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Lecture 16:
(Over/Under)Fitting

Neural Networks
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Administrative: COVID19

As of 3/9 there are no cases reported in Michigan. 

But we should still be cautious:
• Stay home if you feel sick.
• Wash your hands frequently.
• Avoid touching your face.
• Avoid large gatherings.

2



Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Administrative: COVID19
• Lectures are recorded: You are encouraged to 

watch from home.
• Project group size: Previously we said group size 

3-5. We will now allow groups of size 1-5 so you 
can work alone if you prefer.
• Office Hours: We will start experimenting with 

virtual office hours this week. Stay tuned on 
Piazza for details.
• Poster Session is cancelled. We will ask you to

submit a video describing your project instead; 
details to follow.
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Administrative: Project Proposal

4

• Project proposal is due tomorrow, 3/11 11:59pm
• 2 page writeup in CVPR format
• You should answer the following:

• Who are you working with? Groups of 1-5
• What problem are you trying to solve? Applying vision to an 

interesting application? Re-implement a paper other other exiting 
method? Try to implement some new idea? All are fine!

• How are you going to try and solve the problem? You don’t need to 
have all details figured out, but you should have an idea of how you’ll 
approach it

• What do you need to attack this problem? Datasets, code, computing 
resources? What is your plan for getting access to these things?

• How will you measure success? What evaluation metrics will you use?

http://cvpr2019.thecvf.com/files/cvpr2019AuthorKit.zip
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Administrative: Homework 4

• Homework 4 was released yesterday;
will be due Friday 3/20, 11:59pm
• We should cover everything you need for this

assignment by Thursday’s lecture
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Model Complexity
Underfitting / Overfitting
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(Over/Under)fitting and Complexity
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Let’s fit a polynomial: given x, predict y
𝑦 = 𝑤$ + 𝑤&𝑥 + 𝑤(𝑥( + 𝑤)𝑥) + ⋯+𝑤+𝑥+

Note: can do non-linear regression with copies of x

𝑦&
⋮
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Weights: one per polynomial degree

Matrix of all polynomial degrees
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(Over/Under)fitting and Complexity

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)
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Underfitting

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)
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Underfitting

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)

Model isn’t “complex” 
enough to fit the data

Bias (statistics): Error 
intrinsic to the model. 
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Overfitting

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)
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Overfitting
Model has high variance: remove one point, 

and model changes dramatically
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(Continuous) Model Complexity
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argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + 9

:;&

<

− log
exp( 𝑊𝑥 EF)

∑I exp( 𝑊𝑥 I))

Regularization: penalty 
for complex model 

Pay penalty for negative log-
likelihood of correct class

Intuitively: big weights = more complex model 

Model 1: 0.01*x1 + 1.3*x2 + -0.02*x3 + -2.1x4 + 10

Model 2: 37.2*x1 + 13.4*x2 + 5.6*x3 + -6.1x4 + 30
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Fitting a Model
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Again, fitting polynomial, but with regularization

argmin
J

𝒚 − 𝑿𝒘 + 𝜆 𝒘
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Adding Regularization
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No regularization: 
fits all data points

Regularization: 
can’t fit all data points
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Bias / Variance Tradeoff

16

Error on new data comes from combination of:
1. Bias: model is oversimplified and can’t fit 

the underlying data
2. Variance: you don’t have the ability to 

estimate your model from limited data
3. Inherent: the data is intrinsically difficult
Bias and variance trade-off. Fixing one hurts the 
other. You can prove theorems about this.
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Underfitting and Overfitting
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Low Bias
High Variance

High Bias
Low Variance

Diagram adapted from: D. Hoiem

Test 
Error

Training 
Error

Model 
Complexity

Ove
rfi

tti
ng!

Getting Better
Error

Underfitting!
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Underfitting and Overfitting

18

Low Bias
High Variance

High Bias
Low Variance

Complexity

Test
Error

Small data
Overfits w/small model

Big data
Overfits w/bigger model

Diagram adapted from: D. Hoiem
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Underfitting
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Do poorly on both training and 
validation data due to bias.
Solution:
1. More features
2. More powerful model
3. Reduce regularization
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Overfitting
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Do well on training data, but poorly 
on validation data due to variance
Solution:
1. More data
2. Less powerful model
3. Regularize your model more

Heuristic: First make sure you can
overfit, then stop overfitting.
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Double Descent

21
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Double Descent
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Advani and Saxe, “High-dimensional dynamics of generalization error in neural networks”, 2017
Geiger et al, “The jamming transition as a paradigm to understand the loss landscape of deep neural networks”, 2018
Belkin et al, “Reconciling modern machine learning practice and the bias-variance trade-off”, 2018
Nakkiran et al, “Deep Double Descent: Where Bigger Models and More Data Hurt”, 2019
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Where we are:

23

1. Use Linear Models for image 
classification problems

2. Use Loss Functions to express 
preferences over different 
choices of weights

3. Use Stochastic Gradient 
Descent to minimize our loss 
functions and train the model

4. Add Regularization to control
overfitting

Softmax
SVM
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Problem: Linear Classifiers not enough
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x

y
Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different 

modes of a class
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One solution: Feature Transforms

25

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature 
transform
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One solution: Feature Transforms

26

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature 
transform

r

θ
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One solution: Feature Transforms

27

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature 
transform

r

θ

Linear classifier 
in feature space
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One solution: Feature Transforms

28

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature 
transform

r

θ

Linear classifier 
in feature space

Nonlinear 
classifier in 
original space!
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Image Features: Color Histogram
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+1
Ignores texture, 
spatial positions

Frog image is in the public domain

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented 
Gradients (HoG)
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented 
Gradients (HoG)
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Strong diagonal 
edges

Edges in all 
directions

Weak edges

Image Features: Histogram of Oriented 
Gradients (HoG)
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Strong diagonal 
edges

Edges in all 
directions

Weak edges

Captures texture and position, robust to small image changes

Image Features: Histogram of Oriented 
Gradients (HoG)
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Image Features: Bag of Words

34

Extract random 
patches 

Step 1: Build codebook

Learn a feature transform from data!
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Image Features: Bag of Words

35

Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Learn a feature transform from data!
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Image Features: Bag of Words
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Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

Learn a feature transform from data!
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Image Features
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Common trick: Combine multiple feature transforms
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Winner of 2011 ImageNet Challenge

Lectur
e 5 - 38

F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011.
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Image Features vs Neural Networks

39

Feature Extraction
f

training

Krizhevsky, Sutskever, and Hinton, “Imagenet classification with deep convolutional neural networks”, NIPS 2012

10 numbers 
giving scores 
for classes
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Image Features vs Neural Networks

40

Feature Extraction
f

training

training

Krizhevsky, Sutskever, and Hinton, “Imagenet classification with deep convolutional neural networks”, NIPS 2012

10 numbers 
giving scores 
for classes

10 numbers 
giving scores 
for classes

Deep Neural Network
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Neural Networks

41

Input image: 𝑥 ∈ ℝQ
Category scores: 𝑠 ∈ ℝS

Linear Classifier: 
𝑠 = 𝑊𝑥
𝑊 ∈ ℝS×Q

In practice we add a learnable bias 
+b after each matrix multiply
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Neural Networks
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Input image: 𝑥 ∈ ℝQ
Category scores: 𝑠 ∈ ℝS

Linear Classifier: 
𝑠 = 𝑊𝑥
𝑊 ∈ ℝS×Q

2-layer Neural Net:
𝑠 = W(max 0,𝑊&𝑥

𝑊& ∈ ℝX×Q
𝑊( ∈ ℝS×X

In practice we add a learnable bias 
+b after each matrix multiply
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Neural Networks

43

Input image: 𝑥 ∈ ℝQ
Category scores: 𝑠 ∈ ℝS

Linear Classifier: 
𝑠 = 𝑊𝑥
𝑊 ∈ ℝS×Q

2-layer Neural Net:
𝑠 = W(max 0,𝑊&𝑥

𝑊& ∈ ℝX×Q
𝑊( ∈ ℝS×X

3-layer Neural Net:
𝑠 = W)max 0,𝑊( max 0,𝑊&𝑥
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Neural Networks
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x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Two-Layer Neural Network: 𝑠 = W(max 0,𝑊&𝑥

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊( ∈ ℝS×Q
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Neural Networks

45

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Two-Layer Neural Network: 𝑠 = W(max 0,𝑊&𝑥

Element (i, j) of W1 gives 
the effect on hi from xj

Element (i, j) of W2 gives 
the effect on si from hj

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊( ∈ ℝS×Q
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Neural Networks
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x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Two-Layer Neural Network: 𝑠 = W(max 0,𝑊&𝑥

“Fully-Connected” neural network
Also “Multi-Layer Perceptron” (MLP)

Element (i, j) of W1 gives 
the effect on hi from xj

Element (i, j) of W2 gives 
the effect on si from hj

All elements 
of x affect all 
elements of h

All elements 
of h affect all 
elements of s



Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks
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x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Linear classifier: 𝑠 = 𝑊𝑥
One template per class

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊( ∈ ℝS×Q

Two-Layer Neural Network: 
𝑠 = W(max 0,𝑊&𝑥
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Neural Networks
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x h sInput:
3072

Hidden layer:
100

Output: 10

Neural Network:
First layer is a bank of templates
Second layer recombines templates

W1 W2

Two-Layer Neural Network: 
𝑠 = W(max 0,𝑊&𝑥

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊( ∈ ℝS×Q
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Neural Networks
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x h sInput:
3072

Hidden layer:
100

Output: 10

Different templates can cover 
different modes of a class!

W1 W2

Two-Layer Neural Network: 
𝑠 = W(max 0,𝑊&𝑥

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊( ∈ ℝS×Q
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Neural Networks

50

x h sInput:
3072

Hidden layer:
100

Output: 10

Many templates not interpretable: 
“Distributed representation”

W1 W2

Two-Layer Neural Network: 
𝑠 = W(max 0,𝑊&𝑥

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊( ∈ ℝS×Q
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Deep Neural Networks
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x h1W1 sW6

Input:
3072

Output: 10

h2 h3 h4 h5W2 W3 W4 W5

Depth = number of layers

Width:
Size of 
each 
layer

𝑠 = 𝑊Ymax 0,𝑊Zmax 0,𝑊[max 0,𝑊)max 0,𝑊(max 0,𝑊&𝑥
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Activation Functions

52

2-layer Neural Network
The function 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)
is called “Rectified Linear Unit”

This is called the activation 
function of the neural network

𝑠 = 𝑊(𝐦𝐚𝐱 𝟎,𝑊&𝑥



Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Activation Functions

53

2-layer Neural Network
The function 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)
is called “Rectified Linear Unit”

This is called the activation 
function of the neural network

𝑠 = 𝑊(𝐦𝐚𝐱 𝟎,𝑊&𝑥

Q: What happens if we build a neural 
network with no activation function?

𝑠 = 𝑊(𝑊&𝑥
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Activation Functions

54

2-layer Neural Network
The function 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)
is called “Rectified Linear Unit”

This is called the activation 
function of the neural network

𝑠 = 𝑊(𝐦𝐚𝐱 𝟎,𝑊&𝑥

Q: What happens if we build a neural 
network with no activation function?

𝑠 = 𝑊(𝑊&𝑥

A: We get a linear classifier!
𝑊) = 𝑊(𝑊& ∈ ℝS×Q

𝑠 = 𝑊)𝑥
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Activation Functions

55

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

56

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

ReLU is a good 
default choice
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Neural Net in 
<20 lines!
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Neural Net in 
<20 lines!
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Initialize weights and data



Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Net in 
<20 lines!
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Initialize weights and data

Compute loss (sigmoid 
activation, L2 loss)
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Neural Net in 
<20 lines!
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Initialize weights and data

Compute loss (sigmoid 
activation, L2 loss)

Compute gradients
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Neural Net in 
<20 lines!

61

Initialize weights and data

Compute loss (sigmoid 
activation, L2 loss)

Compute gradients

SGD step
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“Neural” Networks

62

This image by Fotis Bobolas is licensed under CC-BY 2.0

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/
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Our brains are made of Neurons
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Cell 
body

Axon

Dendrite
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Our brains are made of Neurons

64

Cell 
body

Axon

Dendrite

Presynaptic 
terminal

Synapse
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Our brains are made of Neurons
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Cell 
body

Axon

Dendrite

Presynaptic 
terminal

Synapse

Impulses 
carried toward 
cell body

Impulses carried 
away from cell body
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Our brains are made of Neurons
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Cell 
body

Axon

Dendrite

Presynaptic 
terminal

Synapse

Impulses 
carried toward 
cell body

Impulses carried 
away from cell body

Firing rate is a 
nonlinear 
function of inputs



Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 67

Neuron image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Biological Neuron

Artificial Neuron

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers 
for computational efficiency

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Be very careful with brain analogies!

69

Biological Neurons:
● Many different types
● Can perform complex non-linear 

computations
● Synapses are not a single weight but a 

complex non-linear dynamical system
● Can have feedback, time-dependent 
● Probably don’t learn via gradient descent

[Dendritic Computation. London and Hausser]
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Space Warping

70

x1

x2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional
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Space Warping
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x1

x2

h1

Feature transform:
h = Wx

h2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional
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Space Warping
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x1

x2

h1

A AB B

C C D

D
Feature transform:

h = Wx

h2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional
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Space Warping
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x1

x2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Points not linearly 
separable in original space
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Space Warping
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x1

x2

h1

h2

Feature transform:
h = Wx

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Points not linearly 
separable in original space

Points not linearly 
separable in feature space
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Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2
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Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

A A
h2
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Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

A AB B
B is “collapsed” 
onto +h2 axis

h2



Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

A AB B

D

D

D “collapsed” 
onto +h1 axis

B is “collapsed” 
onto +h2 axis
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

A AB B

D

D

C C
C “collapsed” 
onto origin

D “collapsed” 
onto +h1 axis

B is “collapsed” 
onto +h2 axis
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = Wx

Points not linearly 
separable in original space
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Points not linearly 
separable in original space
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Points are linearly separable 
in features space!

Points not linearly 
separable in original space
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Linear classifier in feature 
space gives nonlinear 
classifier in original space

Points are linearly separable 
in features space!

Points not linearly 
separable in original space
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(Web demo with ConvNetJS: 
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

Neural Networks Web Demo

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Next Time: How to 
compute gradients?
Backpropagation

85


