Lecture 16: (Over/Under)Fitting Neural Networks

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 1

Administrative: COVID19

As of 3/9 there are no cases reported in Michigan.

But we should still be cautious:

- Stay home if you feel sick.
- Wash your hands frequently.
- Avoid touching your face.
- Avoid large gatherings.

Administrative: COVID19

- Lectures are recorded: You are encouraged to watch from home.
- **Project group size**: Previously we said group size 3-5. We will now allow groups of size 1-5 so you can work alone if you prefer.
- Office Hours: We will start experimenting with virtual office hours this week. Stay tuned on Piazza for details.
- Poster Session is cancelled. We will ask you to submit a video describing your project instead; details to follow.

Administrative: Project Proposal

- Project proposal is due tomorrow, 3/11 11:59pm
- 2 page writeup in <u>CVPR format</u>
- You should answer the following:
 - Who are you working with? Groups of 1-5
 - What problem are you trying to solve? Applying vision to an interesting application? Re-implement a paper other other exiting method? Try to implement some new idea? All are fine!
 - How are you going to try and solve the problem? You don't need to have all details figured out, but you should have an idea of how you'll approach it
 - What do you need to attack this problem? Datasets, code, computing resources? What is your plan for getting access to these things?
 - How will you measure success? What evaluation metrics will you use?

Administrative: Homework 4

- Homework 4 was released yesterday; will be due Friday 3/20, 11:59pm
- We should cover everything you need for this assignment by Thursday's lecture

Model Complexity Underfitting / Overfitting

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 6

(Over/Under)fitting and Complexity

Let's fit a polynomial: given x, predict y $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_F x^F$

Note: can do non-linear regression with copies of x

Justin Johnson

(Over/Under)fitting and Complexity

Ground-Truth: 1.5x² + 2.3x+2 + N(0,0.5)

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 8

Underfitting

Ground-Truth: 1.5x² + 2.3x+2 + N(0,0.5)

Justin Johnson

Underfitting

Ground-Truth: 1.5x² + 2.3x+2 + N(0,0.5)

Model isn't "complex" enough to fit the data

Bias (statistics): Error intrinsic to the model.

Overfitting

Ground-Truth: 1.5x² + 2.3x+2 + N(0,0.5)

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 11

Overfitting

Model has high *variance*: remove one point, and model changes dramatically

Justin Johnson

(Continuous) Model Complexity

Intuitively: big weights = more complex model

Model 1: $0.01^*x_1 + 1.3^*x_2 + -0.02^*x_3 + -2.1x_4 + 10$

Model 2: $37.2^*x_1 + 13.4^*x_2 + 5.6^*x_3 + -6.1x_4 + 30$

Fitting a Model

Again, fitting polynomial, but with regularization

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 14

Adding Regularization

No regularization: fits all data points

Regularization: can't fit all data points

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 15

Bias / Variance Tradeoff

Error on new data comes from combination of:

- **1. Bias**: model is oversimplified and can't fit the underlying data
- **2. Variance**: you don't have the ability to estimate your model from limited data
- **3. Inherent**: the data is intrinsically difficult

Bias and variance trade-off. Fixing one hurts the other. You can prove theorems about this.

Underfitting and Overfitting

Diagram adapted from: D. Hoiem

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 17

Underfitting and Overfitting

Diagram adapted from: D. Hoiem

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 18

Underfitting

Do poorly on both training and validation data due to bias. Solution:

- 1. More features
- ² 2. More powerful model
 - 3. Reduce regularization

Justin Johnson

Overfitting

Do well on training data, but poorly on validation data due to variance Solution:

- 1. More data
- ² 2. Less powerful model
 - 3. Regularize your model more

Heuristic: First make sure you *can* overfit, then stop overfitting.

Double Descent

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 21

Double Descent

Advani and Saxe, "High-dimensional dynamics of generalization error in neural networks", 2017 Geiger et al, "The jamming transition as a paradigm to understand the loss landscape of deep neural networks", 2018 Belkin et al, "Reconciling modern machine learning practice and the bias-variance trade-off", 2018 Nakkiran et al, "Deep Double Descent: Where Bigger Models and More Data Hurt", 2019

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 22

Where we are:

- 1. Use Linear Models for image classification problems
- 2. Use Loss Functions to express preferences over different choices of weights
- Use Stochastic Gradient
 Descent to minimize our loss functions and train the model
- 4. Add **Regularization** to control overfitting

$$egin{aligned} &L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) ext{ Softmax } \ &L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ &L = rac{1}{N} \sum_{i=1}^N L_i + R(W) \end{aligned}$$

v = 0
for t in range(num_steps):
 dw = compute_gradient(w)
 v = rho * v + dw
 w -= learning_rate * v

Problem: Linear Classifiers not enough

Visual Viewpoint

One template per class: Can't recognize different modes of a class

March 10, 2020

Justin Johnson

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 25

EECS 442 WI 2020: Lecture 16 - 26

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 27

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 28

Image Features: Color Histogram

Frog image is in the public domain

EECS 442 WI 2020: Lecture 16 - 29

- 1. Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

- 1. Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

> Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

> > March 10, 2020

Justin Johnson

- Weak edges Strong diagonal edges Edges in all directions
- Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

> Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Captures texture and position, robust to small image changes

- Weak edges Strong diagonal edges Edges in all directions
- 1. Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

> Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

> > March 10, 2020

Justin Johnson

Image Features: Bag of Words

Learn a feature transform from data!

EECS 442 WI 2020: Lecture 16 - 34

Image Features: Bag of Words

Learn a feature transform from data!

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 35

Image Features: Bag of Words

Learn a feature transform from data!

EECS 442 WI 2020: Lecture 16 - 36

Justin Johnson
Image Features

Common trick: Combine multiple feature transforms

EECS 442 WI 2020: Lecture 16 - 37

Winner of 2011 ImageNet Challenge

Low-level feature extraction \approx 10k patches per image

SIFT: 128-dim
color: 96-dim
reduced to 64-dim with PCA

5 - 38

FV extraction and compression:

N=1,024 Gaussians, R=4 regions ⇒ 520K dim x 2

EECS 442 WI 2020: Lecture 16 -

compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

F. Perronnin, J. Sánchez, "Compressed Fisher vectors for LSVRC", PASCAL VOC / ImageNet workshop, ICCV, 2011.

Image Features vs Neural Networks

Krizhevsky, Sutskever, and Hinton, "Imagenet classification with deep convolutional neural networks", NIPS 2012

Justin Johnson

Image Features vs Neural Networks

Deep Neural Network

Krizhevsky, Sutskever, and Hinton, "Imagenet classification with deep convolutional neural networks", NIPS 2012

March 10, 2020

Input image: $x \in \mathbb{R}^D$ **Category scores**: $s \in \mathbb{R}^C$

Linear Classifier:

$$s = Wx$$
$$W \in \mathbb{R}^{C \times D}$$

In practice we add a learnable bias +b after each matrix multiply

Justin Johnson

Input image:
$$x \in \mathbb{R}^D$$

Category scores: $s \in \mathbb{R}^C$

$$s = Wx$$
$$W \in \mathbb{R}^{C \times D}$$

2-layer Neural Net: $s = W_2 \max(0, W_1 x)$ $W_1 \in \mathbb{R}^{H \times D}$ $W_2 \in \mathbb{R}^{C \times H}$

In practice we add a learnable bias +b after each matrix multiply

Justin Johnson

Input image:
$$x \in \mathbb{R}^D$$

Category scores: $s \in \mathbb{R}^C$

$$s = Wx$$
$$W \in \mathbb{R}^{C \times D}$$

2-layer Neural Net:

$$s = W_2 \max(0, W_1 x)$$
$$W_1 \in \mathbb{R}^{H \times D}$$
$$W_2 \in \mathbb{R}^{C \times H}$$

3-layer Neural Net: $s = W_3 \max(0, W_2 \max(0, W_1 x))$

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 43

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times D}$

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times D}$

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 46

Linear classifier: s = WxOne template per class

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times D}$

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 47

Neural Network:

First layer is a bank of templates Second layer recombines templates

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times D}$

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 48

Different templates can cover different modes of a class!

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times D}$

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 49

Many templates not interpretable: "Distributed representation"

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times D}$

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 50

Deep Neural Networks

 $s = W_6 \max(0, W_5 \max(0, W_4 \max(0, W_3 \max(0, W_2 \max(0, W_1 x)))))$

Justin Johnson

2-layer Neural Network

The function ReLU(z) = max(0, z)is called "Rectified Linear Unit"

$$s = W_2 \max(\mathbf{0}, W_1 x)$$

This is called the **activation function** of the neural network

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 52

2-layer Neural Network

The function ReLU(z) = max(0, z)is called "Rectified Linear Unit"

$$s = W_2 \max(\mathbf{0}, W_1 x)$$

This is called the activation function of the neural network

Q: What happens if we build a neural network with no activation function?

$$s = W_2 W_1 x$$

2-layer Neural Network

The function ReLU(z) = max(0, z)is called "Rectified Linear Unit"

$$s = W_2 \max(\mathbf{0}, W_1 x)$$

This is called the activation function of the neural network

Q: What happens if we build a neural network with no activation function?

$$s = W_2 W_1 x$$

A: We get a linear classifier! $W_3 = W_2 W_1 \in \mathbb{R}^{C \times D}$ $s = W_3 x$

Leaky ReLU $\max(0.1x, x)$

ReLU $\max(0, x)$

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 55

ReLU is a good default choice

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 56

Neural Net in <20 lines!

import numpy as np 1 from numpy.random import randn 2 3 N, Din, H, Dout = 64, 1000, 100, 10 4 5 x, y = randn(N, Din), randn(N, Dout) w1, w2 = randn(Din, H), randn(H, Dout) 6 7 for t in range(10000): h = 1.0 / (1.0 + np.exp(-x.dot(w1)))8 $y_pred = h.dot(w2)$ 9 loss = np.square(y_pred - y).sum() 10 11 $dy_pred = 2.0 * (y_pred - y)$ 12 $dw2 = h.T.dot(dy_pred)$ 13 $dh = dy_pred_dot(w2.T)$ dw1 = x.T.dot(dh * h * (1 - h))14 15 w1 -= 1e-4 * dw1 $w_2 = 1e - 4 * dw_2$ 16

Neural Net in <20 lines!

Initialize weights and data

1 import numpy as np from numpy.random import randn 2 3 N, Din, H, Dout = 64, 1000, 100, 10 x, y = randn(N, Din), randn(N, Dout) w1, w2 = randn(Din, H), randn(H, Dout) 7 for t in range(10000): h = 1.0 / (1.0 + np.exp(-x.dot(w1)))8 9 $y_pred = h_dot(w2)$ loss = np.square(y_pred - y).sum() 10 11 $dy_pred = 2.0 * (y_pred - y)$ dw2 = h.T.dot(dy_pred) 12 13 $dh = dy_pred_dot(w2.T)$ 14 dw1 = x.T.dot(dh * h * (1 - h))15 w1 -= 1e-4 * dw1 $w_2 = 1e - 4 * dw_2$ 16

Neural Net in <20 lines!

Initialize weights and data

Compute loss (sigmoid activation, L2 loss)

1 import numpy as np from numpy.random import randn 2 3 N, Din, H, Dout = 64, 1000, 100, 10 x, y = randn(N, Din), randn(N, Dout) w1, w2 = randn(Din, H), randn(H, Dout) 7 for t in range(10000): h = 1.0 / (1.0 + np.exp(-x.dot(w1)))9 $y_pred = h_dot(w2)$ 10 $loss = np.square(y_pred - y).sum()$ 11 $dy_pred = 2.0 * (y_pred - y)$ 12 $dw2 = h.T.dot(dy_pred)$ 13 $dh = dy_pred_dot(w2.T)$ dw1 = x.T.dot(dh * h * (1 - h))14 15 w1 -= 1e-4 * dw1 $w_2 = 1e - 4 * dw_2$ 16

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 61

This image by Fotis Bobolas is licensed under CC-BY 2.0

March 10, 2020

Justin Johnson

Our brains are made of Neurons

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 63

EECS 442 WI 2020: Lecture 16 - 64

EECS 442 WI 2020: Lecture 16 - 65

EECS 442 WI 2020: Lecture 16 - 66

EECS 442 WI 2020: Lecture 16 - 67

Biological Neurons: Complex connectivity patterns

Neurons in a neural network: Organized into regular layers for computational efficiency

This image is CC0 Public Domain

March 10, 2020

Be very careful with brain analogies!

Biological Neurons:

- Many different types
- Can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Can have feedback, time-dependent
- Probably don't learn via gradient descent

[Dendritic Computation. London and Hausser]

Space Warping

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 70

Space Warping Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 71

Space Warping

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 72
Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Points not linearly separable in original space

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 73

EECS 442 WI 2020: Lecture 16 - 74

March 10, 2020

Justin Johnson

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 75

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 76

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

March 10, 2020

Justin Johnson

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 78

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 79

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Points not linearly separable in original space

Justin Johnson

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

March 10, 2020

Points not linearly separable in original space

Justin Johnson

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Points not linearly separable in original space

Points are linearly separable in features space!

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 82

Linear classifier in feature space gives nonlinear classifier in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Points not linearly separable in original space

Points are linearly separable in features space!

Justin Johnson

Neural Networks Web Demo

(Web demo with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 84

Next Time: How to compute gradients? Backpropagation

Justin Johnson

EECS 442 WI 2020: Lecture 16 - 85