Lecture 3:
Linear Classifiers

Justin Johnson Lecture 3-1 September 11, 2019



Reminder: Assignment 1

e http://web.eecs.umich.edu/~justincj/teaching/eecs498/assignmentl.html
* Due Sunday September 15, 11:59pm EST

* We have written a homework validation script to check the
format of your .zip file before you submit to Canvas:

* https://github.com/deepvision-class/tools#thomework-
validation

* This script ensures that your .zip and .ipynb files are properly
structured; they do not check correctness

* It is your responsibility to make sure your submitted .zip file
passes the validation script
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Last time: Image Classification

Input: image Output: Assign image to one
X T of a fixed set of categories

cat
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Last Time: Challenges of Recognition

Viewpoint lllumination Deformation Occlusion

RS SRR
This image by Umberto Salvagnin is
licensed under CC-BY 2.0

This image by jonsson is licensed
under CC-BY 2.0

This image is CC0 1.0 public domain

Clutter Intraclass Variation

This image is CCO 1.0 public domain This image is CCO 1.0 public domain
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Last time: Data-Drive Approach, KNN

airplane [ 0 s D Bl = B0 s B 1-NN classifier 5-NN classifier
automobﬂe.?ﬂ!@ﬁ&ijﬂﬁﬁ . D ’ :
vrd  ERAER] BT Y O

cat 1 I T et 0 R O

deer ! v ik s i ) G ; .

dog EliREFsEER AN

we DENS®” DSBS

horse gy e [ PO I 5 R T

ship B i ] e i S
ruck @ RRENCESBN

train test

train validation test
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Today: Linear Classifiers
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Neural Network

Linear
classifiers

This image is CC0 1.0 public domain
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Recall CIFAR10

airplane [ i v Dl B = 5 9 i

automobile § " g!ﬁ@ﬁg‘fi

bird =:. 1 er ..F-u.

cat !Iuﬂﬁﬁgﬂ 50,000 training images
deer B m£=-n each image is 32x32x3
oz  WEARREN&HER AN |

frog u-‘.f?ﬁ. 10,000 test images.
horse e 0 1 P P

ruck gl L i s A o s (8
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Parametric Approach

Image

/
’ I
" >
5 -
7 NS :
Z77 AN i
o Z \v‘ \ \ x =
# 1%, 3
4 ® \ »
: e S

Array of 32x32x3 numbers

(3072 numbers total) W

parameters
or weights
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Parametric Approach: Linear Classifier

f(x,W) = WXx

Image

- f(x, W)

Array of 32x32x3 numbers ‘

(3072 numbers total) W

parameters
or weights
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10 numbers giving
class scores
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Parametric Approach: Linear Classifier
(3072,)

f(x,W)|=[Wi

(10,) (10, 3072)
- T(x, W)

Array of 32x32x3 numbers ‘

(3072 numbers total) W

parameters
or weights

Image

10 numbers giving
class scores
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Parametric Approach: Linear Classifier
(3072,)

f(x,W)|=|WK] +/b | (10,

(10,) (10, 3072)
- T(x, W)

Array of 32x32x3 numbers ‘

(3072 numbers total) W

parameters
or weights

Image

10 numbers giving
class scores
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Example for 2x2 image, 3 classes (cat/dog/ship)

Stretch pixels into column f(x,W) = Wx + b
4
56
a1
ﬂi{,, 2—3._;!,. 231
[ RE 24
Input image 5
(2,2)
(4,)
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Example for 2x2 image, 3 classes (cat/dog/ship)

Stretch pixels into column f(x,W) = Wx + b
V4

56

e D 02 | -05 | 01 | 20 1.1 -96.8

7231+

ol gf’\’i*m 231

= 15 | 1.3 | 21 | 0.0 4| 32 | = 437.9

28 5N 2y -

R - N 24

7 0 | 025 | 0.2 | -0.3 1.2 61.95
Input image 5

4
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Linear Classifier: Algebraic Viewpoint

Stretch pixels into column f(x,W) = Wx + b
V4

56

Naboe D 02 | 05| 01 | 2.0 1.1 -96.8

)33
B g 1.5 | 1.3 | 2.1 | 0.0 4| 32 | = | 4379
78 5N2 _

7y h A 24

e 0 (025 0.2 | -0.3 -1.2 Sl
Input image ,

4
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Add extra one to data vector;
bias is absorbed into last
column of weight matrix

Linear Classifier: Bias Trick

Stretch pixels into column

56
Ny 02 | 05| 01 | 20 | 1.1 -96.8
l,."‘(« ” ‘.
!ﬂcgf\%” 231
- X 15 | 1.3 | 21 | 0.0 | 3.2 — | 437.9
3_4 h | %’ 24
U 0 |025| 02 | -0.3 | -1.2 61.95
Input image
2,2) Z
/ W 3,5) (3,)
1 (51)
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Linear Classifier: Predictions are Linear!

f(x, W) =Wx (ignore bias)

f(ex, W) = W(cx) = ¢ * f(x, W)
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Linear Classifier: Predictions are Linear!

f(x, W) =Wx (ignore bias)

f(ex, W) = W(cx) = ¢ * f(x, W)

Scores 0.5 * Image 0.5 * Scores
-96.8 \ 7 -48.4
‘-é ™
437.8 R JEPITY
.' t::.’" .
R
62.0 ) s, 31.0
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Interpreting a Linear Classifier

Algebraic Viewpoint

f(x, W) =Wx +b

Stretch pixels into column

56
\w.,, 02 | 05| 0.1 | 2.0 1.1 -96.8
,‘,',/23@._ 231
A
Y= 1.5 1.3 2.1 0.0 + 32 | — 437.9
24 N 25 24 -
és - »
S 0 (025 | 0.2 | 03 -1.2 61.95
Input image 2
2,2
(2,2) W 3,9 b (3)

Justin Johnson Lecture 3-19

September 11, 2019



Interpreting a Linear Classifier

Algebraic Viewpoint s 721
-G/,‘;k%\!ﬁ”
Y
f(x W) =Wx+b 24| 2,
Stretch pixels into column v A v
| 0.2 -0.5 1.5 1.3 0 .25
56
Lﬂfﬁ%ﬁ'ﬁ' 02 | 05| 01 | 2.0 1.1 -96.8 W
(i 231 0.1 | 2.0 2.1 | 0.0 0.2 | -0.3
Y 15 | 1.3 | 21 | 0.0 4|32 | = | 4379
£ 87 24 | | |
o 0 [025]| 02 | 03 1.2 61.95
Input image )
(2,2) W 3.4 b (3,) b 1.1 3.2 -1.2
4,
( ) (3I) v \ 4 \ 4
-96.8 437.9 61.95
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Interpreting an Linear Classifier: Visual Vlewpomt
sirplane B0 v R = P

automobile ‘ 5 = = ﬁ L : N

ia SN ] ST -

cat ST g b 2 los| [ia]m] [o]a
deer [l ol o B L 2 o W -

dog iﬂ*!ﬁ = ﬁ 0.1 | 2.0 2.1 | 0.0 0.2 | -0.3
rog EDIENa®&~EREEE 1 1 |
horse !“.E W \ g b 1.1 3.2 12
ship 0 R S s

truck ‘In‘ e E -96.8 437.9 61.95

horse
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Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one

“template” per category ! |
0.2 -0.5 1.5 1.3 0 .25
w
0.1 2.0 2.1 0.0 0.2 -0.3
} } }
b 1.1 3.2 1.2
-96.8 437.9 61.95

horse ship

.-

plane car bird cat deer dog frog truck
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Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one

“template” per category ! |
0.2 -0.5 15 1.3 0 .25
, w
A single template cannot capture 01 | 20 21 | 00 02 |-03
multiple modes of the data | } |
b 1.1 3.2 1.2
e.g. horse template has 2 heads! .y e o

ship truck
K

’ ,l;’_‘

ais W =

plane car bird cat deer dog frog
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Interpreting a Linear Classifier: Geometric Viewpoint

Classifier
score

Airplane f(X'W) = WX’+ b
core i

Deer Score

Car Score

Array of 32x32x3 numbers

Value of pixel (15, 8, 0) (3072 numbers total)
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Interpreting a Linear Classifier: Geometric Viewpoint

Pixel

(11, 11, 0)
Car score
Increases
| this way
Pixe
(15, 8, 0)

Car Score Array of 32x32x3 numbers
-0 (3072 numbers total)
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Interpreting a Linear Classifier: Geometric Viewpoint

Car template
on this line

Pixel
(11, 11, 0)

‘0
*
.0
*

*
*
*
*
*
*
*
‘Q
*

Car score
.... : increases
A this way
Pixe :
(15, 8, 0)

Car Score Array of 32x32x3 numbers
-0 (3072 numbers total)
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Interpreting a Linear Classifier: Geometric Viewpoint

Airplane

Score (11, 11, 0)

Pixel

Car template '
on this line .
""" f(x, W) = Wx + b

*
*
*
*
*
*
*
‘Q
*

Car score
Increases
this way

*
*
*
*
*
.0
*

*
*
*
*
*
*
.0
*

Pixel (15, 8, 0)

Justin Johnson

Deer
Score

Car Score Array of 32x32x3 numbers

. = 0 (3072 numbers total)
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Interpreting a Linear Classifier: Geometric Viewpoint

Car template
on this line

Airplane  piyg
Score (11, 11, 0)

Hyperplanes carving up a
high-dimensional space

‘0
*
.0
*

*
*
*
*
*
*
*
‘Q
*

Car score
..... Increases
this way

*
*
*
‘0
Ny
] *
.....
"a, .
.....

Pixel (15, 8, 0)

Car Score
=0

Plot created using Wolfram Cloud
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Hard Cases for a Linear Classifier

Class 1: Class 1: Class 1:

First and third quadrants 1<=L2norm<=2 Three modes
Class 2: Class 2:. Class 2:_
second and fourth quadrants Everything else Everything else
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Recall: Perceptron couldn’t learn XOR

ETTITLY /
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Linear Classifier: Three Viewpoints

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint
f(x,W) = Wx One template Hyperplanes
per class cutting up space

Stretch pixels into column

56
t ‘/‘ 0.2 -0.5 0.1 2-0 1.1 -96-8 Cat e . = H
Ej“lir" on 231 ‘

g""'" ‘_’? - 1.5 1.3 21 0.0 3.2 - 437.9 Dog score

£ {7 |t

. \ - 0 025| 0.2 | -0.3 1.2 61.95 | Ship score -
Input imag 2
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So Far: Defined a linear score function

airplane
automobile
bird

cat

deer 4,
dog 8.
frog 3.
horse 1.
ship -0.
truck -0.

Justin Johnson

-0.51
6.04
5.31
~-4.22
48 ~-4.19
02 3.58
78 4.49
06 —-4.37
36 -2.09
72 -2.93

f(x, W)=Wx+Db

3.42
4.604
2.65

2 .04
5.55
-4 .34
-1.5
-4.79
6.14

Lecture 3 - 33

Given a W, we can
compute class scores
for an image x.

But how can we
actually choose a
good W?

Nikita CC-BY 2.0; Carimage is CC0 1.0 Frog image
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Choosing a good W

L

airplane -3.45 -0.51
automobile -8.87 6.04
bird 0.09 5.31
cat 2.9 -4.22
deer 4.48 -4.19
dog 8.02 3.58
frog 3.78 4.49
horse 1.06 -4 .37
ship -0.36 -2.09
truck -0.72 -2.93

Justin Johnson

-

3.42
4.604
2.65

2 .04
5.55
-4 .34
-1.5
-4.79
6.14

Lecture 3 - 34

f(x, W)=Wx+Db

TODO:

1. Use a loss function to
guantify how good a
value of W is

2. Find a W that minimizes
the loss function
(optimization)

September 11, 2019



Loss Function

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)
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Loss Function

A loss function tells how good our
current classifier is

Low loss = good classifier
High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc
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Loss Function Given a dataset of examples

N
A loss function tells how good our { (CE’L 9 yz) =1

current classifier is
Where &; . is image and

Low loss = good classifier Yi is (integer) label

High loss = bad classifier

(Also called: objective function;
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc
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Loss Function Given a dataset of examples

N
A loss function tells how good our { (CE@ 9 yz) =1

current classifier is
Where &; . is image and

Low loss = good classifier Yi is (integer) label

High loss = bad classifier
Loss for a single example is

(Also called: objective function; LZ. (f(x“ W)’ yz)
cost function)

Negative loss function sometimes
called reward function, profit
function, utility function, fitness
function, etc
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Loss Function Given a dataset of examples

N
A loss function tells how good our { (CE@ 9 yz) =1

current classifier is
Where &; . is image and

Low loss = good classifier Yi is (integer) label

High loss = bad classifier
Loss for a single example is

(Also called: objective function; LZ. (f(x“ W)’ yz)

cost function)
Loss for the dataset is average of

Negative loss function sometimes per-example losses:

called reward function, profit 1
function, utility function, fithess L = — E Li (f(a:z, W), yz)
function, etc N ;
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Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss

Score for
correct class
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Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss

Score for

| correct class

/ l
Highest score
among other classes

Justin Johnson Lecture 3 -41
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Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores”

Loss _
“Hinge Loss”

Score for
correct class

|
/ l

Highest score “Margin”
among other classes

Justin Johnson Lecture 3 -42
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Multiclass SVM Loss
Given an example (24, Yi)

"The score of the correct class should (Z; isimage, y; is label)
be higher than all the other scores” ‘

Let s = f(xi, W) be scores

Loss
“Hinge Loss”
Then the SVM loss has the form:

Score for Li = Zj#yz- max(0, s; — sy, + 1)
correct class

|
/ l

Highest score “Margin”
among other classes
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Multiclass SVM Loss

Given an example (%4, Yi)
(x; is image, y; is label)

B o e

2
\_, ‘;,1
. 7 & b
&
\\.
t-'\

™

Y
™

Then the SVM loss has the form:
Li =) ,,, max(0,s; — sy, +1)

2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1
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Multiclass SVM Loss

cat 3.2
car 5.1
frog | -1.7
Loss | 2.9

Given an example (%4, Yi)
(x; is image, y; is label)

Let s = f(xi, W) be scores

Then the SVM loss has the form:

1.3 2.2 Li =) ,,, max(0,s; — sy, +1)
4.9 2.5 = max(0, 5.1-3.2 + 1)
+ max(0, -1.7 - 3.2 + 1)
2.0 -3.1 = max(0, 2.9) + max(0, -3.9)
=2.9+0
=2.9

Justin Johnson
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Multiclass SVM Loss

Given an example (%4, Yi)
(x; is image, y; is label)

Let s = f(xi, W) be scores

; 3.2 13 59 Then the SVM loss has the form:
ca ) ' ' Li =) ,,, max(0,s; — sy, +1)
car 5.1 4.9 2.5 = max(0, 1.3-4.9 + 1)

+max(0, 2.0-4.9 + 1)
frog -1.7 2.0 -3.1 = max(0, -2.6) + max(0, -1.9)
=0+0
Loss 2.9 0 -0 ’
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Multiclass SVM Loss

Given an example (%4, Yi)
(x; is image, y; is label)

Let s = f(xi, W) be scores

¢ 32 13 55 Then the SVM loss has the form:
ca ) Li =) ,,, max(0,s; — sy, +1)
car 5.1 4.9 2.5 = max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 -(-3.1) + 1)
frog -1.7 2.0 -3.1 = max(0, 6.3) + max(0, 6.6)
=6.3+6.6
Loss 2.9 0 12.9 =199

Justin Johnson Lecture 3 - 47 September 11, 2019



Multiclass SVM Loss

Given an example (%4, Yi)
(x; is image, y; is label)

/
Y r'\'\.‘v j
3 g b -
SN g
)

2
\.‘
N

N ‘ Let s = f(xi, W) be scores

- < v
N
\\ .
Lol P

™

Y
™

Then the SVM loss has the form:
Li =) ,,, max(0,s; — sy, +1)

2.2
car 5.1 4.9 2.5

frog -1.7 2.0 -3.1 L=(2.9+0.0+12.9)/3
Loss 2.9 0 129 ">

Loss over the dataset is:
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Multiclass SVM Loss

cat 3.2
car 5.1
frog -1.7
Loss 2.9

1.3 2.2
4.9 2.5
2.0 -3.1
0 12.9

Given an example (%4, Yi)
(x; is image, y; is label)

Let s = f(xi, W) be scores

Then the SVM loss has the form:
Li =) ,,, max(0,s; — sy, +1)

Q: What happens to the
loss if the scores for the
car image change a bit?

Justin Johnson
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Multiclass SVM Loss

cat 3.2
car 5.1
frog -1.7
Loss 2.9

1.3 2.2
4.9 2.5
2.0 -3.1
0 12.9

Given an example (%4, Yi)
(x; is image, y; is label)

Let s = f(xi, W) be scores
Then the SVM loss has the form:

Li =) ,,, max(0,s; — sy, +1)

Q2: What are the min
and max possible loss?

Justin Johnson
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September 11, 2019



Multiclass SVM Loss

cat 3.2
car 5.1
frog -1.7
Loss 2.9

1.3 2.2
4.9 2.5
2.0 -3.1
0 12.9

Given an example (%4, Yi)
(x; is image, y; is label)

Let s = f(xi, W) be scores

Then the SVM loss has the form:
Li =) ,,, max(0,s; — sy, +1)

Q3: If all the scores
were random, what
loss would we expect?

Justin Johnson

Lecture 3 -51
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Multiclass SVM Loss

cat 3.2
car 5.1
frog -1.7
Loss 2.9

1.3 2.2
4.9 2.5
2.0 -3.1
0 12.9

Given an example (%4, Yi)
(x; is image, y; is label)

Let s = f(xi, W) be scores
Then the SVM loss has the form:

Li =) ,,, max(0,s; — sy, +1)

Q4: What would happen
if the sum were over all
classes? (including i =y,

Justin Johnson
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Multiclass SVM Loss

cat 3.2
car 5.1
frog -1.7
Loss 2.9

1.3 2.2
4.9 2.5
2.0 -3.1
0 12.9

Given an example (%4, Yi)
(x; is image, y; is label)

Let s = f(xi, W) be scores
Then the SVM loss has the form:

Li =) ,,, max(0,s; — sy, +1)

Q5: What if the loss used
a mean instead of a sum?

Justin Johnson

Lecture 3 -53
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Multiclass SVM Loss

Given an example (%4, Yi)
(x; is image, y; is label)

Let s = f(xi, W) be scores

Then the SVM loss has the form:
Li =) ,,, max(0,s; — sy, +1)

car 5.1 4.9 2.5 |
Q6: What if we used

frog 1.7 2.0 -3.1 this loss instead?
Loss 2.9 0 12.9 Li =32, max(0, 55 — sy, + 1)°
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Multiclass SVM Loss
flx, W) =Wx

L=+Y5 Y max(0, f(z; W); — f(zi; W)y, + 1)

Q: Suppose we found some W with L = 0. Is it unique?
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Multiclass SVM Loss
flx, W) =Wz

L=+Y5 Y max(0, f(z; W); — f(zi; W)y, + 1)
Q: Suppose we found some W with L = 0. Is it unique?

No! 2W is also has L = 0!

Justin Johnson Lecture 3 - 56 September 11, 2019



flx, W) =Wz

Multiclass SVM Loss L = ., max(0,s; — sy, + 1)

Original W:

=max(0, 1.3-4.9+1)
+max(0, 2.0-4.9+ 1)

= max(0, -2.6) + max(0, -1.9)

22 7
car 51 4.9 75 Using 2W instead:

= max(0, 2.6 -9.8 + 1)
+max(0,4.0-9.8 +1)

frog -1.7 2.0 -3.1 = max(0, -6.2) + max(0, -4.8)
Loss 2.9 0 12.9 :8+O
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flx, W) =Wz

Multiclass SVM Loss i =3, max(0,s; — sy + 1)

How should we choose between
cat 3.2 1.3 2.2 W and 2W if they both perform
the same on the training data?
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Regularization: Beyond Training Error

N ZL mza y’L)
N J

~

Data loss: Model predictions
should match training data
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Regularization: Beyond Training Error

N E L 37@, yz) + AR(W)

\_ J R/_/
Y
Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data
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Regularization: Beyond Training Error

N Z L aj,“ ) yz) + )\R(W) \_ = regularization strength

\ /
Y W—/

Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Justin Johnson Lecture 3 - 61 September 11, 2019



Regularization: Beyond Training Error

: = larizati t th
L(W =N E L;(f(xi,W),y;) + AR(W) )\ = regularization streng

\ /
Y W—/

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

Simple examples More complex:
L2 regularization: R(W) = Zk Zz sz,l Dropout
L1 regularization: R(W) =>_, >, Wk Batch normalization

Elasticnet (L1 +L12): R(W)=>_, ZlﬂWkQ’, + |[Wki| Cutout, Mixup, Stochastic depth, etc...
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Regularization: Beyond Training Error

L E :L 372 ) yz) 1 )\R(W) )\ = regularization strength
N ’ (hyperparameter)
N Y R/J
Y
Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Purpose of Regularization:
- Express preferences in among models beyond "minimize training error”

- Avoid overfitting: Prefer simple models that generalize better
- Improve optimization by adding curvature
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Regularization: Expressing Preferences

L2 Regularization

L s RW) =%, ¥, W2
w1 — _1,0,0,0]
Wy = [0.25,0.25,0.25,0.25]

/ I SN
wla:—wza:—l
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Regularization: Expressing Preferences

L2 Regularization

z=[1,1,1,1] RW) =33, W2

1,0,0,0]

&
||

5
||

[025, 025’ 025, 025] L2 regularization likes to

“spread out” the weights

/ I SN
wla:—wza:—l
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Regularization: Prefer Simpler Models

O
O
© @
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Regularization: Prefer Simpler Models
f1

The model f, fits the training data perfectly
The model f, has training error, but is simpler
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Regularization: Prefer Simpler Models
f1

F1 is not a linear model; could
be polynomial regression, etc

Regularization pushes against fitting the data
too well so we don’t fit noise in the data
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Regularization: Prefer Simpler Models

Regularization is

important! You should

(usually) use it.

fy

F1 is not a linear model; could
be polynomial regression, etc

Justin Johnson

Regularization pushes against fitting the data

too well so we don’t fit noise in the data
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
o= f(w“W) B ==y 2 ¢’ | function
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
o= f(w“W) B ==y 2 ¢’ | function

cat
car 5.1
frog | -1.7

Unnormalized log-
probabilities / logits
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
o= f(w“W) B ==y 2 ¢’ | function

Probabilities
must be >=0
cat 24.5
exp
car 5.1 |=—1164.0
frog | -1.7 0.18
Unnormalized log- unnormalized

probabilities / logits probabilities
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
o= f(m“W) B ==y 2 ¢’ | function

Probabilities Probabilities
must be >=0 must sumto 1
cat 24.5 0.13
exp normalize
car 51 |=—1164.0|—| 0.87
frog | -1.7 0.18 0.00
Unnormalized log- unnormalized

probabilities / logits probabilities probabilities
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
o= f(m“W) B ==y 2 ¢’ | function

Probabilities Probabilities
must be >=0 must sumto 1 Li = —logP(Y — yi|X: xz)
cat 24.5 0.13 | L =-log(0.13)
exp normalize =2.04
car 5.1 [—164.0|—| 0.87
frog | -1.7 0.18 0.00
Unnormalized log- unnormalized

probabilities / logits probabilities probabilities
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Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

-’!{fmf‘ | o — f(il?z, W) P(Y =k|X =z;) = 5’;] Softmax
— Sy 7= " 1 function
g Probabilities Probabilities [7 TS
g . um A must be >= 0 must sum to 1 Li = —log P(Y = 4i| X = i)
cat 3.2 24.5 0.13 | L =-log(0.13)
exp normalize =2.04
car 51 |=—|164.0|—> | 0.87
Maximum Likelihood Estimation
frog 1.7 0.18 0.00 | Choose weights to maximize the
. : likelihood of the observed data
Unnormalized log- unnormalized

orobabilities / logits orobabilities probabilities (See EECS 445 or EECS 545)
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
o= f(m“W) B ==y 2 ¢’ | function

mustbe =0 mustaumto 1 21 = ~ 0B P(Y = lX = =)

cat 24.5 0.13 |—> Compare <« | 1.00
car | 5.1 |—>|164.0(<= 0.87 0.00
frog | -1.7 0.18 0.00 0.00
Unnormalized log-  unnormalized Correct

probabilities

probabilities / logits ~ probabilities probs
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
o= f(m“W) B ==y 2 ¢’ | function

Probabilities Probabilities - v
must be >=0 must sum to 1 Li = —log P(Y = yi| X = )
cat 24.5 0.13 |—> Compare <« 1.00
exXp normalize Kullback—Leibler
car | 5.1 |=—>|164.0|—| 0.87 divergence 0.00
frog | -1.7 0.18 0.00 Dkr(PlQ)= 10.00
Unnormalized log- unnormalized _ P(y) Correct
probabilities / logits probabilities probabilities zy: P(y)log Qy) probs
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
o= f(m“W) B ==y 2 ¢’ | function

e OIS 1 g P~y X = 2)

cat 24.5 0.13 [ Compare <= (1.00
exp normalize

car 5.1 =—|164.0|— | 0.8/ Cross Entropy 0.00

frog | -1.7 0.18 0.00 | H(P,Q) = 0.00

Unnormalized log-  unnormalized H(p) + Dk (P||Q) Correct

probabilities

probabilities / logits ~ probabilities probs
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Cross-Entropy Loss (Multinomial Logistic Regression)
- Wantto interpret raw classifier scores as probabilities
BTl [s=f@; W) P(Y =KX =g = 2 Softmax

ot~ 2i ¢’ | function

w | Maximize probability of correct class Putting it all together:

cat .2 Li = —log P(Y = 4| X =zi)  L; = —log( ije])
car 5.1
frog -1.7
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
s=flzss W) PY =KX =2 2 ¢’ function

e Maximize probability of correct class Putting it all together:

9 — — — . o e’Yi
cat 3.2 Liz-lePV=ulX=2) [, = —log( 3 )
car 5.1 | |

Q: What is the min /
frog -1.7 max possible loss L.?
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
s=flzss W) PY =KX =2 2 ¢’ function

S Maximize probability of correct class Putting it all together:
e—t e L o °Y;
Li = —log P(Y = yi|X =2:) [, = —log( Ei- =)
car 5.1 | ,
Q: What is the min / A Min O sinfinit
frog -1.7 max possible loss L? - VIR Ly s Tty
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
s=flzss W) PY =KX =2 2 ¢’ function

S Maximize probability of correct class Putting it all together:
o s L Ll °Y;
Li=—logP(Y =y|X=2) L =~ log(z2%)
J

Q: If all scores are
frog -1.7 small random values,
what is the loss?
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Cross-Entropy Loss (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

_ . . _ .\ — €% | Softmax
s=flzss W) PY =KX =2 2 ¢’ function

S Maximize probability of correct class Putting it all together:
o s L Ll °Y;
Li=—logP(Y =y|X=2) L =~ log(z2%)
J

Q: If all scores are
frog -1.7 small random values,
what is the loss?

A: -log(C)
log(10) = 2.3
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Cross-Entropy vs SVM Loss

Li = — log( iye] ) Li =} ,,, max(0,s; — sy, + 1)
assume scores: Q: What is cross-entropy loss?
[10, -2, 3] What is SVM loss?

[10, 9, 9]

[10, -100, -100]

and |y, =0
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Cross-Entropy vs SVM Loss

Sy-

L; :—log(ze]) Li =).,,, max(0,s; — sy, +1)
Jssume scores: Q: What is cross-entropy loss?
110, -2, 3] What is SVM loss?

[10, 9, 9] A: Cross-entropy loss >0

[10, -100, -100] SVM loss = 0

and |y, =0
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Cross-Entropy vs SVM Loss

Ly = —log(zij) Li =} ,,, max(0,s; — sy, + 1)
assume scores: Q: What happens to each loss if |
[10 ) 3] slightly change the scores of the last
[10' 9 '9] datapoint?

[10, -100, -100]

and 1y, =0
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Cross-Entropy vs SVM Loss

SY;

L; = —log( i 554 Li =).,,, max(0,s; — sy, +1)
assume scores: Q: What happens to each loss if |
[10 ) 3] slightly change the scores of the last
[10' 9 '9] datapoint?

[10, -100, -100] A: Cross-entropy loss will change;
and 1y, =0 SVM loss will stay the same
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Cross-Entropy vs SVM Loss

L; = —log( ZS':] ) Li =} ,,, max(0,s; — sy, + 1)

assume scores: Q: What happens to each loss if |
double the score of the correct class

10, -2, 3] from 10 to 207

[10, 9, 9]

[10, -100, -100]

and y, =0
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Cross-Entropy vs SVM Loss

SY;

L; = —log( i 554 Li =).,,, max(0,s; — sy, +1)

assume scores: Q: What happens to each loss if |
double the score of the correct class

10, -2, 3] from 10 to 20?

[10, 9, 9]

[10, -100, -100] A: Cross-entropy loss will decrease,

and |y, =0 SVM loss still O
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Recap: Three ways to think about linear classifiers

Algebraic Viewpoint Visual Viewpoint Geometric Viewpoint
f(x,W) = Wx One template Hyperplanes
per class cutting up space

Stretch pixels into column

56
t ‘/‘ 0.2 -0.5 0.1 2-0 1.1 -96-8 Cat e . = H
Ejliri on 231 *

g""'" ‘_’? - 1.5 1.3 21 0.0 3.2 - 437.9 Doqg score

£ {7 |t ’

. \ - 0 025| 0.2 | -0.3 1.2 61.95 | Ship score -
Input imag 2
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Recap: Loss Functions quantify preferences

We have some dataset of (x, y)
We have a score function:
We have a loss function:

i ) Softmax
j€ SVM

Li =}, max(0,s; — sy, + 1)

L= % Z,fil Li + R(W) Fullloss

Justin Johnson Lecture 3 -92

s = f(x; W) =Wx
Linear classifier

regularization loss

score function

>
>

H

f((sz,Wl)l data loss 2
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Recap: Loss Functions quantify preferences

We have some dataset of (x,y) & How do we find the best W?

We have a score function: s — f(g;, W) — Wa
We have a loss function:

Linear classifier

% . ) Softmax

J SVM regularization loss

Lz = Z]#yz maX(O, 8] — Syz -I— 1) W scorefunctuonu

>
>

f(xz'., W)l data loss " L
L = % Zf\il L; + R(W) Fullloss i T
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Next time:
Optimization
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