
Justin	Johnson September	24,	2019

Lecture	7:
Convolutional	Networks

Lecture	7	- 1



Justin	Johnson September	24,	2019

Reminder:	A2

Lecture	7	- 2

Due	Monday,	September	30,	11:59pm	(Even	if	you	enrolled	late!)

Your	submission	must	pass	the	validation	script



Justin	Johnson September	24,	2019

Slight	schedule	change

Lecture	7	- 3

Content	originally	planned	for	today	got	split	into	two	lectures

Pushes	the	schedule	back	a	bit:

A4	Due	Date:	Friday	11/1	->	Friday	11/8
A5	Due	Date:	Friday	11/15	->	Friday	11/22
A6	Due	Date:	Still	Friday	12/6



Justin	Johnson September	24,	2019

Last	Time:	Backpropagation

Lecture	7	- 4

x

W

hinge	
loss

R

+ Ls (scores)*

Represent	complex	expressions	
as	computational	graphs

Forward	pass	computes	outputs

Backward	pass	computes	gradients

f
Local	

gradients

Upstream	
gradient

Downstream
gradients

During	the	backward	pass,	each	node	in	
the	graph	receives	upstream	gradients
and	multiplies	them	by	local	gradients to	
compute	downstream	gradients



Justin	Johnson September	24,	2019Lecture	7	- 5

Input	image
(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

(4,)
x hW1 sW2

Input:
3072

Hidden	layer:
100

Output:	10

f(x,W)	=	Wx

Problem:	So	far	our	
classifiers	don’t	
respect	the	spatial	
structure	of	images!



Justin	Johnson September	24,	2019Lecture	7	- 6

Input	image
(2,	2)

56

231

24

2

56 231

24 2

Stretch	pixels	into	column

(4,)
x hW1 sW2

Input:
3072

Hidden	layer:
100

Output:	10

f(x,W)	=	Wx

Problem:	So	far	our	
classifiers	don’t	
respect	the	spatial	
structure	of	images!

Solution:	Define	new	
computational	nodes	
that	operate	on	images!



Justin	Johnson September	24,	2019

Components	of	a	Full-Connected	Network

Lecture	7	- 7

x h s

Fully-Connected	Layers Activation	Function



Justin	Johnson September	24,	2019

Components	of	a	Convolutional	Network

Lecture	7	- 8

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization



Justin	Johnson September	24,	2019

Components	of	a	Convolutional	Network

Lecture	7	- 9

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization



Justin	Johnson September	24,	2019

Fully-Connected	Layer

Lecture	7	- 10

3072
1

32x32x3	image	->	stretch	to	3072	x	1	

10	x	3072	
weights

OutputInput

1
10



Justin	Johnson September	24,	2019

Fully-Connected	Layer

Lecture	7	- 11

3072
1

32x32x3	image	->	stretch	to	3072	x	1	

10	x	3072	
weights

OutputInput

1	number:	
the	result	of	taking	a	dot	
product	between	a	row	of	W	
and	the	input	(a	3072-
dimensional	dot	product)

1
10



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 12

32

3

3x32x32 image: preserve	spatial	structure

width
depth	/	
channels

height32



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 13

32

3

3x32x32 image

width
depth	/	
channels

3x5x5	filter

Convolve	the	filter	with	the	image
i.e.	“slide	over	the	image	spatially,	
computing	dot	products”

height32



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 14

32

3

3x32x32 image

width

height

depth	/	
channels

3x5x5	filter

Filters	always	extend	the	full	
depth	of	the	input	volume

Convolve	the	filter	with	the	image
i.e.	“slide	over	the	image	spatially,	
computing	dot	products”

32



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 15

32

3

3x32x32	image

3x5x5	filter

32
1	number:	
the	result	of	taking	a	dot	product	between	the	filter	
and	a	small	3x5x5	chunk	of	the	image
(i.e.	3*5*5	=	75-dimensional	dot	product	+	bias)



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 16

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

1x28x28	
activation	map

1

28

28



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 17

32

3

3x32x32	image

3x5x5	filter

32
convolve	(slide)	over	
all	spatial	locations

two	1x28x28	
activation	map

1

28

1

28

28

Consider	repeating	with	
a	second	(green)	filter:



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 18

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28

Consider	6	filters,	
each	3x5x5	

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 19

32

3

3x32x32	image

32

6	activation	maps,
each	1x28x28Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 20

32

3

3x32x32	image

32

28x28	grid,	at	each	
point	a	6-dim	vector

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters Stack	activations	to	get	a	

6x28x28	output	image!



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 21

32

3

2x3x32x32
Batch	of	images

32

2x6x28x28
Batch	of	outputs

Also	6-dim	bias	vector:

Convolution	
Layer

6x3x5x5	
filters



Justin	Johnson September	24,	2019

Convolution	Layer

Lecture	7	- 22

W

Cin

N	x	Cin x	H	x	W
Batch	of	images

H

N	x	Cout x	H’	x	W’
Batch	of	outputs

Also	Cout-dim	bias	vector:

Convolution	
Layer

Cout x	Cinx Kw x	Kh
filters

Cout



Justin	Johnson September	24,	2019Lecture	7	- 23

32

32

3

W1:	6x3x5x5
b1:	5 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv Conv Conv

W3:	12x10x3x3
b3:	12



Justin	Johnson September	24,	2019Lecture	7	- 24

32

32

3

W1:	6x3x5x5
b1:	5 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv Conv Conv

W3:	12x10x3x3
b3:	12

Q:	What	happens	if	we	stack	
two	convolution	layers?



Justin	Johnson September	24,	2019Lecture	7	- 25

32

32

3

W1:	6x3x5x5
b1:	6 28

28

6 10

26

26

….

Stacking	Convolutions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv

W3:	12x10x3x3
b3:	12

Q:	What	happens	if	we	stack	
two	convolution	layers?
A:	We	get	another	convolution!

(Recall	y=W2W1x	is	
a	linear	classifier)

ReLU Conv ReLU Conv ReLU



Justin	Johnson September	24,	2019Lecture	7	- 26

32

32

3

W1:	6x3x5x5
b1:	6 28

28

6 10

26

26

….

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

W2:	10x6x3x3
b2:	10

Second	hidden	layer:	
N	x	10	x	26	x	26

Conv

W3:	12x10x3x3
b3:	12

ReLU Conv ReLU Conv ReLU



Justin	Johnson September	24,	2019Lecture	7	- 27

32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

Linear	classifier:	One	template	per	class



Justin	Johnson September	24,	2019Lecture	7	- 28

32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

MLP:	Bank	of	whole-image	templates



Justin	Johnson September	24,	2019Lecture	7	- 29

32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

What	do	convolutional	filters	learn?	

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU

First-layer	conv	filters:	local	image	templates
(Often	learns	oriented	edges,	opposing	colors)

AlexNet:	64	filters,	each	3x11x11



Justin	Johnson September	24,	2019Lecture	7	- 30

32

32

3

W1:	6x3x5x5
b1:	6 28

28

6

A	closer	look	at	spatial	dimensions

Input:	
N	x	3	x	32	x	32

First	hidden	layer:	
N	x	6	x	28	x	28

Conv ReLU



Justin	Johnson September	24,	2019Lecture	7	- 31

A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3



Justin	Johnson September	24,	2019Lecture	7	- 32

A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3



Justin	Johnson September	24,	2019Lecture	7	- 33

A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3



Justin	Johnson September	24,	2019Lecture	7	- 34

A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3



Justin	Johnson September	24,	2019Lecture	7	- 35

A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3
Output:	5x5



Justin	Johnson September	24,	2019Lecture	7	- 36

A	closer	look	at	spatial	dimensions

7

7

Input:	7x7
Filter:	3x3
Output:	5x5

In	general:
Input:	W
Filter:	K
Output:	W	– K	+	1

Problem:	Feature	
maps	“shrink”	
with	each	layer!



Justin	Johnson September	24,	2019

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Lecture	7	- 37

A	closer	look	at	spatial	dimensions

Input:	7x7
Filter:	3x3
Output:	5x5

In	general:
Input:	W
Filter:	K
Output:	W	– K	+	1

Problem:	Feature	
maps	“shrink”	
with	each	layer!

Solution:	padding
Add	zeros	around	the	input



Justin	Johnson September	24,	2019

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

Lecture	7	- 38

A	closer	look	at	spatial	dimensions

Input:	7x7
Filter:	3x3
Output:	5x5

In	general:
Input:	W
Filter:	K
Padding:	P
Output:	W	– K	+	1	+	2P

Very	common:
Set	P	=	(K	– 1)	/	2	to	
make	output	have	
same	size	as	input!



Justin	Johnson September	24,	2019Lecture	7	- 39

Receptive	Fields

Input Output

For	convolution	with	kernel	size	K,	each	element	in	the	
output	depends	on	a	K	x	K	receptive	field in	the	input



Justin	Johnson September	24,	2019Lecture	7	- 40

Receptive	Fields

Input Output

Each	successive	convolution	adds	K	– 1	to	the	receptive	field	size
With	L	layers	the	receptive	field	size	is	1	+	L	*	(K	– 1)

Be	careful	– ”receptive	field	in	the	input”	vs	“receptive	field	in	the	previous	layer”
Hopefully	clear	from	context!



Justin	Johnson September	24,	2019Lecture	7	- 41

Receptive	Fields

Input Output

Each	successive	convolution	adds	K	– 1	to	the	receptive	field	size
With	L	layers	the	receptive	field	size	is	1	+	L	*	(K	– 1)

Problem:	For	large	images	we	need	many	layers	
for	each	output	to	“see”	the	whole	image	image



Justin	Johnson September	24,	2019Lecture	7	- 42

Receptive	Fields

Input Output

Each	successive	convolution	adds	K	– 1	to	the	receptive	field	size
With	L	layers	the	receptive	field	size	is	1	+	L	*	(K	– 1)

Problem:	For	large	images	we	need	many	layers	
for	each	output	to	“see”	the	whole	image	image

Solution:	Downsample inside	the	network



Justin	Johnson September	24,	2019Lecture	7	- 43

Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2



Justin	Johnson September	24,	2019Lecture	7	- 44

Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2



Justin	Johnson September	24,	2019Lecture	7	- 45

Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3



Justin	Johnson September	24,	2019Lecture	7	- 46

Strided Convolution
Input:	7x7
Filter:	3x3
Stride:	2

Output:	3x3

In	general:
Input:	W
Filter:	K
Padding:	P
Stride:	S
Output:	(W	– K	+	2P)	/	S	+	1



Justin	Johnson September	24,	2019

Convolution	Example

Lecture	7	- 47

Input	volume:	3	x 32 x 32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	?



Justin	Johnson September	24,	2019

Convolution	Example

Lecture	7	- 48

Input	volume:	3	x 32 x 32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	
(32+2*2-5)/1+1	=	32	spatially,	so
10 x	32 x 32



Justin	Johnson September	24,	2019

Convolution	Example

Lecture	7	- 49

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	?



Justin	Johnson September	24,	2019

Convolution	Example

Lecture	7	- 50

Input	volume:	3 x	32	x	32
10 5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Parameters	per	filter:	3*5*5	+	1	(for	bias)	=	76
10 filters,	so	total	is	10 *	76 =	760



Justin	Johnson September	24,	2019

Convolution	Example

Lecture	7	- 51

Input	volume:	3	x	32	x	32
10	5x5	filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	?



Justin	Johnson September	24,	2019

Convolution	Example

Lecture	7	- 52

Input	volume:	3 x	32	x	32
10	5x5 filters	with	stride	1,	pad	2

Output	volume	size:	10	x	32	x	32
Number	of	learnable	parameters:	760
Number	of	multiply-add	operations:	768,000
10*32*32 =	10,240	outputs;	each	output	is	the	inner	product	
of	two	3x5x5	tensors	(75	elems);	total	=	75*10240	=	768K



Justin	Johnson September	24,	2019

Example:	1x1	Convolution

Lecture	7	- 53

64

56

56
1x1	CONV
with	32	filters

32
56

56

(each	filter	has	size	1x1x64,	
and	performs	a	64-
dimensional	dot	product)



Justin	Johnson September	24,	2019

Example:	1x1	Convolution

Lecture	7	- 54

64

56

56
1x1	CONV
with	32	filters

32
56

56

(each	filter	has	size	1x1x64,	
and	performs	a	64-
dimensional	dot	product)

Lin	et	al,	“Network	in	Network”,	ICLR	2014

Stacking	1x1	conv	layers	
gives	MLP	operating	on	
each	input	position



Justin	Johnson September	24,	2019

Convolution	Summary

Lecture	7	- 55

Input:	Cin x	H	x	W
Hyperparameters:
- Kernel	size:	KH x	KW
- Number	filters:	Cout
- Padding:	P
- Stride:	S
Weight	matrix:	Cout x	Cin x	KH x	KW
giving	Cout filters	of	size	Cin x	KH x	KW
Bias	vector:	Cout
Output	size:	Cout x	H’	x	W’	where:
- H’	=	(H	– K	+	2P)	/	S	+	1
- W’	=	(W	– K	+	2P)	/	S	+	1



Justin	Johnson September	24,	2019

Convolution	Summary

Lecture	7	- 56

Input:	Cin x	H	x	W
Hyperparameters:
- Kernel	size:	KH x	KW
- Number	filters:	Cout
- Padding:	P
- Stride:	S
Weight	matrix:	Cout x	Cin x	KH x	KW
giving	Cout filters	of	size	Cin x	KH x	KW
Bias	vector:	Cout
Output	size:	Cout x	H’	x	W’	where:
- H’	=	(H	– K	+	2P)	/	S	+	1
- W’	=	(W	– K	+	2P)	/	S	+	1

Common	settings:
KH =	KW	 (Small	square	filters)
P	=	(K	– 1)	/	2		(”Same”	padding)
Cin,	Cout =	32,	64,	128,	256	(powers	of	2)
K	=	3,	P	=	1,	S	=	1	(3x3	conv)
K	=	5,	P	=	2,	S	=	1	(5x5	conv)
K	=	1,	P	=	0,	S	=	1	(1x1	conv)
K	=	3,	P	=	1,	S	=	2	(Downsample by	2)



Justin	Johnson September	24,	2019

Other	types	of	convolution

Lecture	7	- 57

So	far:	2D	Convolution

Cin
W

H

Input:	Cin x	H	x	W
Weights:	Cout x	Cin x	K	x	K



Justin	Johnson September	24,	2019

Other	types	of	convolution

Lecture	7	- 58

So	far:	2D	Convolution 1D	Convolution

Cin
W

H

Input:	Cin x	H	x	W
Weights:	Cout x	Cin x	K	x	K

Cin

W

Input:	Cin x	W
Weights:	Cout x	Cin x	K



Justin	Johnson September	24,	2019

Other	types	of	convolution

Lecture	7	- 59

So	far:	2D	Convolution 3D	Convolution

Cin
W

H

Input:	Cin x	H	x	W
Weights:	Cout x	Cin x	K	x	K

Cin-dim	vector	
at	each	point	
in	the	volume

W

D

H

Input:	Cin x	H	x	W	x	D
Weights:	Cout x	Cin x	K	x	K	x	K



Justin	Johnson September	24,	2019Lecture	7	- 60

PyTorch Convolution	Layer



Justin	Johnson September	24,	2019Lecture	7	- 61

PyTorch Convolution	Layers



Justin	Johnson September	24,	2019

Components	of	a	Convolutional	Network

Lecture	7	- 62

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization



Justin	Johnson September	24,	2019

Pooling	Layers:	Another	way	to	downsample

Lecture	7	- 63

Hyperparameters:
Kernel	Size
Stride
Pooling	function



Justin	Johnson September	24,	2019

Max	Pooling

Lecture	7	- 64

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single	depth	slice

x

y

Max	pooling	with	2x2	
kernel	size	and	stride	2 6 8

3 4

Introduces	invariance to	
small	spatial	shifts
No	learnable	parameters!



Justin	Johnson September	24,	2019

Pooling	Summary

Lecture	7	- 65

Input:	C	x	H	x	W
Hyperparameters:
- Kernel	size:	K
- Stride:	S
- Pooling	function	(max,	avg)
Output:	C	x	H’	x	W’	where
- H’	=	(H	– K)	/	S	+	1
- W’	=	(W	– K)	/	S	+	1
Learnable	parameters:	None!

Common	settings:
max,	K	=	2,	S	=	2
max,	K	=	3,	S	=	2	(AlexNet)



Justin	Johnson September	24,	2019

Components	of	a	Convolutional	Network

Lecture	7	- 66

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization



Justin	Johnson September	24,	2019

Convolutional	Networks

Lecture	7	- 67

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

Classic	architecture:	[Conv,	ReLU,	Pool]	x	N,	flatten,	[FC,	ReLU]	x	N,	FC

Example:	LeNet-5



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 68

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 69

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 70

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 71

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 72

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 73

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 74

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 75

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998



Justin	Johnson September	24,	2019

Example:	LeNet-5

Lecture	7	- 76

Layer Output	Size Weight	Size
Input 1	x	28 x	28
Conv	(Cout=20,	K=5, P=2,	S=1) 20	x	28	x	28 20	x	1	x	5	x	5
ReLU 20	x	28	x	28
MaxPool(K=2,	S=2) 20	x	14 x	14
Conv (Cout=50,	K=5,	P=2,	S=1) 50	x	14	x	14 50	x	20	x	5	x	5
ReLU 50	x	14	x	14
MaxPool(K=2, S=2) 50	x	7	x	7
Flatten 2450
Linear	(2450 ->	500) 500 2450	x	500
ReLU 500
Linear	(500	->	10) 10 500	x	10

Lecun et	al,	“Gradient-based	learning	applied	to	document	recognition”,	1998

As	we	go	through	the	network:

Spatial	size	decreases	
(using	pooling	or	strided conv)

Number	of	channels	increases
(total	“volume”	is	preserved!)



Justin	Johnson September	24,	2019

Problem:	Deep	Networks	very	hard	to	train!

Lecture	7	- 77



Justin	Johnson September	24,	2019

Components	of	a	Convolutional	Network

Lecture	7	- 78

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers Activation	Function

Normalization



Justin	Johnson September	24,	2019

Batch	Normalization

Lecture	7	- 79

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	network	training	by	reducing	internal	covariate	shift”,	ICML	2015

Idea:	“Normalize”	the	outputs	of	a	layer	so	they	have	zero	mean	
and	unit	variance

Why?	Helps	reduce	“internal	covariate	shift”,	improves	optimization

We	can	normalize	a	batch	of	activations	like	this:

This	is	a	differentiable	function,	so	
we	can	use	it	as	an	operator	in	our	
networks	and	backprop through	it!



Justin	Johnson September	24,	2019

Batch	Normalization

Lecture	7	- 80

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	network	training	by	reducing	internal	covariate	shift”,	ICML	2015

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

XN

D

Per-channel	
std,	shape	is	D



Justin	Johnson September	24,	2019

Batch	Normalization

Lecture	7	- 81

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	network	training	by	reducing	internal	covariate	shift”,	ICML	2015

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

XN

D Problem:	What	if	zero-mean,	unit	
variance	is	too	hard	of	a	constraint?	

Per-channel	
std,	shape	is	D



Justin	Johnson September	24,	2019

Batch	Normalization

Lecture	7	- 82

Learnable	scale	and	
shift	parameters:

Output,
Shape	is	N	x	D

Learning					=				,
=						will	recover	the	

identity	function!

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

Per-channel	
std,	shape	is	D



Justin	Johnson September	24,	2019

Batch	Normalization:	Test-Time

Lecture	7	- 83

Learnable	scale	and	
shift	parameters:

Output,
Shape	is	N	x	D

Learning					=				,
=						will	recover	the	

identity	function!

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

Per-channel	
std,	shape	is	D

Problem:	Estimates	depend	on	
minibatch;	can’t	do	this	at	test-time!



Justin	Johnson September	24,	2019

Batch	Normalization:	Test-Time

Lecture	7	- 84

Learnable	scale	and	
shift	parameters:

Output,
Shape	is	N	x	D

Learning					=				,
=						will	recover	the	

identity	function!

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

Per-channel	
std,	shape	is	D

(Running)	average	of	
values	seen	during	
training

(Running)	average	of	
values	seen	during	
training



Justin	Johnson September	24,	2019

Batch	Normalization:	Test-Time

Lecture	7	- 85

Learnable	scale	and	
shift	parameters:

Output,
Shape	is	N	x	D

Input: Per-channel	
mean,	shape	is	D

Normalized	x,
Shape	is	N	x	D

Per-channel	
std,	shape	is	D

(Running)	average	of	
values	seen	during	
training

(Running)	average	of	
values	seen	during	
training

During	testing	batchnorm
becomes	a	linear	operator!	
Can	be	fused	with	the	previous	
fully-connected	or	conv	layer



Justin	Johnson September	24,	2019

Batch	Normalization	for	ConvNets

Lecture	7	- 86

x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Batch	Normalization	for	
fully-connected networks

Batch	Normalization	for	
convolutional networks
(Spatial	Batchnorm,	BatchNorm2D)



Justin	Johnson September	24,	2019

Batch	Normalization

Lecture	7	- 87

FC

BN

tanh

FC

BN

tanh

Usually	inserted	after	Fully	Connected	
or	Convolutional	layers,	and	before	
nonlinearity.

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	
network	training	by	reducing	internal	covariate	shift”,	ICML	2015



Justin	Johnson September	24,	2019

Batch	Normalization

Lecture	7	- 88

FC

BN

tanh

FC

BN

tanh

- Makes	deep	networks	much	easier	to	train!
- Allows	higher	learning	rates,	faster	convergence
- Networks	become	more	robust	to	initialization
- Acts	as	regularization	during	training
- Zero	overhead	at	test-time:	can	be	fused	with	conv!

Training	iterations

ImageNet	
accuracy

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	
network	training	by	reducing	internal	covariate	shift”,	ICML	2015



Justin	Johnson September	24,	2019

Batch	Normalization

Lecture	7	- 89

FC

BN

tanh

FC

BN

tanh

- Makes	deep	networks	much	easier	to	train!
- Allows	higher	learning	rates,	faster	convergence
- Networks	become	more	robust	to	initialization
- Acts	as	regularization	during	training
- Zero	overhead	at	test-time:	can	be	fused	with	conv!
- Not	well-understood	theoretically	(yet)
- Behaves	differently	during	training	and	testing:	this	

is	a	very	common	source	of	bugs!

Ioffe and	Szegedy,	“Batch	normalization:	Accelerating	deep	
network	training	by	reducing	internal	covariate	shift”,	ICML	2015



Justin	Johnson September	24,	2019

Layer	Normalization

Lecture	7	- 90

x: N × D

𝞵,𝝈: 1 × D
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

x: N × D

𝞵,𝝈: N × 1
ɣ,β: 1 × D
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Layer	Normalization for	fully-
connected	networks
Same	behavior	at	train	and	test!
Used	in	RNNs,	Transformers

Batch	Normalization for	
fully-connected	networks

Ba,	Kiros,	and	Hinton,	“Layer	Normalization”,	arXiv 2016



Justin	Johnson September	24,	2019

Instance	Normalization

Lecture	7	- 91

Ulyanov	et	al,	Improved	Texture	Networks:	Maximizing	Quality	and	Diversity	in	Feed-forward	Stylization	and	Texture	Synthesis,	CVPR	2017

x: N×C×H×W

𝞵,𝝈: 1×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

x: N×C×H×W

𝞵,𝝈: N×C×1×1
ɣ,β: 1×C×1×1
y = ɣ(x-𝞵)/𝝈+β

Normalize Normalize

Instance	Normalization for	
convolutional	networks
Same	behavior	at	train	/	test!

Batch	Normalization for	
convolutional	networks



Justin	Johnson September	24,	2019

Comparison	of	Normalization	Layers

Lecture	7	- 92

Wu	and	He,	“Group	Normalization”,	ECCV	2018



Justin	Johnson September	24,	2019

Group	Normalization

Lecture	7	- 93

Wu	and	He,	“Group	Normalization”,	ECCV	2018



Justin	Johnson September	24,	2019

Components	of	a	Convolutional	Network

Lecture	7	- 94

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers

Activation	Function Normalization



Justin	Johnson September	24,	2019

Components	of	a	Convolutional	Network

Lecture	7	- 95

Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers

Activation	Function Normalization

Most	
computationally	

expensive!



Justin	Johnson September	24,	2019Lecture	7	- 96

Summary:	Components	of	a	Convolutional	Network
Convolution	Layers Pooling	Layers

x h s

Fully-Connected	Layers

Activation	Function Normalization



Justin	Johnson September	24,	2019Lecture	7	- 97

Summary:	Components	of	a	Convolutional	Network

Problem:	What	is	the	right	way	to	combine	all	these	components?



Justin	Johnson September	24,	2019

Next	time:
CNN	Architectures

Lecture	7	- 98


