block = 6 conv Stage 2: 4 res. block = 8 conv Stage 3: 6 res. block = 12 conv Stage 4: 3 res. block = 6 conv Linear

ImageNet top-5 error: 10.92 GFLOP: 1.8

ImageNet top-5 error: 8.58 GFLOP: 3.6

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

Justin Johnson

Lecture 8 - 70

ResNet-18:

```
Stem: 1 conv layer
Stage 1 (C=64): 2 res. block = 4 conv
Stage 2 (C=128): 2 res. block = 4 conv
Stage 3 (C=256): 2 res. block = 4 conv
Stage 4 (C=512): 2 res. block = 4 conv
Linear
```

ImageNet top-5 error: 10.92 GFLOP: 1.8

Justin Johnson

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

ResNet-34:

Stem: 1 conv layer Stage 1: 3 res. block = 6 conv Stage 2: 4 res. block = 8 conv Stage 3: 6 res. block = 12 conv Stage 4: 3 res. block = 6 conv Linear

ImageNet top-5 error: 8.58 GFLOP: 3.6

VGG-16:

Lecture 8 - 71

ImageNet top-5 error: 9.62 GFLOP: 13.6

Se

Residual Networks: Basic Block

"Basic" Residual block

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 72
Residual Networks: Basic Block

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 73

Residual Networks: Bottleneck Block

"Bottleneck" Residual block

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 74

Residual Networks: Bottleneck Block

Lecture 8 - 75

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

			Stag	ge 1	Stag	ge 2	Stag	ge 3	Stag	ge 4			
	Block	Stem									FC		ImageNet
	type	layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	layers	GFLOP	top-5 error
ResNet-18	Basic	1	2	4	2	4	2	4	2	4	. 1	. 1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	3	6	1	. 3.6	8.58

Softmax

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

Justin Johnson

Lecture 8 - 76

ResNet-50 is the same as ResNet-34, but replaces Basic blocks with Bottleneck Blocks. This is a great baseline architecture for many tasks even today!

			Stag	ge 1	Stag	ge 2	Stag	ge 3	Stag	ge 4			
	Block	Stem									FC		ImageNet
	type	layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	layers	GFLOP	top-5 error
ResNet-18	Basic	1	2	4	2	4	2	4	2	4	. 1	. 1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	3	6	1	. 3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	6	18	3	9	1	. 3.8	7.13

Softmax FC 1000 Pool 3x3 conv. 512 3x3 conv, 512, /2 3x3 conv. 64 3x3 conv. 64 3x3 conv, 64 3x3 conv. 64 3x3 conv. 64 3x3 conv. 64 Pool Input

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by <u>torchvision</u>

Justin Johnson

Lecture 8 - 77

Deeper ResNet-101 and ResNet-152 models are more accurate, but also more computationally heavy

			Stag	ge 1	Stag	ge 2	Stag	ge 3	Stag	ge 4			
	Block	Stem									FC		ImageNet
	type	layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	Blocks	Layers	layers	GFLOP	top-5 error
ResNet-18	Basic	1	2	4	2	4	2	4	2	4	1	1.8	10.92
ResNet-34	Basic	1	3	6	4	8	6	12	3	6	1	3.6	8.58
ResNet-50	Bottle	1	3	9	4	12	6	18	3	9	1	3.8	7.13
ResNet-101	Bottle	1	3	9	4	12	23	69	3	9	1	7.6	6.44
ResNet-152	Bottle	1	3	9	8	24	36	108	3	9	1	11.3	5.94

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016 Error rates are 224x224 single-crop testing, reported by torchvision

Justin Johnson

Lecture 8 - 78

- Able to train very deep networks
- Deeper networks do better than shallow networks (as expected)
- Swept 1st place in all ILSVRC and COCO 2015 competitions
- Still widely used today!

MSRA @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

He et al, "Deep Residual Learning for Image Recognition", CVPR 2016

Justin Johnson

Lecture 8 - 79

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

He et al, "Identity mappings in deep residual networks", ECCV 2016

Justin Johnson

Lecture 8 - 80

Improving Residual Networks: Block Design

Original ResNet block

"Pre-Activation" ResNet Block

Slight improvement in accuracy (ImageNet top-1 error)

ResNet-152: 21.3 vs **21.1** ResNet-200: 21.8 vs **20.7**

Not actually used that much in practice

He et al, "Identity mappings in deep residual networks", ECCV 2016

Justin Johnson

Lecture 8 - 81

Canziani et al, "An analysis of deep neural network models for practical applications", 2017

Justin Johnson

Lecture 8 - 82

Inception-v4: Resnet + Inception!

Canziani et al, "An analysis of deep neural network models for practical applications", 2017

Justin Johnson

Lecture 8 - 83

VGG: Highest memory, most operations

Canziani et al, "An analysis of deep neural network models for practical applications", 2017

Justin Johnson

Lecture 8 - 84

GoogLeNet: Very efficient!

Canziani et al, "An analysis of deep neural network models for practical applications", 2017

Justin Johnson

Lecture 8 - 85

AlexNet: Low compute, lots of parameters

Canziani et al, "An analysis of deep neural network models for practical applications", 2017

Justin Johnson

Lecture 8 - 86

Canziani et al, "An analysis of deep neural network models for practical applications", 2017

Justin Johnson

Lecture 8 - 87

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 88

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 89

ImageNet 2016 winner: Model Ensembles

Multi-scale ensemble of Inception, Inception-Resnet, Resnet, Wide Resnet models

	Inception- v3	Inception- v4	Inception- Resnet-v2	Resnet- 200	Wrn-68-3	Fusion (Val.)	Fusion (Test)
Err. (%)	4.20	4.01	3.52	4.26	4.65	2.92 (-0.6)	2.99

Lecture 8 - 90

September 30, 2019

Shao et al, 2016

Justin Johnson

Improving ResNets

Justin Johnson

Lecture 8 - 91

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017

Justin Johnson

Lecture 8 - 92

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017

Justin Johnson

Lecture 8 - 93

<u>Convolution with groups=1</u>: Normal convolution

Input: $C_{in} \times H \times W$ Weight: $C_{out} \times C_{in} \times K \times K$ Output: $C_{out} \times H' \times W'$ FLOPs: $C_{out}C_{in}K^2HW$

All convolutional kernels touch all C_{in} channels of the input

Justin Johnson

Lecture 8 - 95

<u>Convolution with groups=1</u>: Normal convolution

Input: $C_{in} \times H \times W$ Weight: $C_{out} \times C_{in} \times K \times K$ Output: $C_{out} \times H' \times W'$ FLOPs: $C_{out}C_{in}K^2HW$

All convolutional kernels touch all C_{in} channels of the input

Justin Johnson

Lecture 8 - 96

<u>Convolution with groups=1</u>: Normal convolution

Input: C_{in} x H x W Weight: C_{out} x C_{in} x K x K Output: C_{out} x H' x W' FLOPs: C_{out}C_{in}K²HW

All convolutional kernels touch all C_{in} channels of the input

<u>Convolution with groups=G</u>:

G parallel conv layers; each "sees" C_{in}/G input channels and produces C_{out}/G output channels

Input: $C_{in} \times H \times W$ Split to $G \times [(C_{in} / G) \times H \times W]$ Weight: $G \times (C_{out} / G) \times (C_{in} \times G) \times K \times K$ G parallel convolutions Output: $G \times [(C_{out} / G) \times H' \times W']$ Concat to $C_{out} \times H' \times W'$ FLOPs: $C_{out}C_{in}K^2HW/G$

Justin Johnson

Lecture 8 - 97

<u>Convolution with groups=1</u>: Normal convolution

Input: C_{in} x H x W Weight: C_{out} x C_{in} x K x K Output: C_{out} x H' x W' FLOPs: C_{out}C_{in}K²HW

All convolutional kernels touch all C_{in} channels of the input

Depthwise Convolution

Special case: $G=C_{in}$, $C_{out} = nC_{in}$ Each input channel is convolved with n different K x K filters to produce n output channels <u>Convolution with groups=G</u>:

G parallel conv layers; each "sees" C_{in}/G input channels and produces C_{out}/G output channels

Input: $C_{in} \times H \times W$ Split to $G \times [(C_{in} / G) \times H \times W]$ Weight: $G \times (C_{out} / G) \times (C_{in} \times G) \times K \times K$ G parallel convolutions Output: $G \times [(C_{out} / G) \times H' \times W']$ Concat to $C_{out} \times H' \times W'$ FLOPs: $C_{out}C_{in}K^2HW/G$

Justin Johnson

Lecture 8 - 98

Grouped Convolution in PyTorch

PyTorch convolution gives an option for groups!

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, [SOURCE] padding_mode='zeros')

ResNeXt: Maintain computation by adding groups!

Model	Groups	Group width	Top-1 Error
ResNet-50	1	64	23.9
ResNeXt-50	2	40	23
ResNeXt-50	4	24	22.6
ResNeXt-50	8	14	22.3
ResNeXt-50	32	4	22.2

Model	Groups	Group width	Top-1 Error
ResNet-101	1	64	22.0
ResNeXt-101	2	40	21.7
ResNeXt-101	4	24	21.4
ResNeXt-101	8	14	21.3
ResNeXt-101	32	4	21.2

Adding groups improves performance with same computational complexity!

Xie et al, "Aggregated residual transformations for deep neural networks", CVPR 2017

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 102

Squeeze-and-Excitation Networks

Adds a "Squeeze-and-excite" branch to each residual block that performs global pooling, full-connected layers, and multiplies back onto feature map

Adds **global context** to each residual block!

Won ILSVRC 2017 with ResNeXt-152-SE

Hu et al, "Squeeze-and-Excitation networks", CVPR 2018

Lecture 8 - 103

ImageNet Classification Challenge

Justin Johnson

Lecture 8 - 104

Densely Connected Neural Networks

Dense blocks where each layer is connected to every other layer in feedforward fashion

Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse

Dense Block

Huang et al, "Densely connected neural networks", CVPR 2017

Justin Johnson

Lecture 8 - 105

MobileNets: Tiny Networks (For Mobile Devices)

Standard Convolution Block

Total cost: 9C²HW

Depthwise Separable Convolution Total cost: (9C + C²)HW

Howard et al, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", 2017

Justin Johnson

Lecture 8 - 106

MobileNets: Tiny Networks (For Mobile Devices)

Depthwise Separable Convolution

Total cost: $(9C + C^2)HW$

Howard et al, "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications", 2017

Justin Johnson

Lecture 8 - 107

Neural Architecture Search

Designing neural network architectures is hard – let's automate it!

- One network (controller) outputs network architectures
- Sample child networks from controller and train them
- After training a batch of child networks, make a gradient step on controller network (Using **policy gradient**)
- Over time, controller learns to output good architectures!

Zoph and Le, "Neural Architecture Search with Reinforcement Learning", ICLR 2017

Justin Johnson

Lecture 8 - 108
Neural Architecture Search

Designing neural network architectures is hard – let's automate it!

- One network (controller) outputs network architectures
- Sample child networks from controller and train them
- After training a batch of child networks, make a gradient step on controller network (Using **policy gradient**)
- Over time, controller learns to output good architectures!
- VERY EXPENSIVE!! Each gradient step on controller requires training a batch of child models!
- Original paper trained on 800 GPUs for 28 days!
- Followup work has focused on efficient search

Zoph and Le, "Neural Architecture Search with Reinforcement Learning", ICLR 2017

Justin Johnson

Lecture 8 - 109

September 30, 2019

Neural Architecture Search

Neural architecture search can be used to find efficient CNN architectures!

Zoph et al, "Learning Transferable Architectures for Scalable Image Recognition", CVPR 2018

Justin Johnson

Lecture 8 - 110

September 30, 2019

CNN Architectures Summary

Early work (AlexNet -> ZFNet -> VGG) shows that **bigger networks work better**

GoogLeNet one of the first to focus on **efficiency** (aggressive stem, 1x1 bottleneck convolutions, global avg pool instead of FC layers)

ResNet showed us how to train extremely deep networks – limited only by GPU memory! Started to show diminishing returns as networks got bigger

After ResNet: **Efficient networks** became central: how can we improve the accuracy without increasing the complexity?

Lots of **tiny networks** aimed at mobile devices: MobileNet, ShuffleNet, etc

Neural Architecture Search promises to automate architecture design

Justin Johnson

Lecture 8 - 111

Which Architecture should I use?

Don't be a hero. For most problems you should use an off-the-shelf architecture; don't try to design your own!

If you just care about accuracy, **ResNet-50** or **ResNet-101** are great choices

If you want an efficient network (real-time, run on mobile, etc) try **MobileNets** and **ShuffleNets**

Next Time: Deep Learning Hardware and Software

Justin Johnson

Lecture 8 - 113

September 30, 2019