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Lecture	7:
Convolutional	Networks

Lecture	7	- 1
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Reminder:	A2

Lecture	7	- 2

Due	Monday,	September	30,	11:59pm	(Even	if	you	enrolled	late!)

Your	submission	must	pass	the	validation	script
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Slight	schedule	change

Lecture	7	- 3

Content	originally	planned	for	today	got	split	into	two	lectures

Pushes	the	schedule	back	a	bit:

A4	Due	Date:	Friday	11/1	->	Friday	11/8
A5	Due	Date:	Friday	11/15	->	Friday	11/22
A6	Due	Date:	Still	Friday	12/6
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Last	Time:	Backpropagation

Lecture	7	- 4

x

W

hinge	
loss

R

+ Ls (scores)*

Represent	complex	expressions	
as	computational	graphs

Forward	pass	computes	outputs

Backward	pass	computes	gradients

f
Local	

gradients

Upstream	
gradient

Downstream
gradients

During	the	backward	pass,	each	node	in	
the	graph	receives	upstream	gradients
and	multiplies	them	by	local	gradients to	
compute	downstream	gradients
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Input	image
(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

(4,)
x hW1 sW2

Input:
3072

Hidden	layer:
100

Output:	10

f(x,W)	=	Wx

Problem:	So	far	our	
classifiers	don’t	
respect	the	spatial	
structure	of	images!
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Input	image
(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

(4,)
x hW1 sW2

Input:
3072

Hidden	layer:
100

Output:	10

f(x,W)	=	Wx

Problem:	So	far	our	
classifiers	don’t	
respect	the	spatial	
structure	of	images!

Solution:	Define	new	
computational	nodes	
that	operate	on	images!
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Components	of	a	Full-Connected	Network

Lecture	7	- 7

x h s

Fully-Connected	Layers Activation	Function
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Components	of	a	Convolutional	Network

Lecture	7	- 8

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization
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Components	of	a	Convolutional	Network

Lecture	7	- 9

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization



Justin	Johnson September	24,	2019

Fully-Connected	Layer

Lecture	7	- 10

3072
1

32x32x3	image	->	stretch	to	3072	x	1	

10	x	3072	
weights

OutputInput

1
10
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Fully-Connected	Layer

Lecture	7	- 11

3072
1

32x32x3	image	->	stretch	to	3072	x	1	

10	x	3072	
weights

OutputInput

1	number:	
the	result	of	taking	a	dot	
product	between	a	row	of	W	
and	the	input	(a	3072-
dimensional	dot	product)

1
10
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Convolution	Layer

Lecture	7	- 12

32

3

3x32x32 image: preserve	spatial	structure

width
depth	/	
channels

height32
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Convolution	Layer

Lecture	7	- 13

32

3

3x32x32 image

width
depth	/	
channels

3x5x5	filter

Convolve	the	filter	with	the	image
i.e.	“slide	over	the	image	spatially,	
computing	dot	products”

height32
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Convolution	Layer

Lecture	7	- 14

32

3

3x32x32 image

width

height

depth	/	
channels

3x5x5	filter

Filters	always	extend	the	full	
depth	of	the	input	volume

Convolve	the	filter	with	the	image
i.e.	“slide	over	the	image	spatially,	
computing	dot	products”

32
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Convolution	Layer

Lecture	7	- 15

32

3

3x32x32	image

3x5x5	filter

32
1	number:	
the	result	of	taking	a	dot	product	between	the	filter	
and	a	small	3x5x5	chunk	of	the	image
(i.e.	3*5*5	=	75-dimensional	dot	product	+	bias)
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Convolution	Layer

Lecture	7	- 16

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

1x28x28	
activation	map

1

28

28
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Convolution	Layer

Lecture	7	- 17

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

two	1x28x28	
activation	map

1

28

1

28

28

Consider	repeating	with	
a	second	(green)	filter:
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Convolution	Layer

Lecture	7	- 18

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28

Consider	6	filters,	
each	3x5x5	

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 19

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 20

32

3

3x32x32	image

32

28x28	grid,	at	each	
point	a	6-dim	vector

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!
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Convolution	Layer

Lecture	7	- 21

32

3

2x3x32x32
Batch	of	images

32

2x6x28x28
Batch	of	outputs

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters
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Convolution	Layer

Lecture	7	- 22

W

Cin

N	x	Cin x	H	x	W
Batch	of	images

H

N	x	Cout x	H’	x	W’
Batch	of	outputs

Also	Cout-dim	bias	vector:

Convolution	
Layer

Cout x	Cinx Kw x	Kh
filters

Cout
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32

32

3

W1:	6x3x5x5
b1:	5 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv Conv Conv

W3:	12x10x3x3
b3:	12
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32

32

3

W1:	6x3x5x5
b1:	5 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv Conv Conv

W3:	12x10x3x3
b3:	12

Q:	What	happens	if	we	stack	
two	convolution	layers?
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv

W3:	12x10x3x3
b3:	12

Q:	What	happens	if	we	stack	
two	convolution	layers?
A:	We	get	another	convolution!

(Recall	y=W2W1x	is	
a	linear	classifier)

ReLU Conv ReLU Conv ReLU
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6 10

26

26

….

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv

W3:	12x10x3x3
b3:	12

ReLU Conv ReLU Conv ReLU
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

Linear	classifier:	One	template	per	class
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

MLP:	Bank	of	whole-image	templates
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

First-layer	conv	filters:	local	image	templates
(Often	learns	oriented	edges,	opposing	colors)

AlexNet:	64	filters,	each	3x11x11
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32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

A	closer	look	at	spatial	dimensions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU
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A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3
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A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3
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A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3
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A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3
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A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3
Output:	5x5
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A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3
Output:	5x5

In	general:
Input:	W
Filter:	K
Output:	W	– K	+	1

Problem:	Feature	
maps	“shrink”	
with	each	layer!
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0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Lecture	7	- 37

A	closer	look	at	spatial	dimensions

Input:	7x7
Filter:	3x3
Output:	5x5

In	general:
Input:	W
Filter:	K
Output:	W	– K	+	1

Problem:	Feature	
maps	“shrink”	
with	each	layer!

Solution:	padding
Add	zeros	around	the	input
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0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Lecture	7	- 38

A	closer	look	at	spatial	dimensions

Input:	7x7
Filter:	3x3
Output:	5x5

In	general:
Input:	W
Filter:	K
Padding:	P
Output:	W	– K	+	1	+	2P

Very	common:
Set	P	=	(K	– 1)	/	2	to	
make	output	have	
same	size	as	input!
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Receptive	Fields

Input Output

For	convolution	with	kernel	size	K,	each	element	in	the	
output	depends	on	a	K	x	K	receptive	field in	the	input
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Receptive	Fields

Input Output

Each	successive	convolution	adds	K	– 1	to	the	receptive	field	size
With	L	layers	the	receptive	field	size	is	1	+	L	*	(K	– 1)

Be	careful	– ”receptive	field	in	the	input”	vs	“receptive	field	in	the	previous	layer”
Hopefully	clear	from	context!
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Receptive	Fields

Input Output

Each	successive	convolution	adds	K	– 1	to	the	receptive	field	size
With	L	layers	the	receptive	field	size	is	1	+	L	*	(K	– 1)

Problem:	For	large	images	we	need	many	layers	
for	each	output	to	“see”	the	whole	image	image
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Receptive	Fields

Input Output

Each	successive	convolution	adds	K	– 1	to	the	receptive	field	size
With	L	layers	the	receptive	field	size	is	1	+	L	*	(K	– 1)

Problem:	For	large	images	we	need	many	layers	
for	each	output	to	“see”	the	whole	image	image

Solution:	Downsample inside	the	network
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3
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Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3

In	general:
Input:	W
Filter:	K
Padding:	P
Stride:	S
Output:	(W	– K	+	2P)	/	S	+	1
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Convolution	Example

Lecture	7	- 47

Input	volume:	3	x 32 x 32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	?



Justin	Johnson September	24,	2019

Convolution	Example

Lecture	7	- 48

Input	volume:	3	x 32 x 32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	
(32+2*2-5)/1+1	=	32	spatially,	so
10 x	32 x 32
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Convolution	Example

Lecture	7	- 49

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	?
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Convolution	Example

Lecture	7	- 50

Input	volume:	3 x	32	x	32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Parameters	per	filter:	3*5*5	+	1	(for	bias)	=	76
10 filters,	so	total	is	10 *	76 =	760
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Convolution	Example

Lecture	7	- 51

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	?



Justin	Johnson September	24,	2019

Convolution	Example

Lecture	7	- 52

Input	volume:	3 x	32	x	32
10	5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	768,000
10*32*32 =	10,240	outputs;	each	output	is	the	inner	product	
of	two	3x5x5	tensors	(75	elems);	total	=	75*10240	=	768K
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Example:	1x1	Convolution

Lecture	7	- 53

64

56

56
1x1	CONV
with	32	filters

32
56

56

(each	filter	has	size	1x1x64,	
and	performs	a	64-
dimensional	dot	product)
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Example:	1x1	Convolution

Lecture	7	- 54

64

56

56
1x1	CONV
with	32	filters

32
56

56

(each	filter	has	size	1x1x64,	
and	performs	a	64-
dimensional	dot	product)

Lin	et	al,	“Network	in	Network”,	ICLR	2014

Stacking	1x1	conv	layers	
gives	MLP	operating	on	
each	input	position
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Convolution	Summary

Lecture	7	- 55

Input:	Cin x	H	x	W
Hyperparameters:
- Kernel	size:	KH x	KW
- Number	filters:	Cout
- Padding:	P
- Stride:	S
Weight	matrix:	Cout x	Cin x	KH x	KW
giving	Cout filters	of	size	Cin x	KH x	KW
Bias	vector:	Cout
Output	size:	Cout x	H’	x	W’	where:
- H’	=	(H	– K	+	2P)	/	S	+	1
- W’	=	(W	– K	+	2P)	/	S	+	1



Justin	Johnson September	24,	2019

Convolution	Summary

Lecture	7	- 56

Input:	Cin x	H	x	W
Hyperparameters:
- Kernel	size:	KH x	KW
- Number	filters:	Cout
- Padding:	P
- Stride:	S
Weight	matrix:	Cout x	Cin x	KH x	KW
giving	Cout filters	of	size	Cin x	KH x	KW
Bias	vector:	Cout
Output	size:	Cout x	H’	x	W’	where:
- H’	=	(H	– K	+	2P)	/	S	+	1
- W’	=	(W	– K	+	2P)	/	S	+	1

Common	settings:
KH =	KW	 (Small	square	filters)
P	=	(K	– 1)	/	2		(”Same”	padding)
Cin,	Cout =	32,	64,	128,	256	(powers	of	2)
K	=	3,	P	=	1,	S	=	1	(3x3	conv)
K	=	5,	P	=	2,	S	=	1	(5x5	conv)
K	=	1,	P	=	0,	S	=	1	(1x1	conv)
K	=	3,	P	=	1,	S	=	2	(Downsample by	2)
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Other	types	of	convolution

Lecture	7	- 57

So	far:	2D	Convolution

Cin
W

H

Input:	Cin x	H	x	W
Weights:	Cout x	Cin x	K	x	K
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Other	types	of	convolution

Lecture	7	- 58

So	far:	2D	Convolution 1D	Convolution

Cin
W

H

Input:	Cin x	H	x	W
Weights:	Cout x	Cin x	K	x	K

Cin

W

Input:	Cin x	W
Weights:	Cout x	Cin x	K
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Other	types	of	convolution

Lecture	7	- 59

So	far:	2D	Convolution 3D	Convolution

Cin
W

H

Input:	Cin x	H	x	W
Weights:	Cout x	Cin x	K	x	K

Cin-dim	vector	
at	each	point	
in	the	volume

W

D

H

Input:	Cin x	H	x	W	x	D
Weights:	Cout x	Cin x	K	x	K	x	K
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PyTorch Convolution	Layer
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PyTorch Convolution	Layers
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Components	of	a	Convolutional	Network

Lecture	7	- 62

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization
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Pooling	Layers:	Another	way	to	downsample

Lecture	7	- 63

Hyperparameters:
Kernel	Size
Stride
Pooling	function



Justin	Johnson September	24,	2019

Max	Pooling

Lecture	7	- 64

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single	depth	slice

x

y

Max	pooling	with	2x2	
kernel	size	and	stride	2 6 8

3 4

Introduces	invariance to	
small	spatial	shifts
No	learnable	parameters!
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Pooling	Summary

Lecture	7	- 65

Input:	C	x	H	x	W
Hyperparameters:
- Kernel	size:	K
- Stride:	S
- Pooling	function	(max,	avg)
Output:	C	x	H’	x	W’	where
- H’	=	(H	– K)	/	S	+	1
- W’	=	(W	– K)	/	S	+	1
Learnable	parameters:	None!

Common	settings:
max,	K	=	2,	S	=	2
max,	K	=	3,	S	=	2	(AlexNet)
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Components	of	a	Convolutional	Network

Lecture	7	- 66

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization
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Convolutional	Networks

Lecture	7	- 67

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

Classic	architecture:	[Conv,	ReLU,	Pool]	x	N,	flatten,	[FC,	ReLU]	x	N,	FC

Example:	LeNet-5
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Example:	LeNet-5

Lecture	7	- 68

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998
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Example:	LeNet-5

Lecture	7	- 69

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 70

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998
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Example:	LeNet-5

Lecture	7	- 71

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998
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Example:	LeNet-5

Lecture	7	- 72

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998
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Example:	LeNet-5

Lecture	7	- 73

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998
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Example:	LeNet-5

Lecture	7	- 74

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998
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Example:	LeNet-5

Lecture	7	- 75

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998
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Example:	LeNet-5

Lecture	7	- 76

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

As	we	go	through	the	network:

Spatial	size	decreases	
(using	pooling	or	strided conv)

Number	of	channels	increases
(total	“volume”	is	preserved!)
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Problem:	Deep	Networks	very	hard	to	train!

Lecture	7	- 77
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Components	of	a	Convolutional	Network

Lecture	7	- 78

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization
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Batch	Normalization

Lecture	7	- 79

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	network	training	by	reducing	internal	covariate	shift”,	ICML	2015

Idea:	“Normalize”	the	outputs	of	a	layer	so	they	have	zero	mean	
and	unit	variance

Why?	Helps	reduce	“internal	covariate	shift”,	improves	optimization

We	can	normalize	a	batch	of	activations	like	this:

This	is	a	differentiable	function,	so	
we	can	use	it	as	an	operator	in	our	
networks	and	backprop through	it!
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Batch	Normalization

Lecture	7	- 80

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	network	training	by	reducing	internal	covariate	shift”,	ICML	2015

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

XN

D

Per-channel	
std,	shape	is	D
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Batch	Normalization

Lecture	7	- 81

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	network	training	by	reducing	internal	covariate	shift”,	ICML	2015

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

XN

D Problem:	What	if	zero-mean,	unit	
variance	is	too	hard	of	a	constraint?	

Per-channel	
std,	shape	is	D
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Batch	Normalization

Lecture	7	- 82

Learnable	scale	and	
shift	parameters:

Output,
Shape	is	N	x	D

Learning					=				,
=						will	recover	the	

identity	function!

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

Per-channel	
std,	shape	is	D
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Batch	Normalization:	Test-Time

Lecture	7	- 83

Learnable	scale	and	
shift	parameters:

Output,
Shape	is	N	x	D

Learning					=				,
=						will	recover	the	

identity	function!

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

Per-channel	
std,	shape	is	D

Problem:	Estimates	depend	on	
minibatch;	can’t	do	this	at	test-time!
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Batch	Normalization:	Test-Time

Lecture	7	- 84

Learnable	scale	and	
shift	parameters:

Output,
Shape	is	N	x	D

Learning					=				,
=						will	recover	the	

identity	function!

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

Per-channel	
std,	shape	is	D

(Running)	average	of	
values	seen	during	
training

(Running)	average	of	
values	seen	during	
training
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Batch	Normalization:	Test-Time

Lecture	7	- 85

Learnable	scale	and	
shift	parameters:

Output,
Shape	is	N	x	D

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

Per-channel	
std,	shape	is	D

(Running)	average	of	
values	seen	during	
training

(Running)	average	of	
values	seen	during	
training

During	testing	batchnorm
becomes	a	linear	operator!	
Can	be	fused	with	the	previous	
fully-connected	or	conv	layer
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Batch	Normalization	for	ConvNets

Lecture	7	- 86

x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Batch	Normalization	for	
fully-connected networks

Batch	Normalization	for	
convolutional networks
(Spatial	Batchnorm,	BatchNorm2D)
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Batch	Normalization

Lecture	7	- 87

FC

BN

tanh

FC

BN

tanh

Usually	inserted	after	Fully	Connected	
or	Convolutional	layers,	and	before	
nonlinearity.

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	
network	training	by	reducing	internal	covariate	shift”,	ICML	2015
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Batch	Normalization

Lecture	7	- 88

FC

BN

tanh

FC

BN

tanh

- Makes	deep	networks	much	easier	to	train!
- Allows	higher	learning	rates,	faster	convergence
- Networks	become	more	robust	to	initialization
- Acts	as	regularization	during	training
- Zero	overhead	at	test-time:	can	be	fused	with	conv!

Training	iterations

ImageNet	
accuracy

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	
network	training	by	reducing	internal	covariate	shift”,	ICML	2015
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Batch	Normalization

Lecture	7	- 89

FC

BN

tanh

FC

BN

tanh

- Makes	deep	networks	much	easier	to	train!
- Allows	higher	learning	rates,	faster	convergence
- Networks	become	more	robust	to	initialization
- Acts	as	regularization	during	training
- Zero	overhead	at	test-time:	can	be	fused	with	conv!
- Not	well-understood	theoretically	(yet)
- Behaves	differently	during	training	and	testing:	this	

is	a	very	common	source	of	bugs!

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	
network	training	by	reducing	internal	covariate	shift”,	ICML	2015
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Layer	Normalization

Lecture	7	- 90

x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

x: N × D

𝞵,𝝈: N × 1
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Layer	Normalization for	fully-
connected	networks
Same	behavior	at	train	and	test!
Used	in	RNNs,	Transformers

Batch	Normalization for	
fully-connected	networks

Ba,	Kiros,	and	Hinton,	“Layer	Normalization”,	arXiv 2016
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Instance	Normalization

Lecture	7	- 91

Ulyanov	et	al,	Improved	Texture	Networks:	Maximizing	Quality	and	Diversity	in	Feed-forward	Stylization	and	Texture	Synthesis,	CVPR	2017

x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Instance	Normalization for	
convolutional	networks
Same	behavior	at	train	/	test!

Batch	Normalization for	
convolutional	networks
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Comparison	of	Normalization	Layers

Lecture	7	- 92

Wu	and	He,	“Group	Normalization”,	ECCV	2018
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Group	Normalization

Lecture	7	- 93

Wu	and	He,	“Group	Normalization”,	ECCV	2018
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Components	of	a	Convolutional	Network

Lecture	7	- 94

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers

Activation	Function Normalization
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Components	of	a	Convolutional	Network

Lecture	7	- 95

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers

Activation	Function Normalization

Most	
computationally	

expensive!
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Summary:	Components	of	a	Convolutional	Network
Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers

Activation	Function Normalization
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Summary:	Components	of	a	Convolutional	Network

Problem:	What	is	the	right	way	to	combine	all	these	components?
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Next	time:
CNN	Architectures

Lecture	7	- 98


