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Lecture	5:
Neural	Networks
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Waitlist	update
I	was	confused	about	the	way	waitlists	work	on	Monday	=(

We	have	set	enrollment	sizes	of	35	/	85	for	498	/	598

Each	day	overrides	will	be	sent	automatically	in	waitlist	order	to	fill	up	
to	capacity

If	you	don’t	enroll	within	a	day	of	getting	an	override	you	will	be	
dropped	from	the	waitlist

Lecture	5	- 2
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Assignment	1
Was	due	on	Sunday

If	you	use	all	3	late	days	then	you	can	turn	it	in	today	with	no	penalty

If	you	enrolled	late,	your	A1	will	be	due	one	week	from	the	time	you	
enrolled

Lecture	5	- 3
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Assignment	2
Due	Monday,	September	30

Much	longer	than	A1	– Start	early

Your	submission	must pass	the	validation	script to	be	graded!

We	will	be	lenient	on	A1	submissions,	but	starting	with	A2	we	will	not	
grade	your	assignment	if	it	does	not	pass	the	validation	script

Lecture	5	- 4
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Where	we	are:

Lecture	5	- 5

1. Use	Linear	Models for	image	
classification	problems

2. Use	Loss	Functions to	express	
preferences	over	different	
choices	of	weights

3. Use	Stochastic	Gradient	
Descent to	minimize	our	loss	
functions	and	train	the	model

Softmax SVM
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Problem:	Linear	Classifiers	aren’t	that	powerful

Lecture	5	- 6

x

y
Geometric	Viewpoint Visual	Viewpoint

One	template	per	class:
Can’t	recognize	different	

modes	of	a	class
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One	solution:	Feature	Transforms

Lecture	5	- 7

x

y
Original	space

r	=	(x2 +	y2)1/2
θ =	tan-1(y/x)

Feature	
transform
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One	solution:	Feature	Transforms

Lecture	5	- 8

x

y
Original	space

r	=	(x2 +	y2)1/2
θ =	tan-1(y/x)

Feature	space

Feature	
transform

r

θ
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One	solution:	Feature	Transforms

Lecture	5	- 9

x

y
Original	space

r	=	(x2 +	y2)1/2
θ =	tan-1(y/x)

Feature	space

Feature	
transform

r

θ

Linear	classifier	
in	feature	space
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One	solution:	Feature	Transforms

Lecture	5	- 10

x

y
Original	space

r	=	(x2 +	y2)1/2
θ =	tan-1(y/x)

Feature	space

Feature	
transform

r

θ

Linear	classifier	
in	feature	space

Nonlinear	classifier	
in	original	space!
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Image	Features:	Color	Histogram

Lecture	5	- 11

+1
Ignores	texture,	
spatial	positions

Frog	image is	in	the	public	domain



Justin	Johnson September	18,	2019

Image	Features:	Histogram	of	Oriented	Gradients	(HoG)

Lecture	5	- 12

1. Compute	edge	direction	/	
strength	at	each	pixel

2. Divide	image	into	8x8	regions
3. Within	each	region	compute	a	

histogram	of	edge	directions	
weighted	by	edge	strength	 Lowe,	“Object	recognition	from	local	scale-invariant	features”,	ICCV	1999

Dalal and	Triggs,	"Histograms	of	oriented	gradients	for	human	detection,"	CVPR	2005
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1. Compute	edge	direction	/	
strength	at	each	pixel

2. Divide	image	into	8x8	regions
3. Within	each	region	compute	a	

histogram	of	edge	directions	
weighted	by	edge	strength	

Example:	320x240	image	gets	
divided	into	40x30	bins;	8	
directions	per	bin;	feature	vector	
has	30*40*9	=	10,800	numbers

Lowe,	“Object	recognition	from	local	scale-invariant	features”,	ICCV	1999
Dalal and	Triggs,	"Histograms	of	oriented	gradients	for	human	detection,"	CVPR	2005

Image	Features:	Histogram	of	Oriented	Gradients	(HoG)
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1. Compute	edge	direction	/	
strength	at	each	pixel

2. Divide	image	into	8x8	regions
3. Within	each	region	compute	a	

histogram	of	edge	directions	
weighted	by	edge	strength	

Example:	320x240	image	gets	
divided	into	40x30	bins;	8	
directions	per	bin;	feature	vector	
has	30*40*9	=	10,800	numbers

Lowe,	“Object	recognition	from	local	scale-invariant	features”,	ICCV	1999
Dalal and	Triggs,	"Histograms	of	oriented	gradients	for	human	detection,"	CVPR	2005

Strong	diagonal	
edges

Edges	in	all	
directions

Weak	edges

Image	Features:	Histogram	of	Oriented	Gradients	(HoG)



Justin	Johnson September	18,	2019Lecture	5	- 15

1. Compute	edge	direction	/	
strength	at	each	pixel

2. Divide	image	into	8x8	regions
3. Within	each	region	compute	a	

histogram	of	edge	directions	
weighted	by	edge	strength	

Example:	320x240	image	gets	
divided	into	40x30	bins;	8	
directions	per	bin;	feature	vector	
has	30*40*9	=	10,800	numbers

Lowe,	“Object	recognition	from	local	scale-invariant	features”,	ICCV	1999
Dalal and	Triggs,	"Histograms	of	oriented	gradients	for	human	detection,"	CVPR	2005

Strong	diagonal	
edges

Edges	in	all	
directions

Weak	edges

Captures	
texture	and	
position,	
robust	to	
small	image	
changes

Image	Features:	Histogram	of	Oriented	Gradients	(HoG)
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Image	Features:	Bag	of	Words	(Data-Driven!)

Lecture	5	- 16

Extract	random	
patches	

Cluster	patches	to	
form	“codebook”	
of	“visual	words”

Step	1:	Build	codebook

Fei-Fei and	Perona,	“A	bayesian hierarchical	model	for	learning	natural	scene	categories”,	CVPR	2005
Car	image is	CC0	1.0 public	domain
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Image	Features:	Bag	of	Words	(Data-Driven!)

Lecture	5	- 17

Extract	random	
patches	

Cluster	patches	to	
form	“codebook”	
of	“visual	words”

Step	1:	Build	codebook

Step	2:	Encode	images

Fei-Fei and	Perona,	“A	bayesian hierarchical	model	for	learning	natural	scene	categories”,	CVPR	2005
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Image	Features

Lecture	5	- 18
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Example:	Winner	of	2011	ImageNet	challenge

Lecture	5	- 19

F.	Perronnin,	J.	Sánchez,	“Compressed	Fisher	vectors	for	LSVRC”,	PASCAL	VOC	/	ImageNet	workshop,	ICCV,	2011.
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Image	Features

Lecture	5	- 20

Feature	Extraction
f

10 numbers	giving	
scores	for	classes

training
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Image	Features	vs	Neural	Networks

Lecture	5	- 21

Feature	Extraction
f

training

training

10 numbers	giving	
scores	for	classes

Krizhevsky,	Sutskever,	and	Hinton,	“Imagenet	classification	
with	deep	convolutional	neural	networks”,	NIPS	2012.
Figure	copyright	Krizhevsky,	Sutskever,	and	Hinton,	2012.	
Reproduced	with	permission.

10 numbers	giving	
scores	for	classes
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Neural	Networks

Lecture	5	- 22

(Before)	Linear	score	function:
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Neural	Networks

Lecture	5	- 23

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

(In	practice	we	will	usually	add	a	learnable	bias	at	each	layer	as	well)
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Neural	Networks

Lecture	5	- 24

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network
or	3-layer	Neural	Network

(In	practice	we	will	usually	add	a	learnable	bias	at	each	layer	as	well)
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Neural	Networks

Lecture	5	- 25

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10
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Neural	Networks

Lecture	5	- 26

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

Element	(i,	j)	
of	W1	gives	
the	effect	on	
hi from	xj

Element	(i,	j)	
of	W2 gives	
the	effect	on	
si from	hj

W1 W2
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Neural	Networks

Lecture	5	- 27

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

Element	(i,	j)	of	W1	
gives	the	effect	on	
hi from	xj

Element	(i,	j)	of	W2
gives	the	effect	on	
si from	hj

All	elements	
of	x	affect	all	
elements	of	h

All	elements	
of	h	affect	all	
elements	of	s

Fully-connected	neural	network
Also	“Multi-Layer	Perceptron”	(MLP)



Justin	Johnson September	18,	2019

Neural	Networks

Lecture	5	- 28

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

Linear	classifier:	One	template	per	class

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network



Justin	Johnson September	18,	2019

Neural	Networks

Lecture	5	- 29

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

Neural	net:	first	layer	is	bank	of	templates;
Second	layer	recombines	templates

W1 W2
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Neural	Networks

Lecture	5	- 30

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

Can	use	different	templates	to	
cover	multiple	modes	of	a	class!

W1 W2
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Neural	Networks

Lecture	5	- 31

(Before)	Linear	score	function:

(Now)	2-layer	Neural	Network

x h sInput:
3072

Hidden	layer:
100

Output:	10

“Distributed	representation”:	
Most	templates	not	interpretable!

W1 W2
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Deep	Neural	Networks

Lecture	5	- 32

x h1W1 sW6

Input:
3072

Output:	10

h2 h3 h4 h5W2 W3 W4 W5

Depth	=	number	of	layers

Width:
Size	of	
each	
layer
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Activation	Functions

Lecture	5	- 33

2-layer	Neural	Network
The	function																																																			
is	called	“Rectified	Linear	Unit”

This	is	called	the	activation	function of	
the	neural	network
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Activation	Functions

Lecture	5	- 34

2-layer	Neural	Network
The	function																																																			
is	called	“Rectified	Linear	Unit”

This	is	called	the	activation	function of	
the	neural	network

Q:	What	happens	if	we	build	a	neural	
network	with	no	activation	function?
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Activation	Functions

Lecture	5	- 35

2-layer	Neural	Network
The	function																																																			
is	called	“Rectified	Linear	Unit”

This	is	called	the	activation	function of	
the	neural	network

Q:	What	happens	if	we	build	a	neural	
network	with	no	activation	function?

A:	We	end	up	with	a	linear	classifier!
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Activation	Functions

Lecture	5	- 36

Sigmoid

tanh

ReLU

Leaky	ReLU

Maxout

ELU
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Activation	Functions

Lecture	5	- 37

Sigmoid

tanh

ReLU

Leaky	ReLU

Maxout

ELU

ReLU	is	a	good	default	choice	
for	most	problems
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Neural	Net	in	<20	lines!

Lecture	5	- 38



Justin	Johnson September	18,	2019

Neural	Net	in	<20	lines!

Lecture	5	- 39

Initialize	weights	
and	data
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Neural	Net	in	<20	lines!

Lecture	5	- 40

Initialize	weights	
and	data

Compute	loss	
(sigmoid	activation,	
L2	loss)
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Neural	Net	in	<20	lines!

Lecture	5	- 41

Initialize	weights	
and	data

Compute	loss	
(sigmoid	activation,	
L2	loss)

Compute	
gradients
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Neural	Net	in	<20	lines!

Lecture	5	- 42

Initialize	weights	
and	data

Compute	loss	
(sigmoid	activation,	
L2	loss)

Compute	
gradients

SGD	
step
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This	image by	Fotis	Bobolas is	
licensed	under	CC-BY	2.0
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Our	brains	are	made	of	Neurons

Lecture	5	- 44

Cell	
body

Axon

Dendrite

Presynaptic	
terminal

Neuron	image by	Felipe	Perucho
is	licensed	under	CC-BY	3.0
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Our	brains	are	made	of	Neurons

Lecture	5	- 45

Cell	
body

Axon

Dendrite

Presynaptic	
terminal

Synapse
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Our	brains	are	made	of	Neurons

Lecture	5	- 46

Cell	
body

Axon

Dendrite

Presynaptic	
terminal

Synapse

Impulses	
carried	toward	
cell	body

Impulses	carried	
away	from	cell	body
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Our	brains	are	made	of	Neurons

Lecture	5	- 47

Cell	
body

Axon

Dendrite

Presynaptic	
terminal

Synapse

Impulses	
carried	toward	
cell	body

Impulses	carried	
away	from	cell	body

Firing	rate	is	a	
nonlinear	function	
of	inputs
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Neuron	image by	Felipe	Perucho
is	licensed	under	CC-BY	3.0

dendrite

cell	
body

axon

presynaptic			
terminal

Biological	Neuron
Artificial	Neuron



Justin	Johnson September	18,	2019Lecture	5	- 49

This	image is	CC0	Public	Domain

Biological	Neurons:	
Complex	connectivity	patterns

Neurons	in	a	neural	network:
Organized	into	regular	layers	for	
computational	efficiency
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This	image is	CC0	Public	Domain

Biological	Neurons:	
Complex	connectivity	patterns

But	neural	networks	with	random	
connections	can	work	too!

Xie et	al,	“Exploring	Randomly	Wired	Neural	Networks	for	Image	Recognition”,	ICCV	2019
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Be	very	careful	with	brain	analogies!

Lecture	5	- 51

Biological	Neurons:
● Many	different	types
● Dendrites	can	perform	complex	non-linear	computations
● Synapses	are	not	a	single	weight	but	a	complex	non-

linear	dynamical	system
● Rate	code	may	not	be	adequate

[Dendritic	Computation.	London	and	Hausser]
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Space	Warping

Lecture	5	- 52

x1

x2

Consider	a	linear	transform:	h	=	Wx
Where	x,	h	are	both	2-dimensional
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Space	Warping

Lecture	5	- 53

x1

x2

Consider	a	linear	transform:	h	=	Wx
Where	x,	h	are	both	2-dimensional

h1

Feature	transform:
h	=	Wx

h2
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Space	Warping

Lecture	5	- 54

x1

x2

Consider	a	linear	transform:	h	=	Wx
Where	x,	h	are	both	2-dimensional

h1

A AB B

C C D

D
Feature	transform:

h	=	Wx

h2
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Space	Warping

Lecture	5	- 55

x1

x2

Consider	a	linear	transform:	h	=	Wx
Where	x,	h	are	both	2-dimensionalPoints	not	linearly	

separable	in	original	space
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Space	Warping

Lecture	5	- 56

x1

x2

h1

h2

Feature	transform:
h	=	Wx

Consider	a	linear	transform:	h	=	Wx
Where	x,	h	are	both	2-dimensionalPoints	not	linearly	

separable	in	original	space Not	linearly	separable	
in	feature	space
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Space	Warping

Lecture	5	- 57

x1

x2

Consider	a	neural	net	hidden	layer:
h	=	ReLU(Wx)	=	max(0,	Wx)
Where	x,	h	are	both	2-dimensional

h1

Feature	transform:
h	=	ReLU(Wx)

h2
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Space	Warping

Lecture	5	- 58

x1

x2

Consider	a	neural	net	hidden	layer:
h	=	ReLU(Wx)	=	max(0,	Wx)
Where	x,	h	are	both	2-dimensional

h1

Feature	transform:
h	=	ReLU(Wx)

A A
h2
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Space	Warping

Lecture	5	- 59

x1

x2

Consider	a	neural	net	hidden	layer:
h	=	ReLU(Wx)	=	max(0,	Wx)
Where	x,	h	are	both	2-dimensional

h1

Feature	transform:
h	=	ReLU(Wx)

A AB B
B	is	“collapsed”	
onto	+h2	axis

h2
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Space	Warping

Lecture	5	- 60

x1

x2

Consider	a	neural	net	hidden	layer:
h	=	ReLU(Wx)	=	max(0,	Wx)
Where	x,	h	are	both	2-dimensional

h1

h2

Feature	transform:
h	=	ReLU(Wx)

A AB B
B	is	“collapsed”	
onto	+h2	axis

D

D

D	“collapsed”	
onto	+h1	axis



Justin	Johnson September	18,	2019

Space	Warping

Lecture	5	- 61

x1

x2

Consider	a	neural	net	hidden	layer:
h	=	ReLU(Wx)	=	max(0,	Wx)
Where	x,	h	are	both	2-dimensional

h1

h2

Feature	transform:
h	=	ReLU(Wx)

A AB B
B	is	“collapsed”	
onto	+h2	axis

D

D

D	“collapsed”	
onto	+h1	axis

C C
C	“collapsed”	
onto	origin
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Space	Warping

Lecture	5	- 62

x1

x2

Consider	a	neural	net	hidden	layer:
h	=	ReLU(Wx)	=	max(0,	Wx)
Where	x,	h	are	both	2-dimensional

h1

h2

Feature	transform:
h	=	Wx

Points	not	linearly	
separable	in	original	space
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Space	Warping

Lecture	5	- 63

x1

x2

Consider	a	neural	net	hidden	layer:
h	=	ReLU(Wx)	=	max(0,	Wx)
Where	x,	h	are	both	2-dimensional

h1

h2

Feature	transform:
h	=	ReLU(Wx)

Points	not	linearly	
separable	in	original	space
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Space	Warping

Lecture	5	- 64

x1

x2

Consider	a	neural	net	hidden	layer:
h	=	ReLU(Wx)	=	max(0,	Wx)
Where	x,	h	are	both	2-dimensional

h1

h2

Feature	transform:
h	=	ReLU(Wx)

Points	are	linearly	
separable	in	features	space!

Points	not	linearly	
separable	in	original	space
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Space	Warping

Lecture	5	- 65

x1

x2

Consider	a	neural	net	hidden	layer:
h	=	ReLU(Wx)	=	max(0,	Wx)
Where	x,	h	are	both	2-dimensional

h1

h2

Feature	transform:
h	=	ReLU(Wx)

Points	are	linearly	
separable	in	features	space!

Points	not	linearly	
separable	in	original	space

Linear	classifier	in	feature	
space	gives	nonlinear	
classifier	in	original	space
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Setting	the	number	of	layers	and	their	sizes

Lecture	5	- 66

More	hidden	units	=	more	capacity

3	hidden	units 6	hidden	units 20	hidden	units
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Don’t	regularize	with	size;	instead	use	stronger	L2

Lecture	5	- 67

(Web	demo	with	ConvNetJS:	
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)



Justin	Johnson September	18,	2019

Universal	Approximation

Lecture	5	- 68

A	neural	network	with	one	hidden	layer	can	approximate	
any	function	f:	RN ->	RM with	arbitrary	precision*

*Many	technical	conditions:	Only	holds	on	compact	subsets	of	RN;	function	must	be	continuous;	need	to	define	“arbitrary	precision”;	etc
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Universal	Approximation

Lecture	5	- 69

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)
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Universal	Approximation

Lecture	5	- 70

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p
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Universal	Approximation

Lecture	5	- 71

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p
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Universal	Approximation

Lecture	5	- 72

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

Output	is	a	sum	of	shifted,	scaled	ReLUs:
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Universal	Approximation

Lecture	5	- 73

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

Output	is	a	sum	of	shifted,	scaled	ReLUs:

Position	of	
“bend”	given	by	bi

Slope	is	given	
by	ui *	wi

Flip	left	/	right	based	on	sign	of	wi
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Universal	Approximation

Lecture	5	- 74

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x

y

s1 s2 s3 s4

t

We	can	build	a	“bump	function”	
using	four	hidden	units
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Universal	Approximation

Lecture	5	- 75

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x

y

s1 s2 s3 s4

t

We	can	build	a	“bump	function”	
using	four	hidden	units

m1 =	t	/	(s2 – s1)
m2 =	t	/	(s4 – s3)m2m1
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Universal	Approximation

Lecture	5	- 76

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x

y

s1 s2 s3

t

We	can	build	a	“bump	function”	
using	four	hidden	units

m1 =	t	/	(s2 – s1)
m2 =	t	/	(s4 – s3)

m1 *	max(0,	x	– s1)

m2m1
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Universal	Approximation

Lecture	5	- 77

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x

y

s1 s2 s3 s4

t

We	can	build	a	“bump	function”	
using	four	hidden	units

m1 =	t	/	(s2 – s1)
m2 =	t	/	(s4 – s3)

m1 *	max(0,	x	– s1) -m1 *	max(0,	x	– s2)

m2m1
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Universal	Approximation

Lecture	5	- 78

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x

y

s1 s2 s3 s4

t

We	can	build	a	“bump	function”	
using	four	hidden	units

m1 =	t	/	(s2 – s1)
m2 =	t	/	(s4 – s3)

m1 *	max(0,	x	– s1) -m1 *	max(0,	x	– s2)

-m2 *	max(0,	x	– s3)

m2m1
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Universal	Approximation

Lecture	5	- 79

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x

y

s1 s2 s3 s4

t

We	can	build	a	“bump	function”	
using	four	hidden	units

m1 =	t	/	(s2 – s1)
m2 =	t	/	(s4 – s3)

m1 *	max(0,	x	– s1) -m1 *	max(0,	x	– s2)

-m2 *	max(0,	x	– s3) m2 *	max(0,	x	– s4)

m2m1
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Universal	Approximation

Lecture	5	- 80

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x

y

s1 s2 s3 s4

t

We	can	build	a	“bump	function”	
using	four	hidden	units

x

With	4K	hidden	units	we	can	
build	a	sum	of	K	bumps
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Universal	Approximation

Lecture	5	- 81

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x

y

s1 s2 s3 s4

t

We	can	build	a	“bump	function”	
using	four	hidden	units

x

With	4K	hidden	units	we	can	
build	a	sum	of	K	bumps

Approximate	functions	with	bumps!
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Universal	Approximation

Lecture	5	- 82

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x
Approximate	functions	with	bumps!

What	about…
- Gaps	between	bumps?
- Other	nonlinearities?
- Higher-dimensional	functions?

See	Nielsen,	Chapter	4
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Universal	Approximation

Lecture	5	- 83

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

First	layer	weights:	w	(3,1)
First	layer	bias:	b	(3,)

Second	layer	weights:	u	(1,3)
First	layer	bias:	p	(1,)

Output:	
y	(1,)

h1	=	max(0,	w1	*	x	+	b1)
h2	=	max(0,	w2	*	x	+	b2)
h3	=	max(0,	w3	*	x	+	b3)
y	=	u1	*	h1	+	u2	*	h2	+	u3	*	h3	+	p

y	=	u1	*	max(0,	w1	*	x	+	b1)
+	u2	*	max(0,	w2	*	x	+	b2)
+	u3	*	max(0,	w3	*	x	+	b3)
+	p

x
Approximate	functions	with	bumps!

Reality	check:	Networks	don’t	really	learn	bumps!
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Universal	Approximation

Lecture	5	- 84

Example:	Approximating	a	function	f:	R	->	R	with	a	two-layer	ReLU network

x

h1

h2

h3

y

w1

w2

w3

u1

u2

u3
Input:	
x	(1,)

Output:	
y	(1,)

x
Approximate	functions	with	bumps!

Reality	check:	Networks	don’t	really	learn	bumps!

Universal	approximation	tells	us:
- Neural	nets	can	represent	any	function

Universal	approximation	DOES	NOT	tell	us:
- Whether	we	can	actually	learn	any	function	with	SGD
- How	much	data	we	need	to	learn	a	function

Remember:	kNN is	also	a	universal	approximator!
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Convex	Functions

Lecture	4	- 85

A	function																																						is	convex if	for	all																																					,
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Convex	Functions

Lecture	4	- 86

A	function																																						is	convex if	for	all																																					,

Example:																										is	convex:
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Convex	Functions

Lecture	4	- 87

A	function																																						is	convex if	for	all																																					,

Example:																										is	convex:

x1 x2
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Convex	Functions

Lecture	4	- 88

A	function																																						is	convex if	for	all																																					,

Example:																										is	convex:

x1 x2
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Convex	Functions

Lecture	4	- 89

A	function																																						is	convex if	for	all																																					,

Example:																										
is	not	convex:

x1 x2
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Convex	Functions

Lecture	4	- 90

A	function																																						is	convex if	for	all																																					,

Intuition:	A	convex	function	
is	a	(multidimensional)	bowl

*Many	technical	details!	See	e.g.	IOE	661	/	MATH	663
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Convex	Functions

Lecture	4	- 91

A	function																																						is	convex if	for	all																																					,

Intuition:	A	convex	function	
is	a	(multidimensional)	bowl

Generally	speaking,	convex	
functions	are	easy	to	optimize:	can	
derive	theoretical	guarantees	about	
converging	to	global	minimum*

*Many	technical	details!	See	e.g.	IOE	661	/	MATH	663
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Convex	Functions

Lecture	4	- 92

A	function																																						is	convex if	for	all																																					,

Intuition:	A	convex	function	
is	a	(multidimensional)	bowl

Generally	speaking,	convex	
functions	are	easy	to	optimize:	can	
derive	theoretical	guarantees	about	
converging	to	global	minimum*

*Many	technical	details!	See	e.g.	IOE	661	/	MATH	663

Softmax

SVM

Linear	classifiers	optimize	
a	convex	function!

R(W)	=	L2	or	L1	regularization
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Convex	Functions

Lecture	4	- 93

A	function																																						is	convex if	for	all																																					,

Intuition:	A	convex	function	
is	a	(multidimensional)	bowl

Generally	speaking,	convex	
functions	are	easy	to	optimize:	can	
derive	theoretical	guarantees	about	
converging	to	global	minimum*

*Many	technical	details!	See	e.g.	IOE	661	/	MATH	663

Neural	net	losses	sometimes	look	
convex-ish:	

1D	slice	of	loss	landscape	for	a	4-layer	ReLU network	with	10	input	features,	32	units	
per	hidden	layer,	10	categories,	with	softmax loss
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Convex	Functions

Lecture	4	- 94

A	function																																						is	convex if	for	all																																					,

Intuition:	A	convex	function	
is	a	(multidimensional)	bowl

Generally	speaking,	convex	
functions	are	easy	to	optimize:	can	
derive	theoretical	guarantees	about	
converging	to	global	minimum*

*Many	technical	details!	See	e.g.	IOE	661	/	MATH	663

But	often	clearly	nonconvex:	

1D	slice	of	loss	landscape	for	a	4-layer	ReLU network	with	10	input	features,	32	units	
per	hidden	layer,	10	categories,	with	softmax loss
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Convex	Functions

Lecture	4	- 95

A	function																																						is	convex if	for	all																																					,

Intuition:	A	convex	function	
is	a	(multidimensional)	bowl

Generally	speaking,	convex	
functions	are	easy	to	optimize:	can	
derive	theoretical	guarantees	about	
converging	to	global	minimum*

*Many	technical	details!	See	e.g.	IOE	661	/	MATH	663

With	local	minima:

1D	slice	of	loss	landscape	for	a	4-layer	ReLU network	with	10	input	features,	32	units	
per	hidden	layer,	10	categories,	with	softmax loss
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Convex	Functions

Lecture	4	- 96

A	function																																						is	convex if	for	all																																					,

Intuition:	A	convex	function	
is	a	(multidimensional)	bowl

Generally	speaking,	convex	
functions	are	easy	to	optimize:	can	
derive	theoretical	guarantees	about	
converging	to	global	minimum*

*Many	technical	details!	See	e.g.	IOE	661	/	MATH	663

Can	get	very	wild!

1D	slice	of	loss	landscape	for	a	4-layer	ReLU network	with	10	input	features,	32	units	
per	hidden	layer,	10	categories,	with	softmax loss
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Convex	Functions

Lecture	4	- 97

A	function																																						is	convex if	for	all																																					,

Intuition:	A	convex	function	
is	a	(multidimensional)	bowl

Generally	speaking,	convex	
functions	are	easy	to	optimize:	can	
derive	theoretical	guarantees	about	
converging	to	global	minimum*

*Many	technical	details!	See	e.g.	IOE	661	/	MATH	663

Most	neural	networks	need	
nonconvex	optimization
- Few	or	no	guarantees	

about	convergence
- Empirically	it	seems	to	

work	anyway
- Active	area	of	research
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Summary

Lecture	5	- 98

x

y
Original	space

r	=	(x2 +	y2)1/2
θ =	tan-1(y/x)

Feature	space

Feature	
transform

r

θ

Linear	classifier	
in	feature	space

Nonlinear	classifier	
in	original	space!

Feature	transform	+	Linear	classifier	
allows	nonlinear	decision	boundaries

Feature	Extraction

training

training

10 numbers	giving	

scores	for	classes

Krizhevsky,	Sutskever,	and	Hinton,	“Imagenet	classification	

with	deep	convolutional	neural	networks”,	NIPS	2012.

Figure	copyright	Krizhevsky,	Sutskever,	and	Hinton,	2012.	

Reproduced	 with	permission.

10 numbers	giving	

scores	for	classes

Neural	Networks	as	learnable	feature	transforms
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Summary

Lecture	5	- 99

x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

From	linear	classifiers	to	
fully-connected	networks

Linear	classifier:	One	template	per	class

Neural	networks:	Many	reusable	templates
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x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

From	linear	classifiers	to	
fully-connected	networks

Summary

Neural	networks	loosely	inspired	by	biological	
neurons	but	be	careful	with	analogies
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x hW1 sW2
Input:
3072

Hidden	layer:
100

Output:	10

From	linear	classifiers	to	
fully-connected	networks

Summary Space	Warping Universal	Approximation

Nonconvex
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Problem:	How	to	compute	gradients?

Lecture	5	- 102

If	we	can	compute																					then	we	can	learn	W1 and	W2

Nonlinear	score	function

SVM	Loss	on	predictions

Regularization

Total	loss:	data	loss	+	regularization
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Next	time:
Backpropagation

Lecture	5	- 103


