
Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Lecture 16:
(Over/Under)Fitting

Neural Networks

1

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Administrative: COVID19

As of 3/9 there are no cases reported in Michigan.

But we should still be cautious:
• Stay home if you feel sick.
• Wash your hands frequently.
• Avoid touching your face.
• Avoid large gatherings.

2

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Administrative: COVID19
• Lectures are recorded: You are encouraged to

watch from home.
• Project group size: Previously we said group size

3-5. We will now allow groups of size 1-5 so you
can work alone if you prefer.
• Office Hours: We will start experimenting with

virtual office hours this week. Stay tuned on
Piazza for details.
• Poster Session is cancelled. We will ask you to

submit a video describing your project instead;
details to follow.

3

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Administrative: Project Proposal

4

• Project proposal is due tomorrow, 3/11 11:59pm
• 2 page writeup in CVPR format
• You should answer the following:

• Who are you working with? Groups of 1-5
• What problem are you trying to solve? Applying vision to an

interesting application? Re-implement a paper other other exiting
method? Try to implement some new idea? All are fine!

• How are you going to try and solve the problem? You don’t need to
have all details figured out, but you should have an idea of how you’ll
approach it

• What do you need to attack this problem? Datasets, code, computing
resources? What is your plan for getting access to these things?

• How will you measure success? What evaluation metrics will you use?

http://cvpr2019.thecvf.com/files/cvpr2019AuthorKit.zip

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Administrative: Homework 4

• Homework 4 was released yesterday;
will be due Friday 3/20, 11:59pm
• We should cover everything you need for this

assignment by Thursday’s lecture

5

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Model Complexity
Underfitting / Overfitting

6

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

(Over/Under)fitting and Complexity

7

Let’s fit a polynomial: given x, predict y
𝑦 = 𝑤$ + 𝑤&𝑥 + 𝑤(𝑥(+ 𝑤)𝑥) + ⋯+𝑤+𝑥+

Note: can do non-linear regression with copies of x

𝑦&
⋮
𝑦-

=
𝑥&+
⋮
𝑥-+

⋯
⋱
⋯

𝑥&(
⋮
𝑥-(

𝑥&
⋮
𝑥-

1
⋮
1

𝑤+
⋮
𝑤(
𝑤&
𝑤$

Weights: one per polynomial degree

Matrix of all polynomial degrees

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 8

(Over/Under)fitting and Complexity

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 9

Underfitting

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 10

Underfitting

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)

Model isn’t “complex”
enough to fit the data

Bias (statistics): Error
intrinsic to the model.

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 11

Overfitting

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 12

Overfitting
Model has high variance: remove one point,

and model changes dramatically

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

(Continuous) Model Complexity

13

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + 9

:;&

<

− log
exp(𝑊𝑥 EF)

∑I exp(𝑊𝑥 I))

Regularization: penalty
for complex model

Pay penalty for negative log-
likelihood of correct class

Intuitively: big weights = more complex model

Model 1: 0.01*x1 + 1.3*x2 + -0.02*x3 + -2.1x4 + 10

Model 2: 37.2*x1 + 13.4*x2 + 5.6*x3 + -6.1x4 + 30

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Fitting a Model

14

Again, fitting polynomial, but with regularization

argmin
J

𝒚 − 𝑿𝒘 + 𝜆 𝒘

𝑥&+
⋮
𝑥-+

⋯
⋱
⋯

𝑥&(
⋮
𝑥-(

𝑥&
⋮
𝑥-

1
⋮
1

𝑤+
⋮
𝑤$

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Adding Regularization

15

No regularization:
fits all data points

Regularization:
can’t fit all data points

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Bias / Variance Tradeoff

16

Error on new data comes from combination of:
1. Bias: model is oversimplified and can’t fit

the underlying data
2. Variance: you don’t have the ability to

estimate your model from limited data
3. Inherent: the data is intrinsically difficult
Bias and variance trade-off. Fixing one hurts the
other. You can prove theorems about this.

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Underfitting and Overfitting

17

Low Bias
High Variance

High Bias
Low Variance

Diagram adapted from: D. Hoiem

Test
Error

Training
Error

Model
Complexity

Ove
rfi

tti
ng!

Getting Better
Error

Underfitting!

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Underfitting and Overfitting

18

Low Bias
High Variance

High Bias
Low Variance

Complexity

Test
Error

Small data
Overfits w/small model

Big data
Overfits w/bigger model

Diagram adapted from: D. Hoiem

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Underfitting

19

Do poorly on both training and
validation data due to bias.
Solution:
1. More features
2. More powerful model
3. Reduce regularization

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Overfitting

20

Do well on training data, but poorly
on validation data due to variance
Solution:
1. More data
2. Less powerful model
3. Regularize your model more

Heuristic: First make sure you can
overfit, then stop overfitting.

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Double Descent

21

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Double Descent

22

Advani and Saxe, “High-dimensional dynamics of generalization error in neural networks”, 2017
Geiger et al, “The jamming transition as a paradigm to understand the loss landscape of deep neural networks”, 2018
Belkin et al, “Reconciling modern machine learning practice and the bias-variance trade-off”, 2018
Nakkiran et al, “Deep Double Descent: Where Bigger Models and More Data Hurt”, 2019

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Where we are:

23

1. Use Linear Models for image
classification problems

2. Use Loss Functions to express
preferences over different
choices of weights

3. Use Stochastic Gradient
Descent to minimize our loss
functions and train the model

4. Add Regularization to control
overfitting

Softmax
SVM

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Problem: Linear Classifiers not enough

24

x

y
Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different

modes of a class

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

One solution: Feature Transforms

25

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature
transform

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

One solution: Feature Transforms

26

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

One solution: Feature Transforms

27

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Linear classifier
in feature space

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

One solution: Feature Transforms

28

x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature
transform

r

θ

Linear classifier
in feature space

Nonlinear
classifier in
original space!

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Image Features: Color Histogram

29

+1
Ignores texture,
spatial positions

Frog image is in the public domain

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 30

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge directions
weighted by edge strength Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented
Gradients (HoG)

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 31

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge directions
weighted by edge strength

Example: 320x240 image gets
divided into 40x30 bins; 8
directions per bin; feature vector
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented
Gradients (HoG)

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 32

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge directions
weighted by edge strength

Example: 320x240 image gets
divided into 40x30 bins; 8
directions per bin; feature vector
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Strong diagonal
edges

Edges in all
directions

Weak edges

Image Features: Histogram of Oriented
Gradients (HoG)

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 33

1. Compute edge direction /
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a

histogram of edge directions
weighted by edge strength

Example: 320x240 image gets
divided into 40x30 bins; 8
directions per bin; feature vector
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Strong diagonal
edges

Edges in all
directions

Weak edges

Captures texture and position, robust to small image changes

Image Features: Histogram of Oriented
Gradients (HoG)

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Image Features: Bag of Words

34

Extract random
patches

Step 1: Build codebook

Learn a feature transform from data!

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Image Features: Bag of Words

35

Extract random
patches

Cluster patches to
form “codebook”
of “visual words”

Step 1: Build codebook

Learn a feature transform from data!

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Image Features: Bag of Words

36

Extract random
patches

Cluster patches to
form “codebook”
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

Learn a feature transform from data!

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Image Features

37

Common trick: Combine multiple feature transforms

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Winner of 2011 ImageNet Challenge

Lectur
e 5 - 38

F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011.

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Image Features vs Neural Networks

39

Feature Extraction
f

training

Krizhevsky, Sutskever, and Hinton, “Imagenet classification with deep convolutional neural networks”, NIPS 2012

10 numbers
giving scores
for classes

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Image Features vs Neural Networks

40

Feature Extraction
f

training

training

Krizhevsky, Sutskever, and Hinton, “Imagenet classification with deep convolutional neural networks”, NIPS 2012

10 numbers
giving scores
for classes

10 numbers
giving scores
for classes

Deep Neural Network

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

41

Input image: 𝑥 ∈ ℝQ
Category scores: 𝑠 ∈ ℝS

Linear Classifier:
𝑠 = 𝑊𝑥
𝑊 ∈ ℝS×Q

In practice we add a learnable bias
+b after each matrix multiply

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

42

Input image: 𝑥 ∈ ℝQ
Category scores: 𝑠 ∈ ℝS

Linear Classifier:
𝑠 = 𝑊𝑥
𝑊 ∈ ℝS×Q

2-layer Neural Net:
𝑠 = W(max 0,𝑊&𝑥

𝑊& ∈ ℝX×Q
𝑊(∈ ℝS×X

In practice we add a learnable bias
+b after each matrix multiply

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

43

Input image: 𝑥 ∈ ℝQ
Category scores: 𝑠 ∈ ℝS

Linear Classifier:
𝑠 = 𝑊𝑥
𝑊 ∈ ℝS×Q

2-layer Neural Net:
𝑠 = W(max 0,𝑊&𝑥

𝑊& ∈ ℝX×Q
𝑊(∈ ℝS×X

3-layer Neural Net:
𝑠 = W)max 0,𝑊(max 0,𝑊&𝑥

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

44

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Two-Layer Neural Network: 𝑠 = W(max 0,𝑊&𝑥

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊(∈ ℝS×Q

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

45

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Two-Layer Neural Network: 𝑠 = W(max 0,𝑊&𝑥

Element (i, j) of W1 gives
the effect on hi from xj

Element (i, j) of W2 gives
the effect on si from hj

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊(∈ ℝS×Q

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

46

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Two-Layer Neural Network: 𝑠 = W(max 0,𝑊&𝑥

“Fully-Connected” neural network
Also “Multi-Layer Perceptron” (MLP)

Element (i, j) of W1 gives
the effect on hi from xj

Element (i, j) of W2 gives
the effect on si from hj

All elements
of x affect all
elements of h

All elements
of h affect all
elements of s

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

47

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Linear classifier: 𝑠 = 𝑊𝑥
One template per class

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊(∈ ℝS×Q

Two-Layer Neural Network:
𝑠 = W(max 0,𝑊&𝑥

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

48

x h sInput:
3072

Hidden layer:
100

Output: 10

Neural Network:
First layer is a bank of templates
Second layer recombines templates

W1 W2

Two-Layer Neural Network:
𝑠 = W(max 0,𝑊&𝑥

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊(∈ ℝS×Q

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

49

x h sInput:
3072

Hidden layer:
100

Output: 10

Different templates can cover
different modes of a class!

W1 W2

Two-Layer Neural Network:
𝑠 = W(max 0,𝑊&𝑥

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊(∈ ℝS×Q

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Networks

50

x h sInput:
3072

Hidden layer:
100

Output: 10

Many templates not interpretable:
“Distributed representation”

W1 W2

Two-Layer Neural Network:
𝑠 = W(max 0,𝑊&𝑥

𝑥 ∈ ℝQ,𝑊& ∈ ℝX×Q,𝑊(∈ ℝS×Q

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Deep Neural Networks

51

x h1W1 sW6

Input:
3072

Output: 10

h2 h3 h4 h5W2 W3 W4 W5

Depth = number of layers

Width:
Size of
each
layer

𝑠 = 𝑊Ymax 0,𝑊Zmax 0,𝑊[max 0,𝑊)max 0,𝑊(max 0,𝑊&𝑥

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Activation Functions

52

2-layer Neural Network
The function 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)
is called “Rectified Linear Unit”

This is called the activation
function of the neural network

𝑠 = 𝑊(𝐦𝐚𝐱 𝟎,𝑊&𝑥

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Activation Functions

53

2-layer Neural Network
The function 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)
is called “Rectified Linear Unit”

This is called the activation
function of the neural network

𝑠 = 𝑊(𝐦𝐚𝐱 𝟎,𝑊&𝑥

Q: What happens if we build a neural
network with no activation function?

𝑠 = 𝑊(𝑊&𝑥

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Activation Functions

54

2-layer Neural Network
The function 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)
is called “Rectified Linear Unit”

This is called the activation
function of the neural network

𝑠 = 𝑊(𝐦𝐚𝐱 𝟎,𝑊&𝑥

Q: What happens if we build a neural
network with no activation function?

𝑠 = 𝑊(𝑊&𝑥

A: We get a linear classifier!
𝑊) = 𝑊(𝑊& ∈ ℝS×Q

𝑠 = 𝑊)𝑥

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Activation Functions

55

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Activation Functions

56

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

ReLU is a good
default choice

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Net in
<20 lines!

57

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Net in
<20 lines!

58

Initialize weights and data

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Net in
<20 lines!

59

Initialize weights and data

Compute loss (sigmoid
activation, L2 loss)

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Net in
<20 lines!

60

Initialize weights and data

Compute loss (sigmoid
activation, L2 loss)

Compute gradients

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Neural Net in
<20 lines!

61

Initialize weights and data

Compute loss (sigmoid
activation, L2 loss)

Compute gradients

SGD step

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

“Neural” Networks

62

This image by Fotis Bobolas is licensed under CC-BY 2.0

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Our brains are made of Neurons

63

Cell
body

Axon

Dendrite

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Our brains are made of Neurons

64

Cell
body

Axon

Dendrite

Presynaptic
terminal

Synapse

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Our brains are made of Neurons

65

Cell
body

Axon

Dendrite

Presynaptic
terminal

Synapse

Impulses
carried toward
cell body

Impulses carried
away from cell body

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Our brains are made of Neurons

66

Cell
body

Axon

Dendrite

Presynaptic
terminal

Synapse

Impulses
carried toward
cell body

Impulses carried
away from cell body

Firing rate is a
nonlinear
function of inputs

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 67

Neuron image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Biological Neuron

Artificial Neuron

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 68

This image is CC0 Public Domain

Biological Neurons:
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers
for computational efficiency

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Be very careful with brain analogies!

69

Biological Neurons:
● Many different types
● Can perform complex non-linear

computations
● Synapses are not a single weight but a

complex non-linear dynamical system
● Can have feedback, time-dependent
● Probably don’t learn via gradient descent

[Dendritic Computation. London and Hausser]

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

70

x1

x2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

71

x1

x2

h1

Feature transform:
h = Wx

h2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

72

x1

x2

h1

A AB B

C C D

D
Feature transform:

h = Wx

h2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

73

x1

x2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Points not linearly
separable in original space

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

74

x1

x2

h1

h2

Feature transform:
h = Wx

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Points not linearly
separable in original space

Points not linearly
separable in feature space

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

75

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

76

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

A A
h2

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

77

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

A AB B
B is “collapsed”
onto +h2 axis

h2

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

78

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

A AB B

D

D

D “collapsed”
onto +h1 axis

B is “collapsed”
onto +h2 axis

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

79

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

A AB B

D

D

C C
C “collapsed”
onto origin

D “collapsed”
onto +h1 axis

B is “collapsed”
onto +h2 axis

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

80

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = Wx

Points not linearly
separable in original space

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

81

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Points not linearly
separable in original space

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

82

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Points are linearly separable
in features space!

Points not linearly
separable in original space

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Space Warping

83

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Linear classifier in feature
space gives nonlinear
classifier in original space

Points are linearly separable
in features space!

Points not linearly
separable in original space

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 - 84

(Web demo with ConvNetJS:
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

Neural Networks Web Demo

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Justin Johnson March 10, 2020EECS 442 WI 2020: Lecture 16 -

Next Time: How to
compute gradients?
Backpropagation

85

