Lecture 3: Linear Classifiers

Justin Johnson

Lecture 3 - 1

Reminder: Assignment 1

- <u>http://web.eecs.umich.edu/~justincj/teaching/eecs498/assignment1.html</u>
- Due Sunday September 15, 11:59pm EST
- We have written a **homework validation script** to check the format of your .zip file before you submit to Canvas:
- <u>https://github.com/deepvision-class/tools#homework-validation</u>
- This script ensures that your .zip and .ipynb files are properly structured; they do not check correctness
- It is **your responsibility** to make sure your submitted .zip file passes the validation script

Last time: Image Classification

Input: image

<u>This image</u> by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u>

Output: Assign image to one of a fixed set of categories

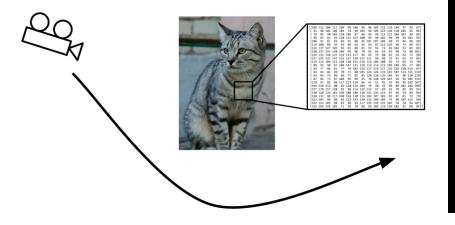
cat bird deer dog truck

Justin Johnson

Lecture 3 - 3

Last Time: Challenges of Recognition

Viewpoint



Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

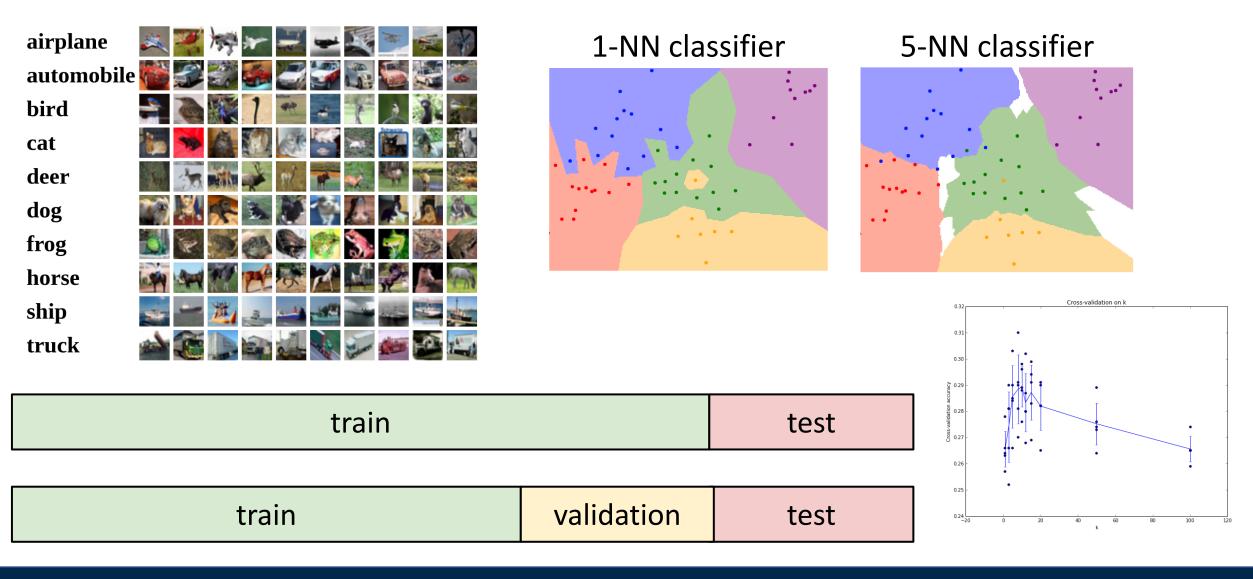
Intraclass Variation

This image is CC0 1.0 public domain

Justin Johnson

Lecture 3 - 4

Last time: Data-Drive Approach, kNN



Justin Johnson

Lecture 3 - 5

Today: Linear Classifiers

Justin Johnson

Lecture 3 - 6

Neural Network

This image is CC0 1.0 public domain

Justin Johnson

Lecture 3 - 7

Recall CIFAR10

airplane automobile bird cat deer dog frog horse ship truck



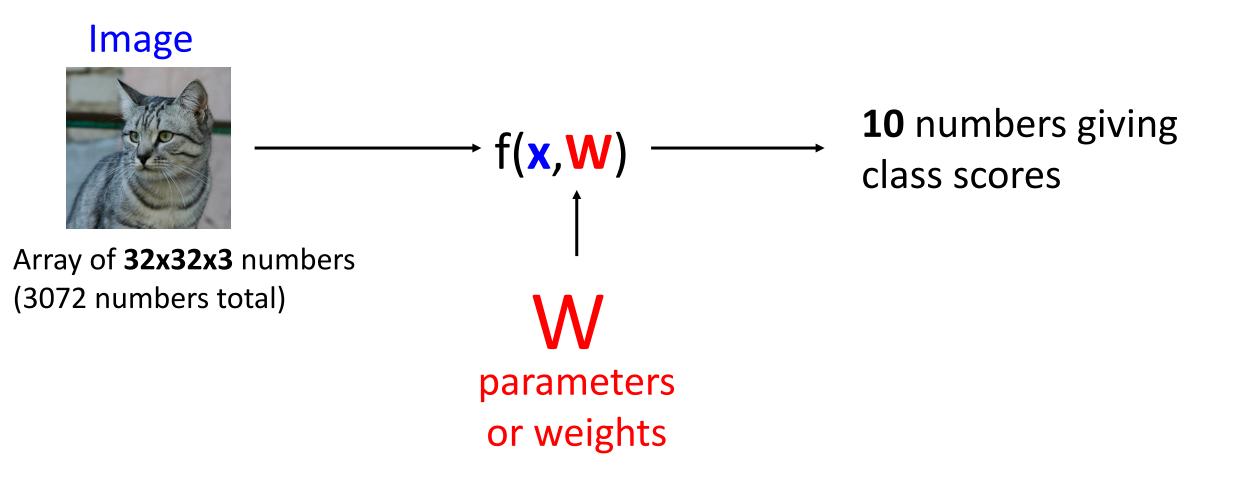
50,000 training images each image is **32x32x3**

10,000 test images.

Justin Johnson

Lecture 3 - 8

Parametric Approach



Justin Johnson

Lecture 3 - 9

Parametric Approach: Linear Classifier

$$f(x,W) = Wx$$

• f(**x,W**)

Image

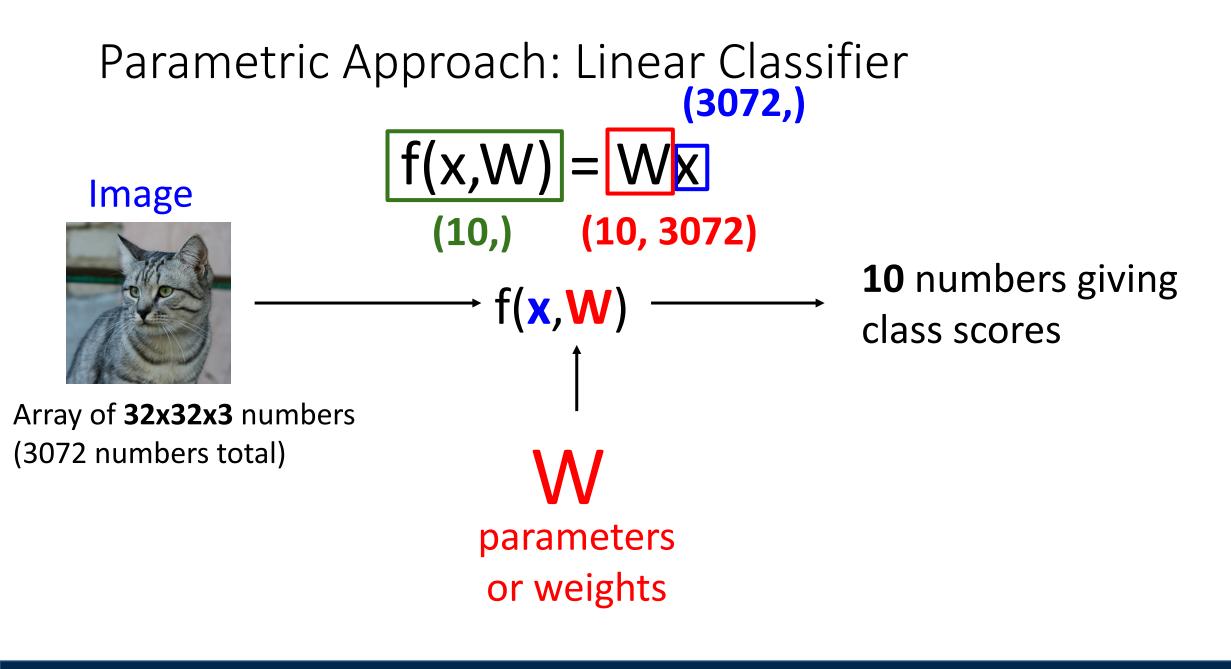
10 numbers giving class scores

Array of **32x32x3** numbers (3072 numbers total)

W parameters or weights

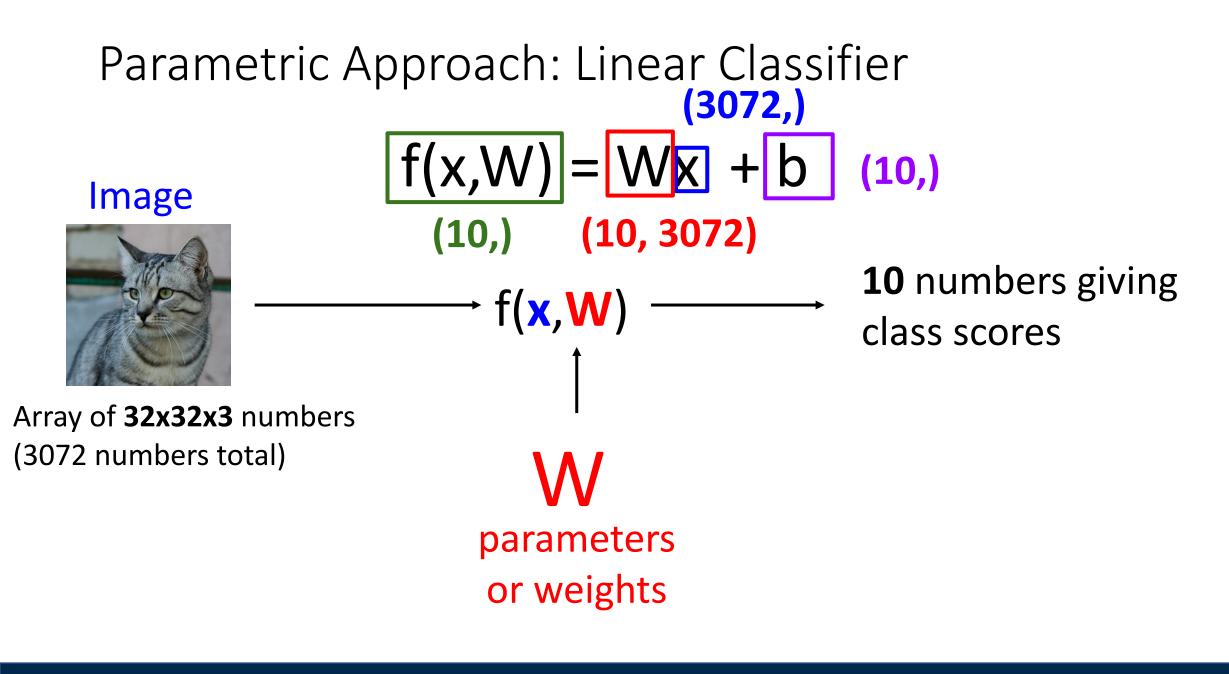
Justin Johnson

Lecture 3 - 10



Justin Johnson

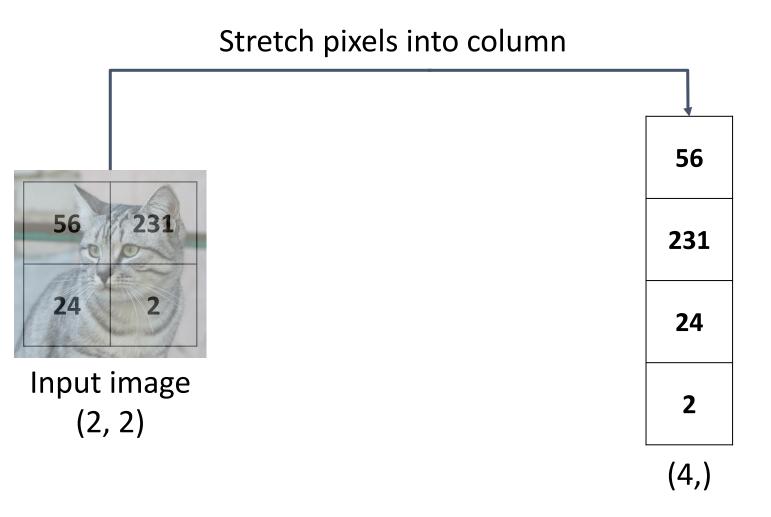
Lecture 3 - 11



Justin Johnson

Lecture 3 - 12

Example for 2x2 image, 3 classes (cat/dog/ship)

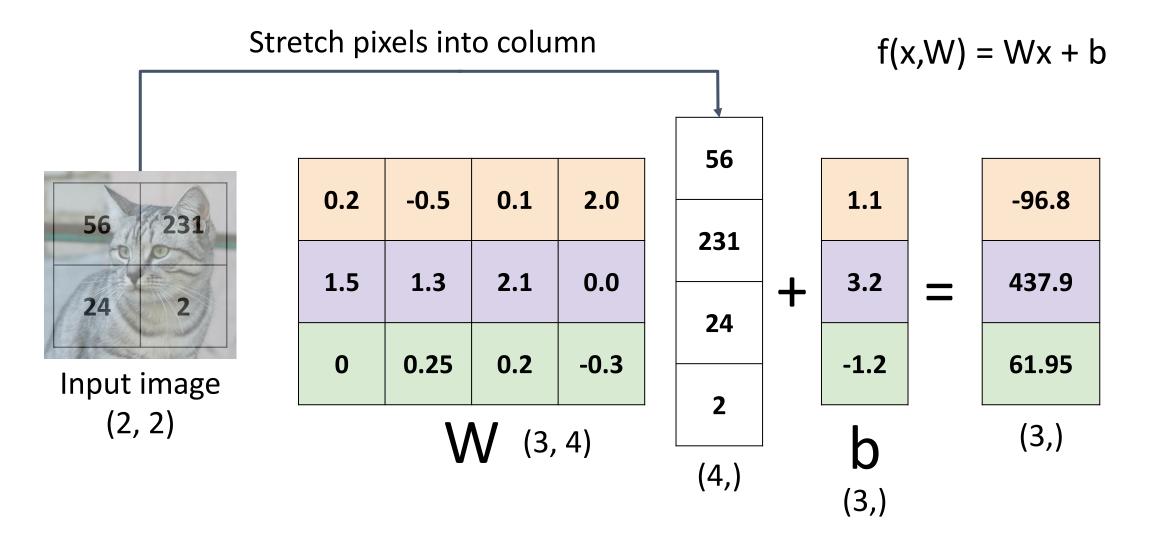


$$f(x,W) = Wx + b$$

Justin Johnson

Lecture 3 - 13

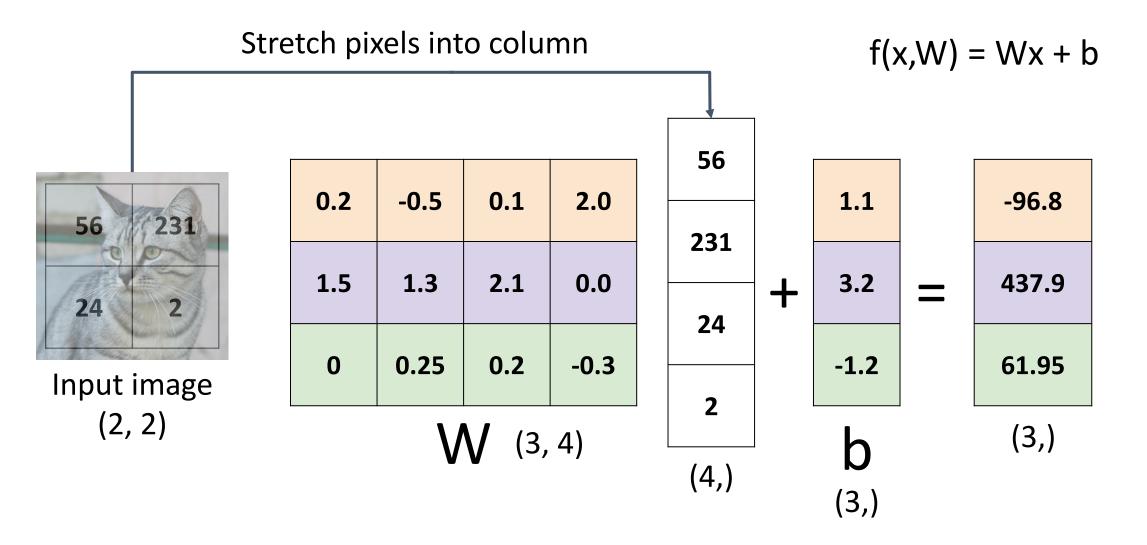
Example for 2x2 image, 3 classes (cat/dog/ship)



Justin Johnson

Lecture 3 - 14

Linear Classifier: <u>Algebraic Viewpoint</u>



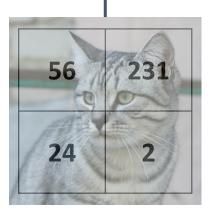
Justin Johnson

Lecture 3 - 15

Linear Classifier: Bias Trick

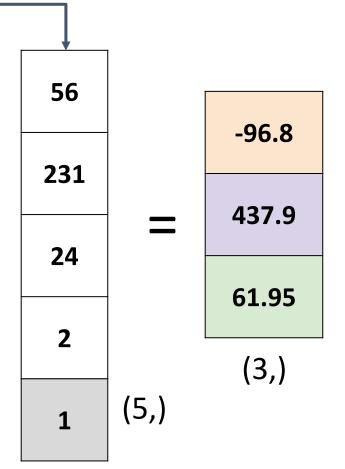
Add extra one to data vector; bias is absorbed into last column of weight matrix

Stretch pixels into column



Input image (2, 2)

0.2	-0.5	0.1	2.0	1.1
1.5	1.3	2.1	0.0	3.2
0	0.25	0.2	-0.3	-1.2
W (3, 5)				



September 11, 2019

Justin Johnson

Lecture 3 - 16

Linear Classifier: Predictions are Linear!

f(x, W) = Wx (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$

Justin Johnson

Lecture 3 - 17

Linear Classifier: Predictions are Linear!

C/

f(x, W) = Wx (ignore bias)

$$f(cx, W) = W(cx) = c * f(x, W)$$
Image Scores 0.5 * Image 0.5 * Scores
$$-96.8$$

$$437.8$$

$$62.0$$

$$31.0$$

 $\lambda = I$

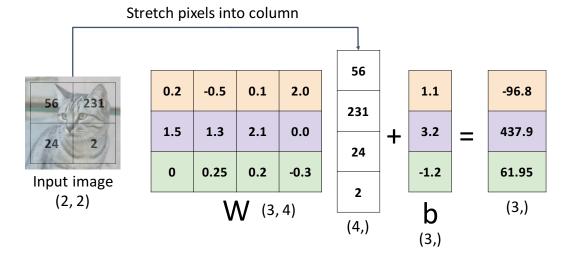
luci	tin 1	hnson
JUZ	LIII J	

Lecture 3 - 18

Interpreting a Linear Classifier

Algebraic Viewpoint

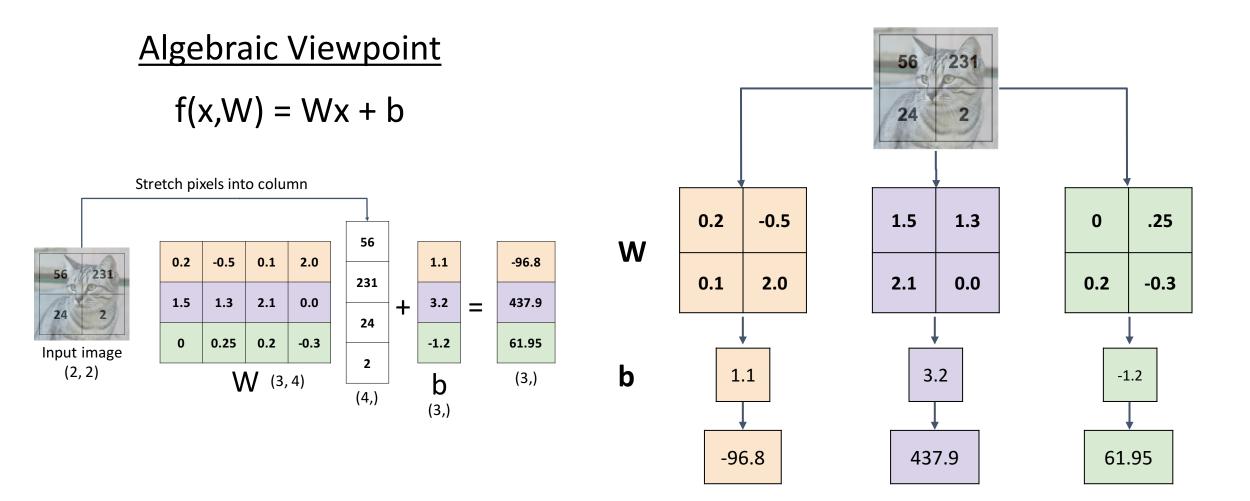
$$f(x,W) = Wx + b$$



Justin Johnson

Lecture 3 - 19

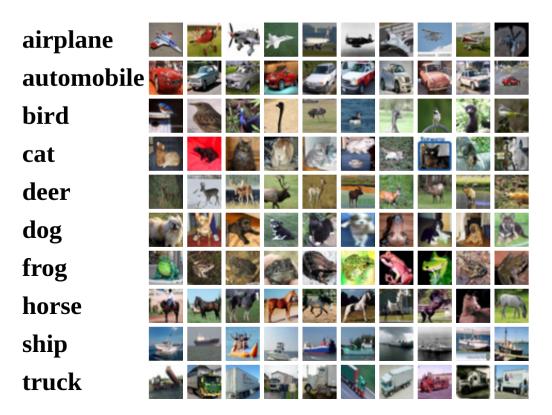
Interpreting a Linear Classifier

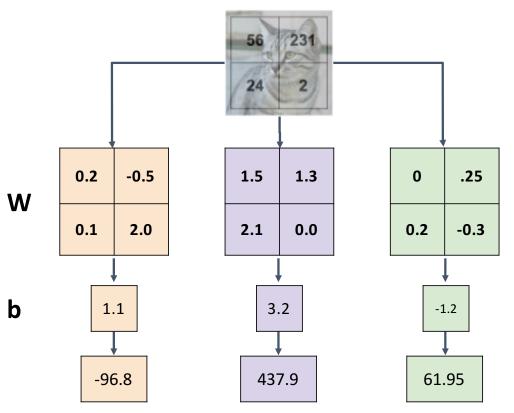


Justin Johnson

Lecture 3 - 20

Interpreting an Linear Classifier

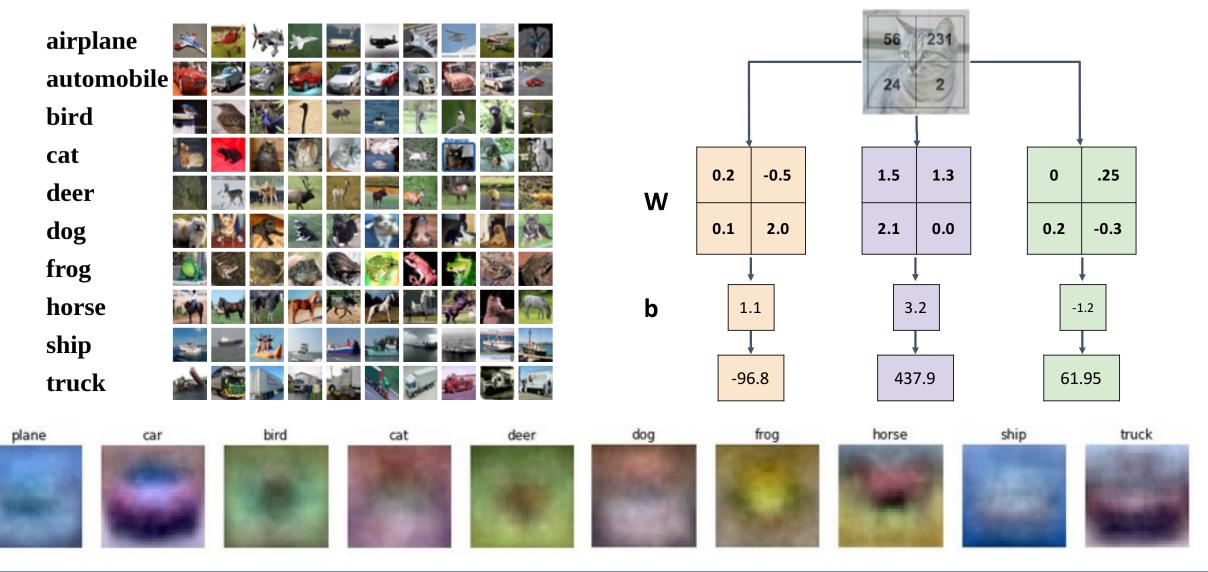




Justin Johnson

Lecture 3 - 21

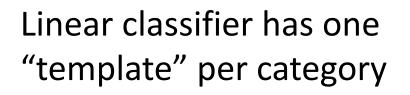
Interpreting an Linear Classifier: Visual Viewpoint



Justin Johnson

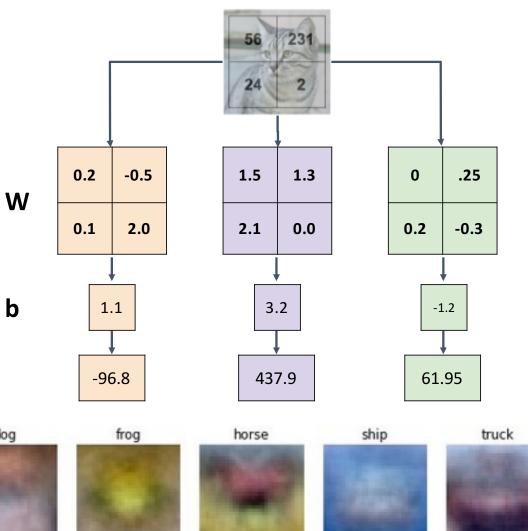
Lecture 3 - 22

Interpreting an Linear Classifier: Visual Viewpoint



bird

cat



Justin Johnson

car

plane

Lecture 3 - 23

deer

dog

Interpreting an Linear Classifier: Visual Viewpoint

Linear classifier has one "template" per category

A single template cannot capture multiple modes of the data

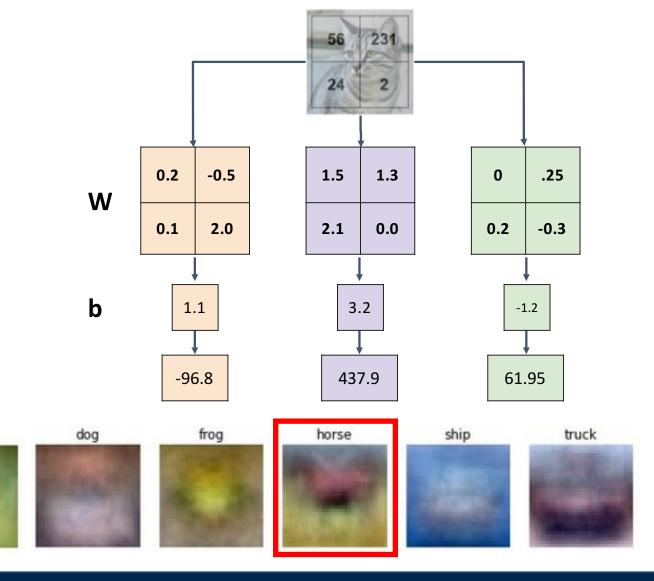
e.g. horse template has 2 heads!

bird

car

Justin Johnson

plane

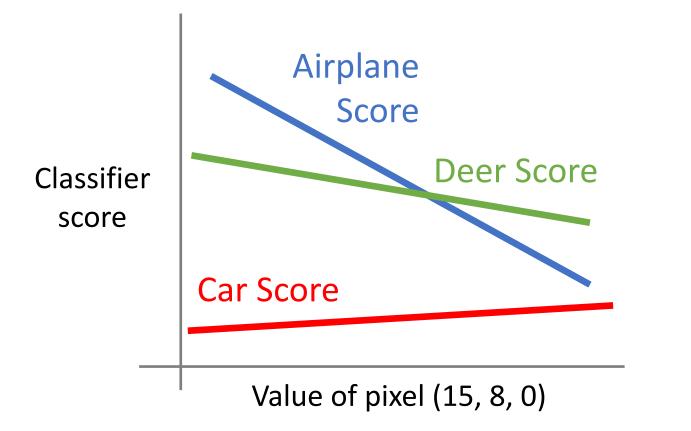


September 11, 2019

cat

Lecture 3 - 24

deer

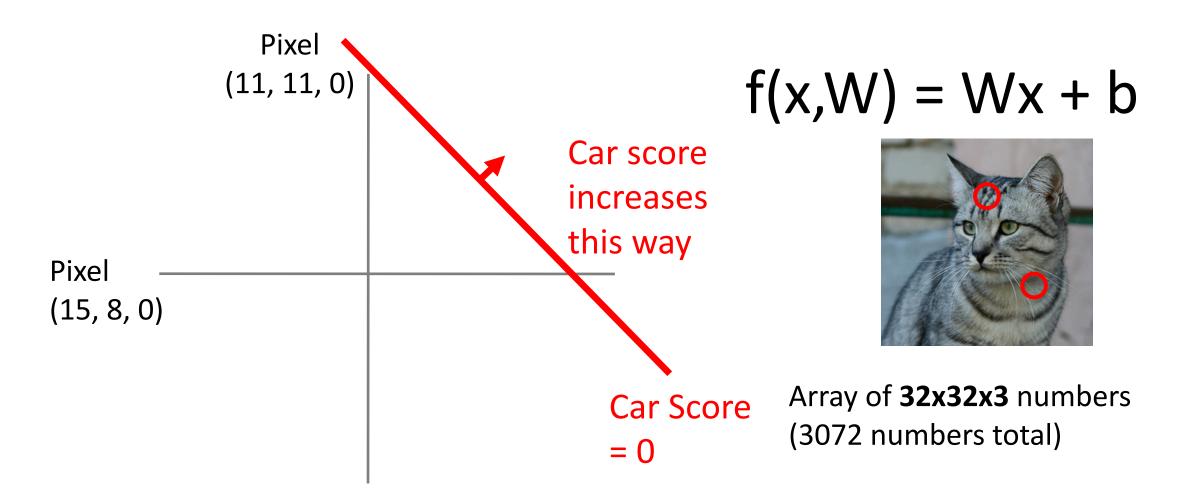


f(x,W) = Wx + b

Array of **32x32x3** numbers (3072 numbers total)

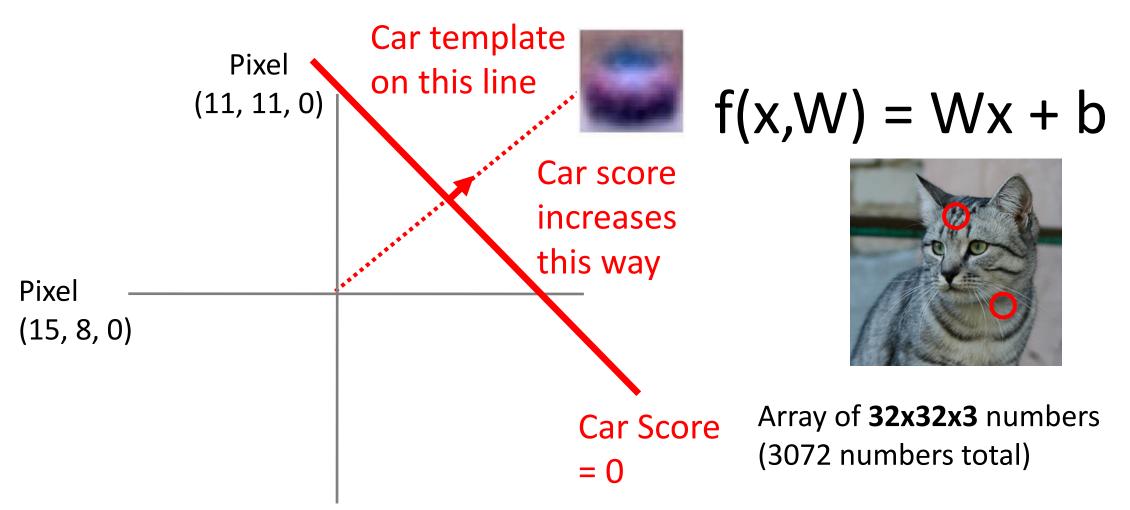
Justin Johnson

Lecture 3 - 25



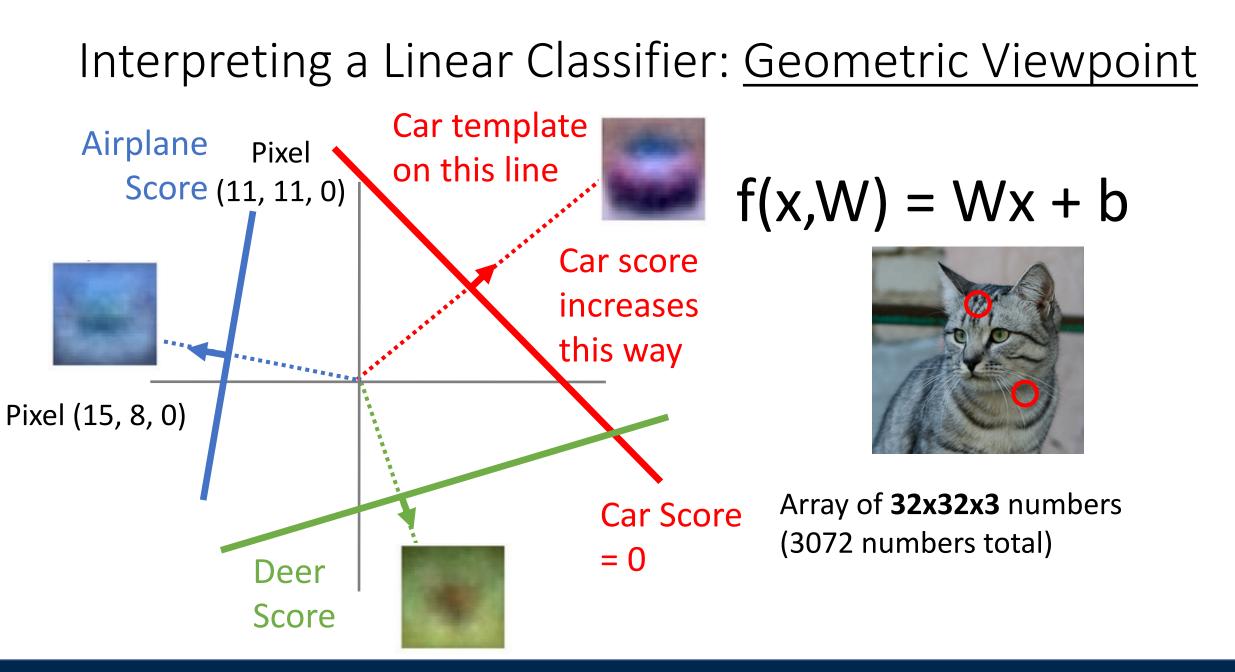
	us	:ti	n	\mathbf{O}	h	n	S	\mathbf{O}	n
-	<u>u</u>			 $\mathbf{\vee}$			9	\smile	

Lecture 3 - 26



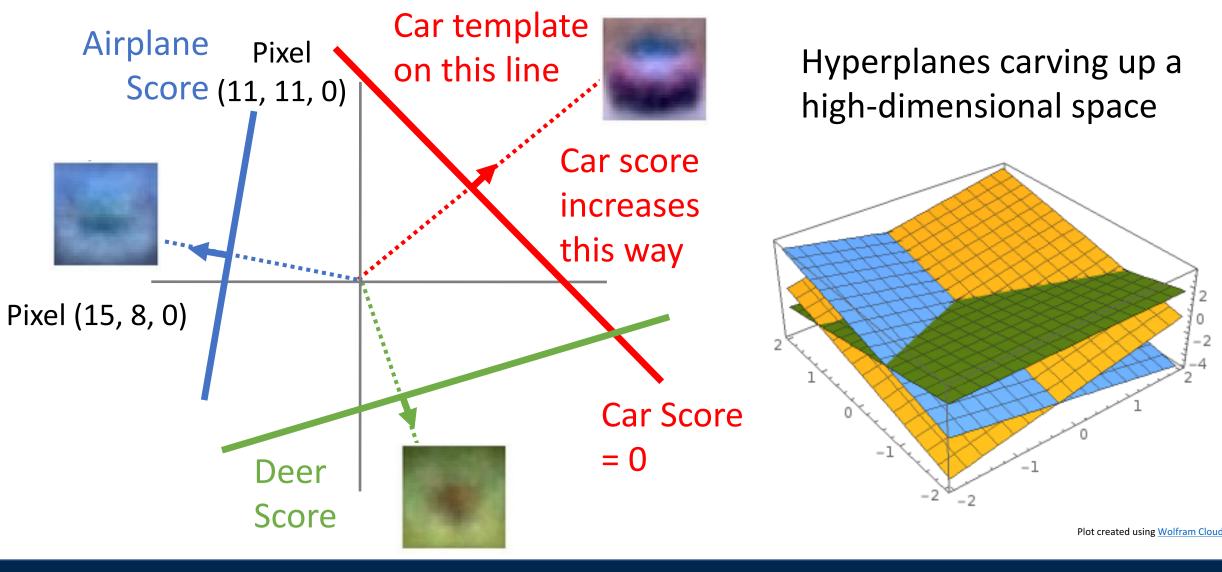
Justin Johnson

Lecture 3 - 27



Justin Johnson

Lecture 3 - 28



Justin Johnson

Lecture 3 - 29

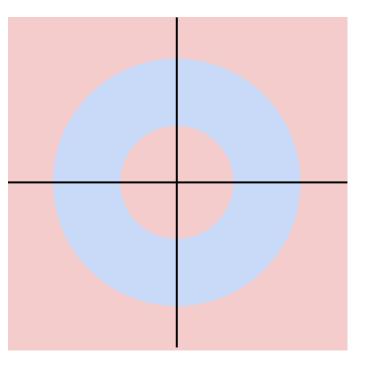
Hard Cases for a Linear Classifier

Class 1: First and third quadrants

Class 2: Second and fourth quadrants

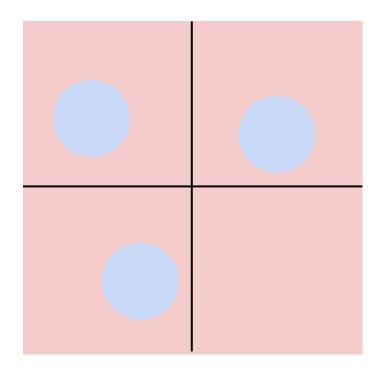
Class 1: 1 <= L2 norm <= 2

Class 2: Everything else



Class 1: Three modes

Class 2: Everything else

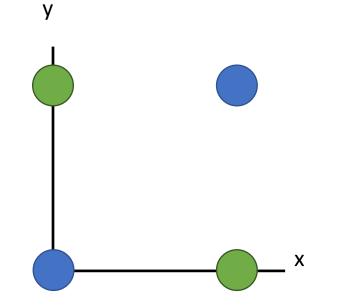


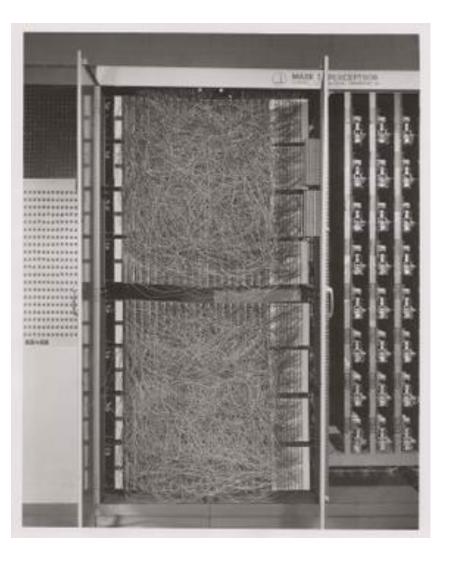
Justin Johnson

Lecture 3 - 30

Recall: Perceptron couldn't learn XOR

Х	Y	F(x,y)
0	0	0
0	1	1
1	0	1
1	1	0





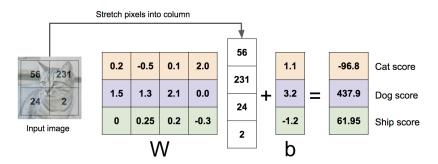
Justin Johnson

Lecture 3 - 31

Linear Classifier: Three Viewpoints

Algebraic Viewpoint

f(x,W) = Wx



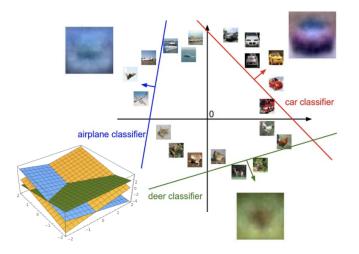
Visual Viewpoint

One template per class



Geometric Viewpoint

Hyperplanes cutting up space



Justin Johnson

Lecture 3 - 32

So Far: Defined a linear <u>score function</u> f(x,W) = Wx + b

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Given a W, we can compute class scores for an image x.

But how can we actually choose a good W?

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

September 11, 2019

Justin Johnson

Lecture 3 - 33

Choosing a good W

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

f(x,W) = Wx + b

TODO:

- 1. Use a **loss function** to quantify how good a value of W is
- 2. Find a W that minimizes the loss function (optimization)

Justin Johnson

Lecture 3 - 34

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called **reward function**, **profit function**, **utility function**, **fitness function**, etc

Justin Johnson

Lecture 3 - 36

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called **reward function**, **profit function**, **utility function**, **fitness function**, etc Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

Justin Johnson

Lecture 3 - 37

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called **reward function**, **profit function**, **utility function**, **fitness function**, etc Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

Loss for a single example is $L_i(f(x_i, W), y_i)$

Justin Johnson

Lecture 3 - 38

Loss Function

A **loss function** tells how good our current classifier is

Low loss = good classifier High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called **reward function**, **profit function**, **utility function**, **fitness function**, etc Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

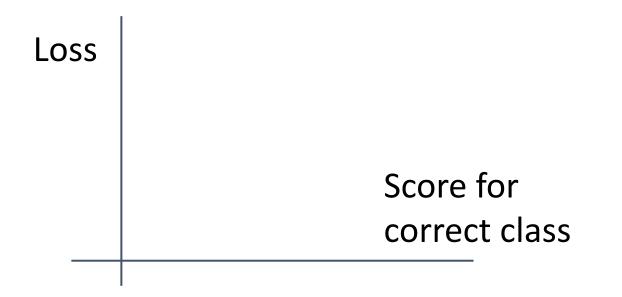
Loss for a single example is $L_i(f(x_i, W), y_i)$

Loss for the dataset is average of per-example losses:

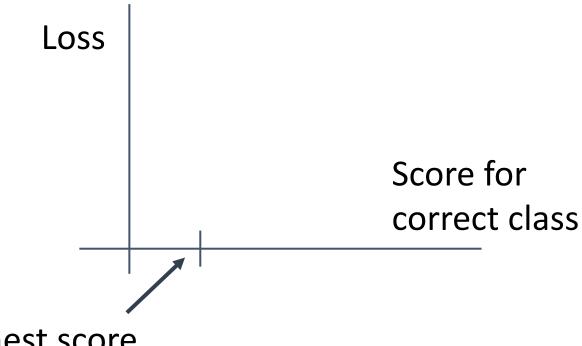
$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Justin Johnson

"The score of the correct class should be higher than all the other scores"



"The score of the correct class should be higher than all the other scores"

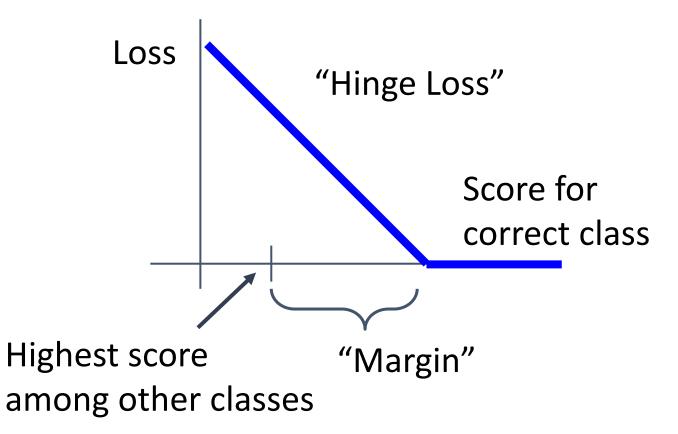


Highest score among other classes

Justin Johnson

Lecture 3 - 41

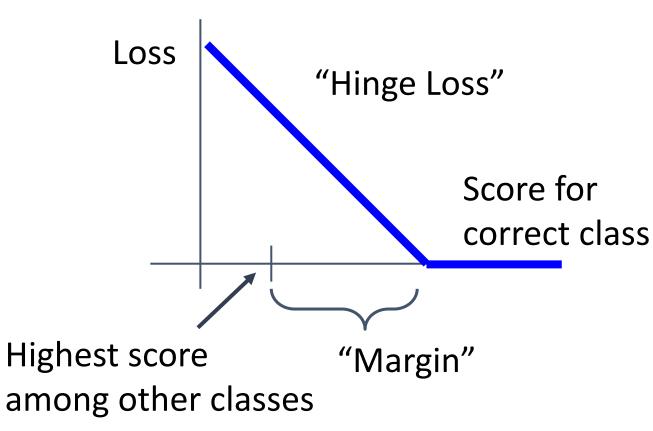
"The score of the correct class should be higher than all the other scores"



Justin Johnson

Lecture 3 - 42

"The score of the correct class should be higher than all the other scores"



Given an example (x_i, y_i) (x_i is image, y_i is label)

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Justin Johnson

Lecture 3 - 43

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let
$$\ s=f(x_i,W)$$
 be scores

cat **3.2** 1.3 2.2

car 5.1 **4.9** 2.5

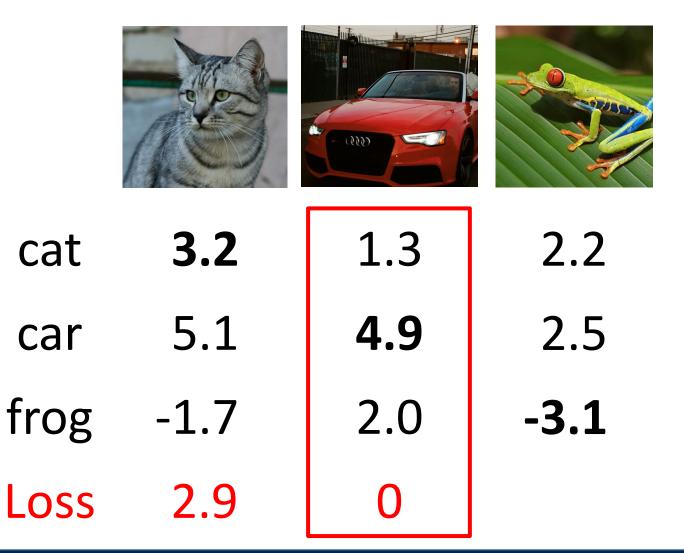
frog -1.7 2.0 -3.1

Then the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let
$$\ s=f(x_i,W)$$
 be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ $= \max(0, 5.1 - 3.2 + 1)$ $+ \max(0, -1.7 - 3.2 + 1)$ $= \max(0, 2.9) + \max(0, -3.9)$ = 2.9 + 0 = 2.9



Given an example (x_i, y_i) (x_i is image, y_i is label)

Let
$$\ s=f(x_i,W)$$
 be scores

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ $= \max(0, 1.3 - 4.9 + 1)$ $+\max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0 = 0

Justin Johnson

Lecture 3 - 46

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let
$$\ s=f(x_i,W)$$
 be scores

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Loss	2.9	0	12.9

Then the SVM loss has the form: $L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$ $= \max(0, 2.2 - (-3.1) + 1)$ $+\max(0, 2.5 - (-3.1) + 1)$ $= \max(0, 6.3) + \max(0, 6.6)$ = 6.3 + 6.6 = 12.9

Justin Johnson

Lecture 3 - 47

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let $s = f(x_i, W)$ be scores

2.2 3.2 1.3 cat 2.5 5.1 4.9 car frog 2.0 -1.7 -3.1 12.9 2.9 Loss \mathbf{O}

Then the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3 = 5.27

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let $s = f(x_i, W)$ be scores

2.2 3.2 1.3 cat 2.5 5.1 4.9 car frog -1.7 2.0 -3.1 12.9 2.9 Loss \mathbf{O}

Then the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q: What happens to the loss if the scores for the car image change a bit?

Justin Johnson

Lecture 3 - 49

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let
$$\ s=f(x_i,W)$$
 be scores

cat **3.2** 1.3 2.2

frog -1.7 2.0 -3.1

Loss 2.9 0 12.9

Then the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q2: What are the min and max possible loss?

Justin Johnson

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let $s = f(x_i, W)$ be scores

2.2 3.2 1.3 cat 2.5 5.1 4.9 car frog -3.1 -1.7 2.0 12.9 2.9 Loss \mathbf{O}

Then the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q3: If all the scores were random, what loss would we expect?

Justin Johnson

cat **3.2** 1.3 2.2

- car 5.1 **4.9** 2.5
- frog -1.7 2.0 **-3.1**

Loss 2.9 0 12.9

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q4: What would happen if the sum were over all classes? (including $i = y_i$)

Justin Johnson

Lecture 3 - 52

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let
$$\ s=f(x_i,W)$$
 be scores

cat**3.2**1.32.2car5.1**4.9**2.5

frog -1.7 2.0 -3.1

Loss 2.9 0 12.9

Then the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Q5: What if the loss used a mean instead of a sum?

```
Justin Johnson
```


Lecture 3 - 54

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let
$$\ s=f(x_i,W)$$
 be scores

2.2 3.2 1.3 cat 2.5 5.1 4.9 car frog -1.7 2.0-3.1 12.9 2.9 Loss \mathbf{O}

Justin Johnson

Then the SVM loss has the form: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ Q6: What if we used this loss instead? $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$

Multiclass SVM Loss

$$egin{aligned} f(x,W) &= Wx \ L &= rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i;W)_j - f(x_i;W)_{y_i} + 1) \end{aligned}$$

Q: Suppose we found some W with L = 0. Is it unique?

Multiclass SVM Loss

$$egin{aligned} f(x,W) &= Wx \ L &= rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i;W)_j - f(x_i;W)_{y_i} + 1) \end{aligned}$$

Q: Suppose we found some W with L = 0. Is it unique?

No! 2W is also has L = 0!

2.0

-3.1

12.9

cat	3.2	1.3	2.2
car	5.1	4.9	2.5

f(x,W) = Wx $L_i = \sum_{j
eq y_i} \max(0,s_j-s_{y_i}+1)^2$

Original W: $= \max(0, 1.3 - 4.9 + 1)$ $+\max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0= 0 Using 2W instead: $= \max(0, 2.6 - 9.8 + 1)$ $+\max(0, 4.0 - 9.8 + 1)$ $= \max(0, -6.2) + \max(0, -4.8)$ = 0 + 0= 0

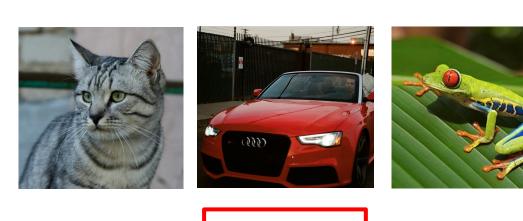
frog

Loss

-1.7

2.9

Lecture 3 - 57



$$f(x,W) = Wx$$
 $L_i = \sum_{j
eq y_i} \max(0,s_j-s_{y_i}+1)^2$

How should we choose between W and 2W if they both perform the same on the training data?

Justin Johnson

Lecture 3 - 58

 $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)$

Data loss: Model predictions should match training data

Justin Johnson

Lecture 3 - 59

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Justin Johnson

Lecture 3 - 60

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W) \qquad \begin{array}{l} \lambda_i = \text{regularization strength} \\ \text{(hyperparameter)} \end{array}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Justin Johnson

Lecture 3 - 61

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W) \qquad \begin{array}{l} \lambda_i = \text{regularization strength} \\ \text{(hyperparameter)} \end{array}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Simple examplesMore complex:L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$ DropoutL1 regularization: $R(W) = \sum_k \sum_l |W_{k,l}|$ Batch normalizationElastic net (L1 + L2): $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ Cutout, Mixup, Stochastic depth, etc...

Justin Johnson

Lecture 3 - 62

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W) \qquad \begin{array}{l} \lambda_i = \text{regularization strength} \\ \text{(hyperparameter)} \end{array}$$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

Purpose of Regularization:

- Express preferences in among models beyond "minimize training error"
- Avoid **overfitting**: Prefer simple models that generalize better
- Improve optimization by adding curvature

Justin Johnson

Lecture 3 - 63

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1] \ w_1 = [1, 0, 0, 0]$$

L2 Regularization

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

 $w_2 = \left[0.25, 0.25, 0.25, 0.25
ight]$

$$w_1^T x = w_2^T x = 1$$

Justin Johnson

Lecture 3 - 64

Regularization: Expressing Preferences

$$x = [1, 1, 1, 1] \ w_1 = [1, 0, 0, 0]$$

$$R(W) = \sum_k \sum_l W_{k,l}^2$$

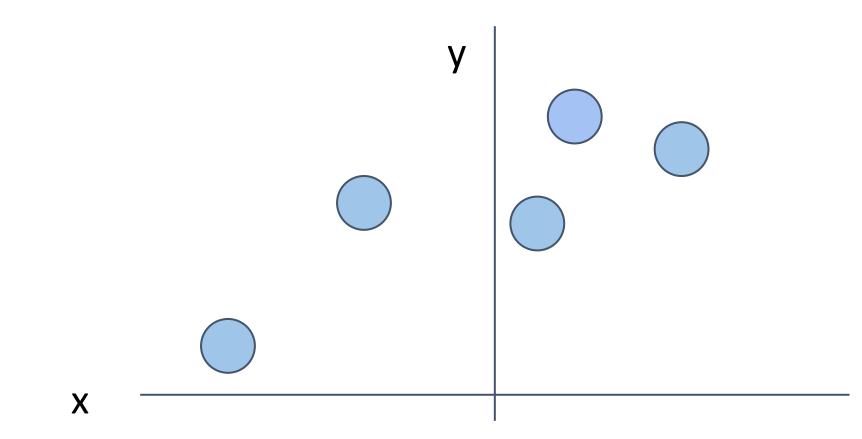
$$w_2 = \left[0.25, 0.25, 0.25, 0.25
ight]$$

L2 regularization likes to "spread out" the weights

$$w_1^T x = w_2^T x = 1$$

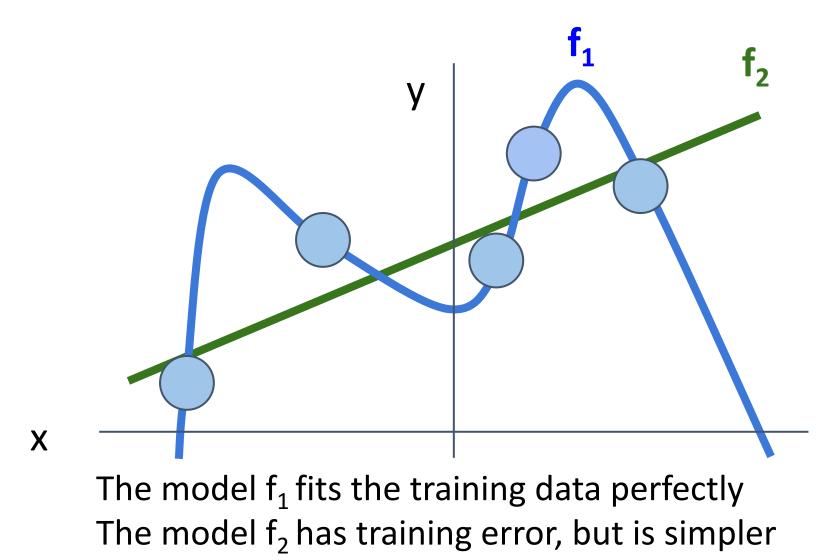
Justin Johnson

Lecture 3 - 65



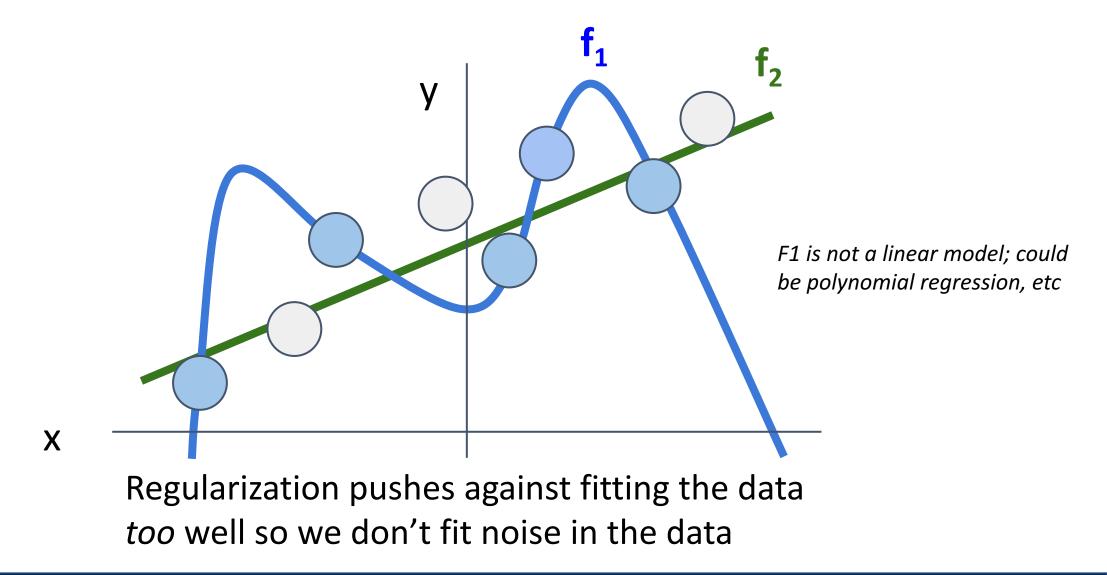
Justin Johnson

Lecture 3 - 66

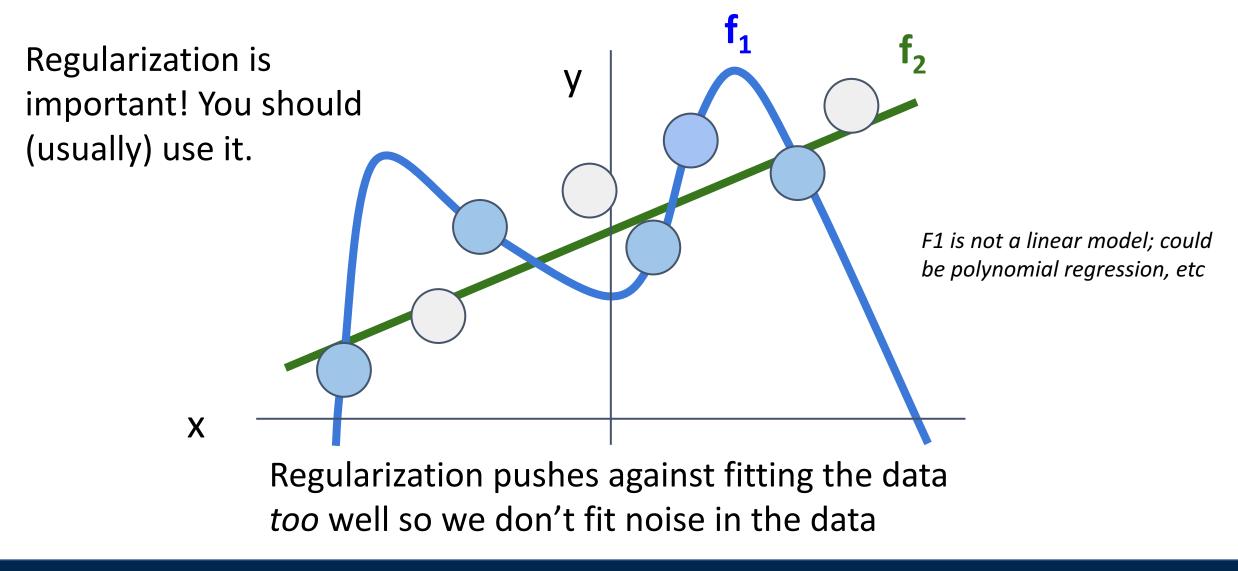


Justin Johnson

Lecture 3 - 67



```
Justin Johnson
```



Justin Johnson

Lecture 3 - 69

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

- cat **3.2**
- car 5.1

frog -1.7

Justin Johnson

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$
 .

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax

car 5.1

frog -1.7

Justin Johnson

Cross-Entropy Loss (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities

$$s = f(x_i; W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax

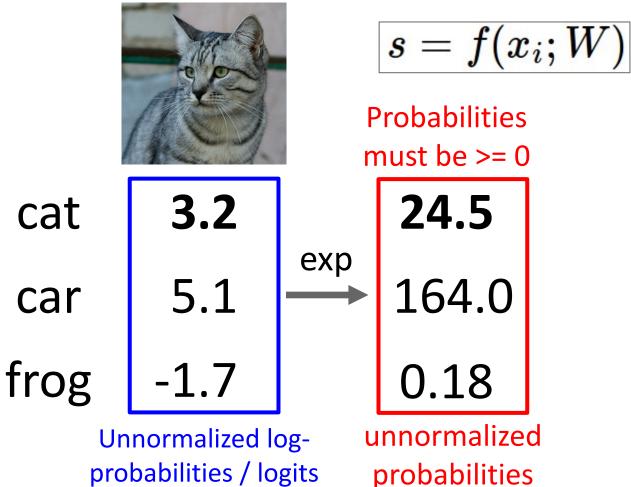
cat **3.2** car 5.1 frog -1.7

> Unnormalized logprobabilities / logits

Justin Johnson

Lecture 3 - 72

Want to interpret raw classifier scores as probabilities

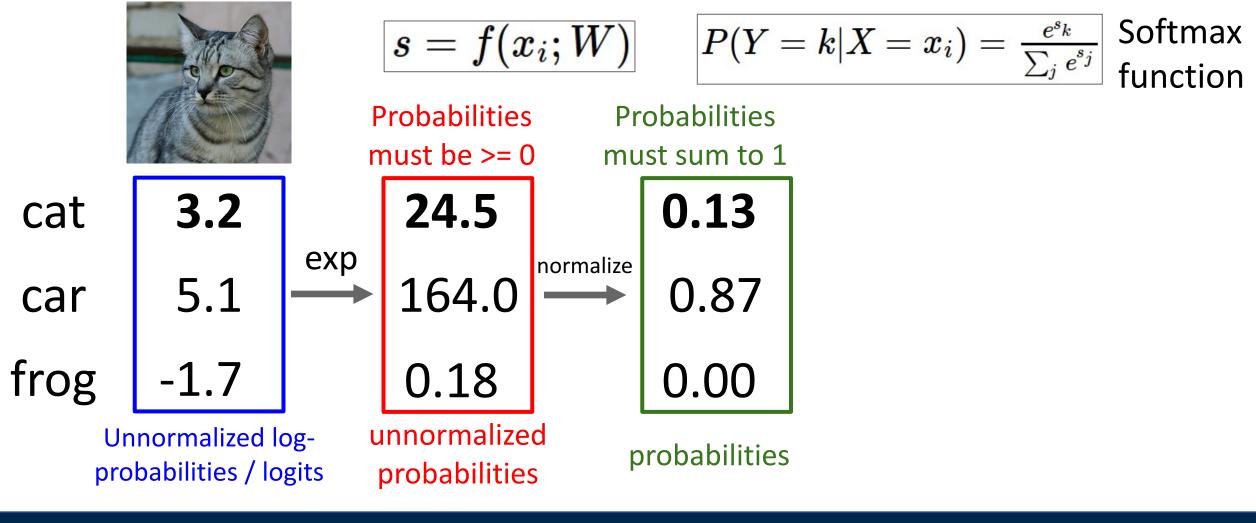


$$P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax function

Justin Johnson

Lecture 3 - 73

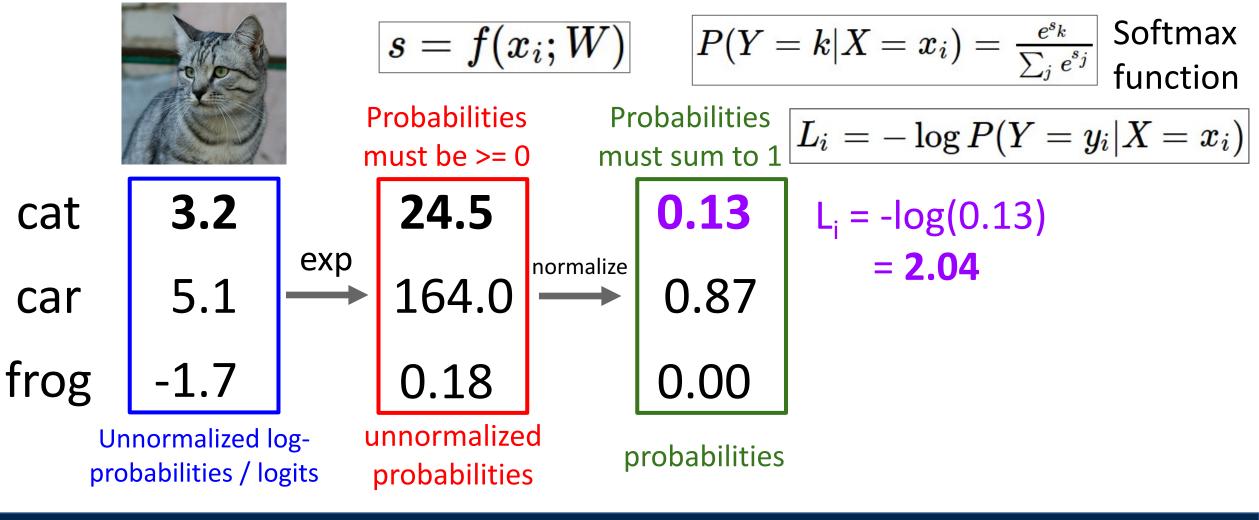
Want to interpret raw classifier scores as probabilities



Justin Johnson

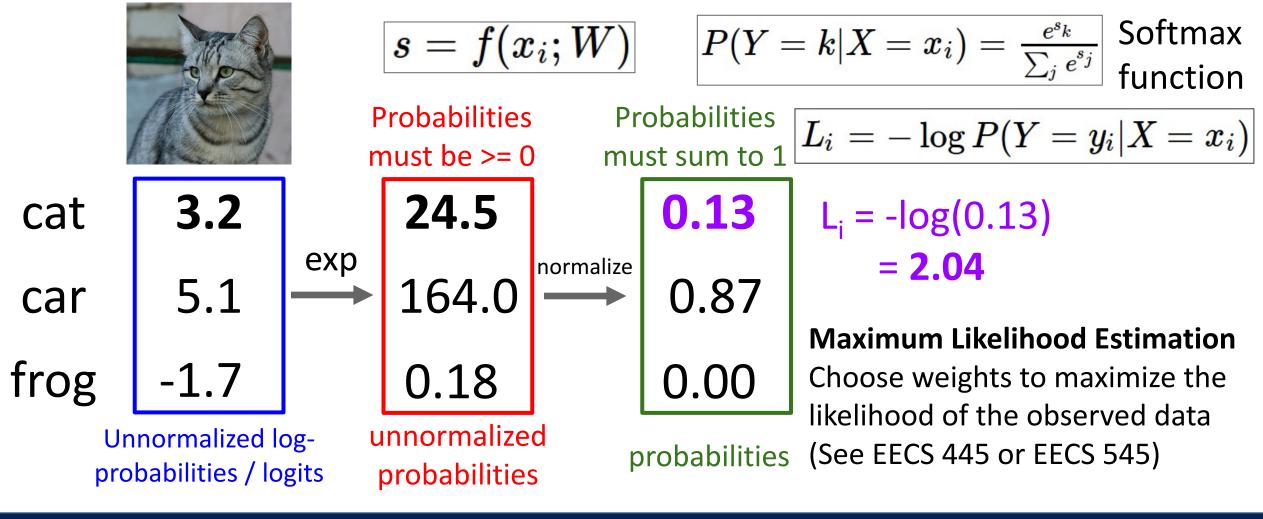
Want to interpret raw classifier scores as probabilities

September 11, 2019



Justin Johnson

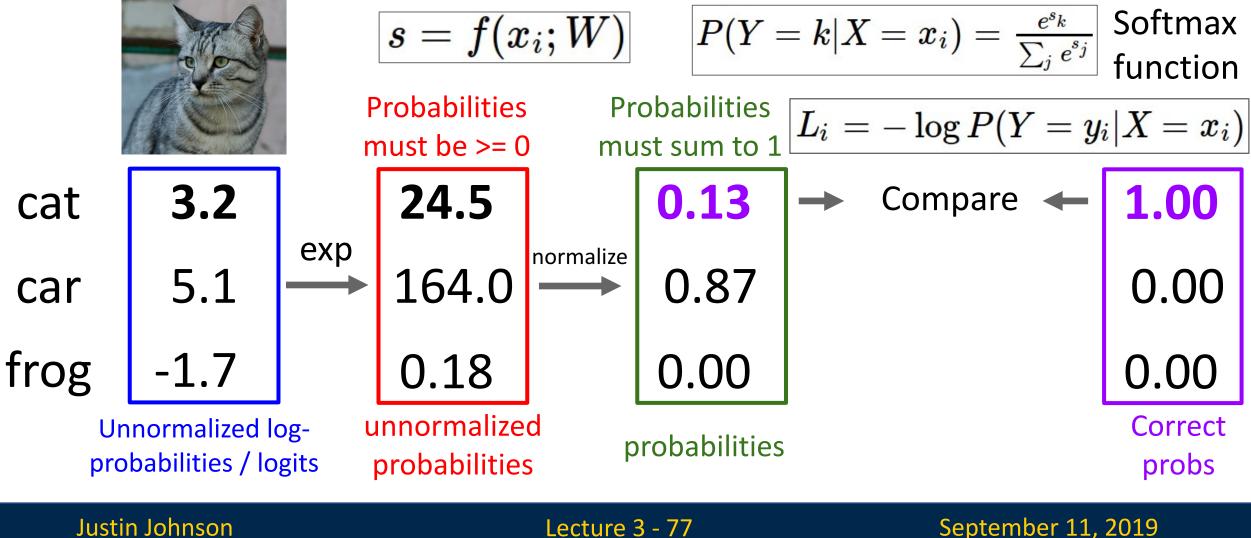
Want to interpret raw classifier scores as probabilities



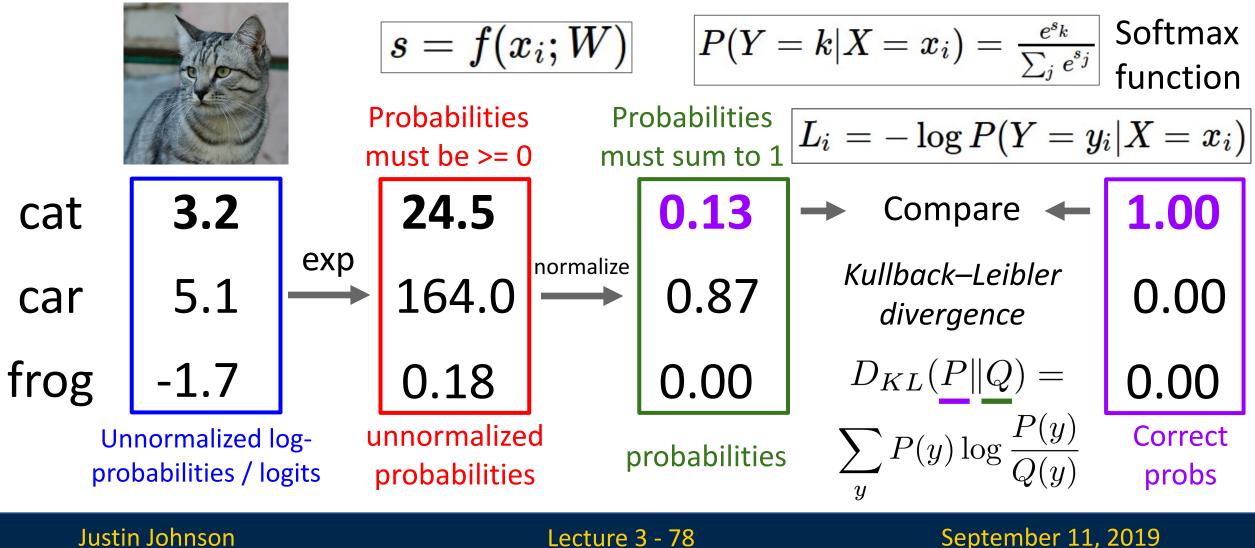
Justin Johnson

Lecture 3 - 76

Want to interpret raw classifier scores as probabilities



Want to interpret raw classifier scores as probabilities



Want to interpret raw classifier scores as probabilities

September 11, 2019

			s = f(x)			$=k X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$	Softmax function
			Probabilities nust be >= 0		obabilities st sum to 1	$L_i = -\log P(Y = y_i)$	$_i X=x_i)$
cat	3.2		24.5		0.13	🔶 Compare ←	1.00
car	5.1	exp	164.0	normalize	0.87	Cross Entropy	0.00
frog	-1.7		0.18		0.00	H(P,Q) =	0.00
Unnormalized log- probabilities / logits probabilities probabilities $H(p) + D_{KL}(P Q)$							Correct probs

Lecture 3 - 79

Justin Johnson

Want to interpret raw classifier scores as probabilities

3.2

$$s=f(x_i;W)$$

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax

Maximize probability of correct class

 $L_i = -\log P(Y = y_i | X = x_i)$

Putting it all together:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

September 11, 2019

car 5.1

cat

frog -1.7

Want to interpret raw classifier scores as probabilities

3.2

cat

$$s = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax

Maximize probability of correct class

$$L_i = -\log P(Y=y_i|X=x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Want to interpret raw classifier scores as probabilities

$$F(x_i;W)$$
 $P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax function

Maximize probability of correct class

Putting it all together:

3.2
$$L_i = -\log P(Y = y_i | X = x_i)$$
 $L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}})$
5.1

s =

A: Min 0, max +infinity

cat

car

Want to interpret raw classifier scores as probabilities

3.2

cat

$$s = f(x_i; W)$$
 $P(Y = k | X = x_i) = rac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax function

Maximize probability of correct class

$$L_i = -\log P(Y=y_i|X=x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

car5.1Q: If all scores arefrog-1.7small random values,what is the loss?

Want to interpret raw classifier scores as probabilities

 $P(Y=k|X=r_i) = \frac{e^{s_k}}{e^{s_k}}$

$$\begin{array}{l} \textbf{J} = J(w_i, W) & \textbf{I} (\mathbf{I} - w_i) & \underline{\Sigma}_j e^{s_j} \end{array} \text{ function} \\ \\ \textbf{Maximize probability of correct class} & \textbf{Putting it all together:} \\ \textbf{A}_i = -\log P(Y = y_i | X = x_i) & L_i = -\log(\frac{e^{sy_i}}{\sum_j e^{s_j}}) \\ \\ \textbf{5.1} \\ \textbf{-1.7} & \textbf{Q: If all scores are} \\ \text{small random values,} \\ \text{what is the loss?} & \textbf{A: -log(C)} \\ \log(10) \approx 2.3 \end{array}$$

cat

car

frog

Lecture 3 - 84

Softmax

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

 $[10, 9, 9]$
 $[10, -100, -100]$
and $y_i = 0$

Q: What is cross-entropy loss? What is SVM loss?

Justin Johnson

Lecture 3 - 85

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$ **Q**: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0 SVM loss = 0

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

 $[10, 9, 9]$
 $[10, -100, -100]$
and $y_i = 0$

Q: What happens to each loss if I slightly change the scores of the last datapoint?

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$ **Q**: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-entropy loss will change; SVM loss will stay the same

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

 $[10, 9, 9]$
 $[10, -100, -100]$
and $y_i = 0$

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores:

$$[10, -2, 3]$$

 $[10, 9, 9]$
 $[10, -100, -100]$
and $y_i = 0$

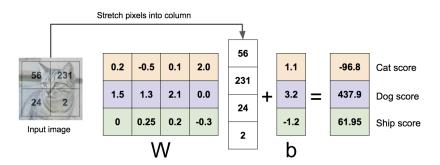
Q: What happens to each loss if I double the score of the correct class from 10 to 20?

A: Cross-entropy loss will decrease, SVM loss still 0

Recap: Three ways to think about linear classifiers

Algebraic Viewpoint

f(x,W) = Wx



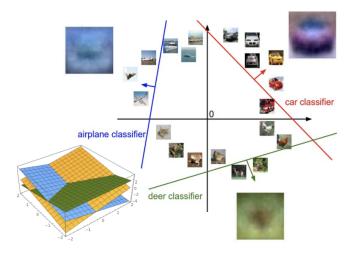
Visual Viewpoint

One template per class



Geometric Viewpoint

Hyperplanes cutting up space



Justin Johnson

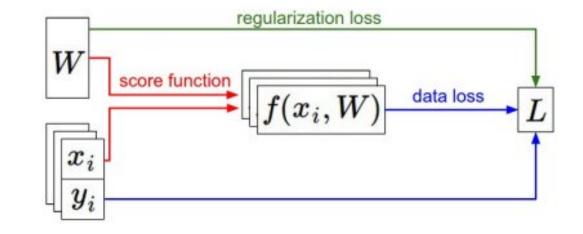
Lecture 3 - 91

Recap: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a **score function**:
- We have a **loss function**:

$$s = f(x;W) = Wx$$
Linear classifier

$$egin{aligned} L_i &= -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) & ext{Softmax} \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ L &= rac{1}{N} \sum_{i=1}^N L_i + R(W) & ext{Full loss} \end{aligned}$$



Justin Johnson

Lecture 3 - 92

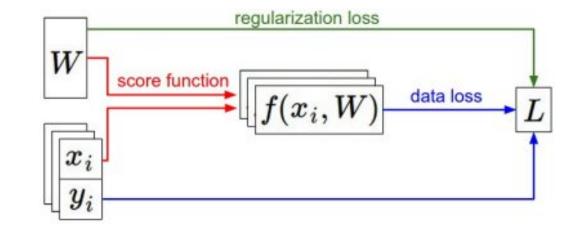
Recap: Loss Functions quantify preferences

- We have some dataset of (x, y)
- We have a **score function**:
- We have a **loss function**:

Q: How do we find the best W?

$$s = f(x; W) = Wx$$
Linear classifier

$$egin{aligned} L_i &= -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) & ext{Softmax} \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ L &= rac{1}{N} \sum_{i=1}^N L_i + R(W) & ext{Full loss} \end{aligned}$$



Justin Johnson

Lecture 3 - 93

Next time: Optimization

Justin Johnson

Lecture 3 - 94