Lecture 15:
Optimization
(Under/over)fitting

EECS 442 WI 2020: Lecture 15- 1 February 26, 2020

Administrative

* HW3 due Wednesday, March 4 11:59pm

* TAs will not be checking Piazza over Spring Break.
You are strongly encouraged to finish the
assignment by Friday, February 25

Justin Johnson EECS 442 WI 2020: Lecture 15- 2 February 26, 2020

Last Time: Regularized Least Squares

Add regularization to objective that prefers some solutions:

Before: arg min
w

After: arg min ‘}/1
w

Trade-off

Want model “smaller”: pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too complex (low
regularization). A controls how much of each.

Justin Johnson EECS 442 W1 2020: Lecture 15- 3 February 26, 2020

Last Time: Nearest Neighbor

Known Images Test
Labels Image

h X1AD(x1» XT) %’ XT

Cat /

ses D(xNJxT)

(1) Compute distance between

feature vectors (2) find nearest
(3) use label.

Justin Johnson EECS 442 WI 2020: Lecture 15- 4 February 26, 2020

Last Time: Choosing Hyperparameters

What distance? What value for k / \?

Training Validation Test
Use these data Evaluate on these
points for lookup points for different k,

A, distances

Justin Johnson EECS 442 WI 2020: Lecture 15- 5 February 26, 2020

Last Time: Linear Classifiers

Example Setup: 3 classes

Model — one weight per class: Wo, Wi, Wy
wox big if cat f I
Want: wix bigifdog

ng big if hippo
Stack together: W3, r where xisin R"

Justin Johnson EECS 442 WI 2020: Lecture 15- 6 February 26, 2020

Last Time: Linear Classifiers

Cat weight vector | 0.2 | -05| 0.1 | 2.0 | 1.1 56 -96.8 | Cat score

Dog weight vector | 1.5 | 1.3 | 2.1 | 0.0 | 3.2 | | 231 | == | 437.9 | Dog score

Hippo weight vector | 0.0 | 0.3 | 0.2 | -0.3 | -1.2 24 61.95 | Hippo score
2
w Wx;
1

Prediction is vector
where jth component is
i “score” for jth class.

Weight matrix a collection of scoring
functions, one per class X

Diagram by: Karpathy, Fei-Fei

Justin Johnson EECS 442 WI 2020: Lecture 15- 7 February 26, 2020

Last Time: Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores” Given an example (x;, y;)

(x; is image, y; is label)

Loss Y .
Hinge Loss Let s = f(x;, W) be scores

Score for Then the SVM loss has the form:
| correct class L = Z max(0,s; — s, + 1)

|

/ H_J J#Yi
Highest score “Margin”

among other

classes

Justin Johnson EECS 442 WI 2020: Lecture 15- 8 February 26, 2020

Last Time: Multiclass SVM Loss

SVM = Support Vector Machine

Lots of great theory as to why this
IS a sensible thing to do. See

Useful book (Free too!):

The Elements of Statistical Learning

Hastie, Tibshirani, Friedman
https://web.stanford.edu/~hastie/ElemStatLearn/

Data Mining, Inference, and Prediction

Justin Johnson EECS 442 WI 2020: Lecture 15- 9 February 26, 2020

https://web.stanford.edu/~hastie/ElemStatLearn/

Last Time: Cross-Entropy Loss

Converting Scores to “Probability Distribution”

Cat score | -0.9 e0-9 0.41 0.11 | P(cat)

Dog score | 0.4 exp(x) = e04 1.49 |1 Norm = | 0.40 | P(dog)

Hippo score | 0.6 e0-6 1.82 0.49 | P(hippo)
5>=3.72
Generally P(class j): Loss is —log(P(correct class))
exp((Wx) ;) e exp(syi)
> exp((Wx)y) LT TR exp(s))

Called softmax function

Justin Johnson EECS 442 WI 2020: Lecture 15- 10 February 26, 2020

Today: Optimization

Goal: find thewm|n|m|2|ng arg min L(w)
some loss function L. weRrN

exp((Wx),,) >

LW) = A[|w||5 + ; —log (zk exp((Wx)))

Works for lots of
different Ls: L(w) = A||w2 + Z(yi - wix)’
i=1

n
Lw) =Cllwl +) max(0,1 - yw'x)

i=1

Justin Johnson EECS 442 WI 2020: Lecture 15- 11 February 26, 2020

Sample Function to Optimize

f(x,y) = (x+2y-7)% + (2x+y-5)?

15

6000
5000
Warning: Thisis ™

8000
7000
4000
. 3000
2D, intuition may
0 15 20

2000
1000

not generalize to =,

high dimension

Justin Johnson EECS 442 WI 2020: Lecture 15- 12

February 26, 2020

Optimization: A Caveat

| [[T
======= function evaluation
....... e Here it takes microseconds — so we
| | | can easily see the answer

* Each pointin the pictureis a

======= * Functions we want to optimize may

“.....5 | take hours to evaluate

Justin Johnson EECS 442 WI 2020: Lecture 15- 13 February 26, 2020

This image is CC0 1.0 Walking man image is CC0O 1.0

Justin Johnson EECS 442 WI 2020: Lecture 15 - 14 February 26, 2020

http://www.publicdomainpictures.net/view-image.php%3Fimage=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

This image is CC0 1.0 Walking man image is CC0O 1.0

Justin Johnson EECS 442 WI 2020: Lecture 15 - 15 February 26, 2020

http://www.publicdomainpictures.net/view-image.php%3Fimage=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

ldea #1A: Grid Search

#systematically try things
best, bestScore = None, Inf
for dim1Value in dim1Values:

for dimNValue in dimNValues:
w = [dim1Value, ..., dimNValue]
if L(w) < bestScore:

best, bestScore = w, L(w)
return best

Justin Johnson EECS 442 WI 2020: Lecture 15 - 16 February 26, 2020

ldea 1A: Grid Search

- T

—20 15 20

Justin Johnson EECS 442 WI 2020: Lecture 15 - 17 February 26, 2020

ldea #1A: Grid Search

Cons:
1. Super simple 1. Scales horribly to high
2. Only requires being able dimensional spaces

to evaluate model

Complexity: samplesPerDimnumberOibims

Justin Johnson EECS 442 WI 2020: Lecture 15 - 18 February 26, 2020

Option #1B: Random Search

#Do random stuff RANSAC Style
best, bestScore = None, Inf
for iter in range(numlters):
w = random(N,1) #sample
score = L(w) #evaluate
if score < bestScore:
best, bestScore = w, score

return best

Justin Johnson EECS 442 WI 2020: Lecture 15- 19 February 26, 2020

Option 1B: Random Search

~15 !g‘.-.!
20 .-.i-.

=20 -1 15 20

Justin Johnson EECS 442 WI 2020: Lecture 15- 20 February 26, 2020

Option #1B: Random Search

Cons:
1. Super simple 1. Slow —throwing darts at
2. Only requires being able high dimensional dart
to sample model and board
evaluate it 2. Might miss something

P(all correct) =

N
€ E
Good parameters =———e

0 1

Justin Johnson EECS 442 WI 2020: Lecture 15 - 21 February 26, 2020

When To Use Options 1A / 1B?

Use these when
* Number of dimensions small, space bounded

* Objective is impossible to analyze (e.g., test
accuracy if we use this distance function)

Random search is arguably more effective; grid
search makes it easy to systematically test something
(people love certainty)

Justin Johnson EECS 442 WI 2020: Lecture 15 - 22 February 26, 2020

|[dea #2: Follow the slope

Justin Johnson EECS 442 WI 2020: Lecture 15 - 23 February 26, 2020

|dea #2: Follow the slope

o | AR
1 . A 4 A
graclent | PRMISOMIIS S, -
St S
ERntny
b » 4 (|
ﬂ ¥

| 6000

5000

4000

3000

2000

1000

Justin Johnson EECS 442 WI 2020: Lecture 15 - 24 February 26, 2020

|[dea #2: Follow the slope

: B~ s
o | S
e

direction
(scaled to unit
length)

8000

7000

| 6000

5000

4000

3000

2000

1000

Justin Johnson EECS 442 WI 2020: Lecture 15 - 25 February 26, 2020

|[dea #2: Follow the slope

Want: arg min L(w)
w
dL/0x,
What'’s the geometric _ :
. . VwL(w) =
interpretation of:

GL/OxN

Which is bigger (for small a)?

<?

L(w) L(w + aV,, L(w))
>7?

Justin Johnson EECS 442 WI 2020: Lecture 15 - 26 February 26, 2020

|[dea #2: Follow the slope

Method: at each step, move in
direction of negative gradient

wO = initialize() #initialize
for iter in range(numlters):

g=V,L(w) # eval gradient
W = W + -stepsize(iter)*g # update w
return w

Justin Johnson EECS 442 WI 2020: Lecture 15 - 27 February 26, 2020

S 0 O DO olue
9.0X10 oradie

0 O
B, |

. 4 .
7
y/ /

. o .

Justin Johnson EECS 442 WI 2020: Lecture 15 - 28 February 26, 2020

Computing Gradients: Numeric

How Do You Compute The Gradient?
Numerical Method:

How do you compute this?

_a I
2w faro -1
1 = lim
Vwlw) =| ox €0 €
oLw) In practice, use:
. dw,,

flx+e)—flx—e)
2€

Justin Johnson EECS 442 WI 2020: Lecture 15 - 29 February 26, 2020

Computing Gradients: Numeric

How Do You Compute The Gradient?
Numerical Method:

Use: f(x+e)—f(x—e)

dL(w)) S e
0x4
VwL(w) = : How many function
OL(w) evaluations per dimension?
. dx,

Justin Johnson EECS 442 WI 2020: Lecture 15- 30 February 26, 2020

Computing Gradients: Analytic

How Do You Compute The Gradient?

Better Idea: Use Calculus!

Vo,L(w) =

This image is in the public domain This image is in the public domain

Justin Johnson EECS 442 WI 2020: Lecture 15 - 31 February 26, 2020

https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz

Computing Gradients: Analytic

n
2
Low) = 21wl +) (v —w'x)
=1

| 5 |

V. L(W) = 2Aw + Z — 20y — wTx)x;)

Justin Johnson EECS 442 WI 2020: Lecture 15 - 32 February 26, 2020

Interpreting Gradients: 1 Sample

2
Lw) =2wll3 + (vi — w'x;)
Recall: w=w + -V, L(w) #update w

Vo, L(W) = 2Aw + —(2(y —wlx)x)

(0 |
A
' N\
—V,L(w) = 22w + 2(y — wlx)x)
|\ J/
Y
If y>wx (too low): then w = w + ax for some a
Before: w'x

After: (w+ ax)™x = wTx + ax'x

Justin Johnson EECS 442 WI 2020: Lecture 15 - 33 February 26, 2020

Computing Gradients

- Numeric gradient: approximate, slow,
easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but
check implementation with numerical
gradient. This is called a gradient check.

toxrch.autograd.gradcheck(func, inputs, eps=1e-06, atol=1e-05, rtol=0.001,

.) [SOURCE] (4’
raise_exception=True, check_sparse_nnz=False, nondet_tol=0.0)

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs
that are of floating point type and with requires_grad=True.

The check between numerical and analytical gradients uses allclose() .

Justin Johnson EECS 442 WI 2020: Lecture 15 - 34 February 26, 2020

Gradient Descent

negative

Iteratively step in the direction of gradient .
w2 direction original W

the negative gradient 4 W
(direction of local steepest descent)

Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)

w —= learning_rate * dw

Hyperparameters:
- Weight initialization method

- Number of steps
- Learning rate

EECS 442 WI 2020: Lecture 15 - 35 February 26, 2020

Justin Johnson

Batch Gradient Descent

1 N Problem: Full sum
L(W) = NE Li(xl-, Vi, W) + AR(W) IS gxpensive when
i—1 N is large!

Solution: Approximate

N
1 . L L3
Vi L(W) = m E VL O, v, W) 4+ AV R(W) sum using a minibatch

of examples, e.g. 32
i=1

Justin Johnson EECS 442 WI 2020: Lecture 15 - 36 February 26, 2020

Stochastic Gradient Descent (SGD)

1 N Problem: Full sum
L(W) = NE Li(xl-, Vi, W) + AR(W) IS gxpensive when
i—1 N is large!

Solution: Approximate

N
1 . L] L3
Vi L(W) = m g VL O, v, W) 4+ AV R(W) sum using a minibatch

of examples, e.g. 32
i=1

Hyperparameters:
Stochastic gradient descent - Weightinitialization

w = initialize_weights()

for t in range(num_steps):
minibatch = sample_data(data, batch_size)
dw = compute_gradient(loss_fn, minibatch, w) - Batch size

w —= learning_rate * dw - Data sampling

Note: Some people say “stochastic gradient descent” is batch size 1, and “minibatch gradient descent” for other
batch sizes. | think this distinction is confusing, and use “stochastic gradient descent” for any minibatch size

- Number of steps
- Learning rate

Justin Johnson EECS 442 WI 2020: Lecture 15 - 37 February 26, 2020

Gradient Descent: Learning Rate

Step size (also called learning rate / Ir)

critical parameter
1x10-2 10x10-2 12x102
falls short converges diverges

[T L .
| ./
| 7/

v 4

) .
0 _2920 -15 -10 -5 0 5 10 15 20 0 5 10 15 20

Justin Johnson EECS 442 WI 2020: Lecture 15 - 38 February 26, 2020

Gradient Descent: Learning Rate

11x102:oscillates
(Raw gradients)

20

15 ﬁn....

L | | .
R . | .
b

EECS 442 WI 2020: Lecture 15- 39 February 26, 2020

Learning Rate Decay

Idea: Start with high learning rate, reduce it over time.
Step Decay: Reduce by some factor at fixed iterations

Training Loss Learning Rate
0.10 1

0.08 -

0.06 -

0.04 4

0.02 -

0.00 {
0 20 40 60 80 100 0 20 40 60 80 100

Justin Johnson EECS 442 WI 2020: Lecture 15 - 40 February 26, 2020

Learning Rate Decay

Idea: Start with high learning rate, reduce it over time.

Cosine Decay: a; = %050 (1 + Cos (tFn))

Training Loss Learning Rate
10 -

10 7

0.8 1

0.6 1

Loss

0.4 1

0.2 1

0.0 1
E) Sb 1(::0 15lO 260 250 300 E) Zb 4b Gb Bb ldO
Epoch Epoch

Justin Johnson EECS 442 WI 2020: Lecture 15 - 41 February 26, 2020

Problems with SGD

What if loss changes quickly in one direction and slowly in another?

—

Loss function has high condition number: ratio of largest to
smallest singular value of the Hessian matrix is large

Justin Johnson EECS 442 WI 2020: Lecture 15 - 42 February 26, 2020

Problems with SGD

What if loss changes quickly in one direction and slowly in another?
Slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to
smallest singular value of the Hessian matrix is large

Justin Johnson EECS 442 WI 2020: Lecture 15 - 43 February 26, 2020

Problems with SGD

Local
Minimum

What if the loss function
has a local minimum or
saddle point?

Saddle

Gradient is zero,
SGD gets stuck

Justin Johnson EECS 442 WI 2020: Lecture 15 - 44 February 26, 2020

Problems with SGD

Our gradients come
from minibatches so
they can be noisy!

1 N
LOW) =+) LiCxy v W) + AR(W)
i=1

Justin Johnson EECS 442 WI 2020: Lecture 15 - 45 February 26, 2020

SGD

SGD
Xey1 = X — aVf(xe)

for t in range(num_steps):
dw = compute_gradient(w)
—-= learning_rate * dw

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Lectur

Justin Johnson EECS 442 WI 2020: Lecture 15 -)

February 26, 2020

SGD + Momentum

SGD SGD + Momentum

Ver1 = pVe + Vf(x¢)

Xer1 = X — aVf(x;) Xpsq = Xp — AUy 1

v=20
for t in range(num_steps): for t in range(num_steps):
dw = compute_gradient(w) dw = compute_gradient(w)
—= learning_rate *x dw V = rho *x v + dw
w —= learning_rate * v

Build up “velocity” as a running mean of gradients
Rho gives “friction”; typically p = 0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Justin Johnson EECS 442 WI 2020: Lecture 15 - 47 February 26, 2020

SGD + Momentum

SGD + Momentum SGD + Momentum

Vegr = PV —aVF(x) Vepq = pvp + V()

Xt+1 = Xt T Vst Xt+1 = Xt — AVpyq
v==~0 v =20 .
for t in range(num_steps): for t in range(num_steps):
dw = compute_gradient(w) dw = compute_gradient(w)
v = rho x v — learning_rate * dw V = rho * v + dw
W=V w —= learning_rate * v

You may see SGD+Momentum formulated different ways, but
they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Justin Johnson EECS 442 WI 2020: Lecture 15 - 48 February 26, 2020

SGD + Momentum

Gradient Noise

Local Minima Saddle points

e N\

Poor Conditioning

l'hﬁ]’ fiwe > >>

m—) === SGD+Momentum

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Justin Johnson EECS 442 WI 2020: Lecture 15 - 49 February 26, 2020

Other Update Rules: Adam

momentl = 0
moment2 = 0
for t in range(num_steps):
dw = compute_gradient(w)
momentl = betal x momentl + (1 - betal) * dw
moment2 = beta2 * moment2 + (1 — beta2) * dw * dw
momentl_unbias = momentl / (1 - betal *x t)
moment2_unbias = moment2 / (1 - beta2 *x t)
w —= learning_rate * momentl_unbias / (moment2_unbias.sqrt() + 1le-7)

Adam with betal = 0.9,
beta2 =0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Justin Johnson EECS 442 WI 2020: Lecture 15 - 50 February 26, 2020

Adam: Very Common in Practice!

. We train all models using Adam [23] with learning rate
. N . N Following {1104 4nd batch size 32 for 1 million iterations;
common practice, the network is trained end-to-end using stochastic gradient descent with the Adam ’

optimizer [22].

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurlPS Johnson, Gupta, and Fei-Fei, CVPR 2018

—2010

We train for 25 epochs For gradient descent, we use
P Adam [29] with a learning rate of 10~3 and default hyperparameters. All models

ing Ad ith 1 i te 10~% and 32 i
using Adam 2] withleaming rate 10™ and 32 mases per || £ P00 Ry

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

with a batch size of 64 for 200 epochs Adam with betal = 0.9, _
using Adam [22] with an initial learning rate of 0.001. beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1le-4

Gupta, Johnson, et al, CVPR 2018 is a great starting point for many models!

EECS 442 WI 2020: Lecture 15 - 51 February 26, 2020

Justin Johnson

Optimization in Practice

* Conventional wisdom: minibatch stochastic
gradient descent (SGD) + momentum (package
implements it for you) + some sensibly changing
learning rate

* The above is typically what is meant by “SGD”

e Other update rules exist (Adam very common);
sometimes better, sometimes worse than SGD

Justin Johnson EECS 442 WI 2020: Lecture 15 - 52 February 26, 2020

Optimizing Everything

- = eXp((Wx)yl')
Lw) = AW + Z ~log (Zkexp((Wx)k))>

n
2
Low) =AlIwli3 +) (i —w'x,)
=1

* Optimize w on training set with SGD to maximize
training accuracy

* Optimize A with random/grid search to maximize
validation accuracy

* Note: Optimizing A on training sets itto O

Justin Johnson EECS 442 WI 2020: Lecture 15- 53 February 26, 2020

Overfitting / Underfitting
and Model Complexity

EECS 442 WI 2020: Lecture 15- 54 February 26, 2020

(Over/Under)fitting and Complexity

Let’s fit a polynomial: given x, predict y
Y =Wy + wix + wyx? + wax3 + -+ wpxt

Note: can do non-linear regression with copies of x

_ L [WFT

Vi1 |xi o oxE X1 1]
. — .) : : : W2
YNl |xy o oxy Xn 1wy
Wy,

Matrix of all polynomial degreest

Weights: one per polynomial degree

Justin Johnson EECS 442 WI 2020: Lecture 15 - 55 February 26, 2020

(Over/Under)fitting and Complexity

Ground-Truth: 1.5x% + 2.3x+2 + N(0,0.5)

12 —— Ground-truth

Justin Johnson EECS 442 WI 2020: Lecture 15 - 56 February 26, 2020

Undertitting

Ground-Truth: 1.5x% + 2.3x+2 + N(0,0.5)

12 —— Ground-truth 12 —— Ground-truth

—— 0O dimensional —— 1 dimensional
10 10

Justin Johnson EECS 442 WI 2020: Lecture 15 - 57 February 26, 2020

Undertitting

Ground-Truth: 1.5x% + 2.3x+2 + N(0,0.5)

12 — Ground-truth
—— 1 dimensional

Model isn’t “complex” 10
enough to fit the data 5

Bias (statistics): Error
intrinsic to the model.

Justin Johnson EECS 442 WI 2020: Lecture 15 - 58 February 26, 2020

Overfitting

Ground-Truth: 1.5x% + 2.3x+2 + N(0,0.5)

—— Ground-truth —— Ground-truth

12 . . 20 . .
—— 8 dimensional — 9 dimensional

Justin Johnson EECS 442 WI 2020: Lecture 15 - February 26, 2020

Overfitting

Model has high variance: remove)
and model changes dramatically

1, H— Ground-truth 10 —— Ground-truth
—— 8 dimensional —— 8 dimensional

10 10

8 8

6 . 6

4 4

2 J /4 2

0 . 0

Justin Johnson EECS 442 WI 2020: Lecture 15 - 60 February 26, 2020

(Continuous) Model Complexity

n
arg min +
w
i=1

Intuitively: big weights = more complex model

Model 1: 0.01*x, + 1.3*x, + -0.02*x3 + -2.1x, + 10
Model 2: 37.2%x, + 13.4*x, + 5.6*x3 + -6.1x, + 30

Justin Johnson EECS 442 WI 2020: Lecture 15 - 61 February 26, 2020

Fitting a Model

Again, fitting polynomial, but with regularization

arg min||y — Xw/|| + A||w||
W

XFoox2 x 1] e

xy toxp X 1] [Wol

Justin Johnson EECS 442 WI 2020: Lecture 15 - 62 February 26, 2020

Adding Regularization

No regularization: Regularization:
fits all data points can’t fit all data points
14
—— Ground-truth —— Ground-truth
? 9 dimensional 12 —— 9 dimensional

Justin Johnson EECS 442 WI 2020: Lecture 15 - 63 February 26, 2020

Bias / Variance Tradeoff

Error on new data comes from combination of:

1. Bias: model is oversimplified and can’t fit
the underlying data

2. Variance: you don’t have the ability to
estimate your model from limited data

3. Inherent: the data is intrinsically difficult

Bias and variance trade-off. Fixing one hurts the
other. You can prove theorems about this.

Justin Johnson EECS 442 WI 2020: Lecture 15 - 64 February 26, 2020

Underfitting and Overfitting

Underfitting!

Test

Error
Error

Training
Error

High Bias Model Low Bias
Low Variance High Variance

Complexity

Diagram adapted from: D. Hoiem

Justin Johnson EECS 442 WI 2020: Lecture 15 - 65 February 26, 2020

Underfitting and Overfitting
_

Small data
Overfits w/small model

Test
T
Error G e LR
High I?Tias Complexity .Low B.las
Low Variance High Variance

Diagram adapted from: D. Hoiem

Justin Johnson EECS 442 WI 2020: Lecture 15 - 66 February 26, 2020

Undertitting

2 N Do poorly on both training and
10 validation data due to bias.
‘ [Solution:

: _/ 1. More features

o2 4 o . . 2. More powerful model
" N " 3. Reduce regularization

Justin Johnson EECS 442 WI 2020: Lecture 15 - 67 February 26, 2020

Overfitting

j, — Ground-rutn Do well on training data, but poorly

—— 8 dimensional

on validation data due to variance
Solution:

| 1. More data

. ... 2. Less powerful model

0w goundtn 3. Regularize your model more

—— 9 dimensional

15

10

Heuristic: First make sure you can
overfit, then stop overfitting.

Justin Johnson EECS 442 WI 2020: Lecture 15 - 68 February 26, 2020

Double Descent

Classical Regime
Bias-Variance Tradeoff

0.5 \

-

0.3

0.2

Test / Train Error

0.1

0.0

ResNet18 Width Parameter

@ Test Train

Justin Johnson EECS 442 WI 2020: Lecture 15 - 69 February 26, 2020

Double Descent

Classical Regime Modern Regime
Bias-Variance Tradeoff Larger Model is Better
AN A
4 Y
\ .
0.5 \ :
\ 1
. : -—— Critical Regime

S 04 ,
L :
= ,
@ 0.3 .
~ |
~~ 1
02 |

& :< Interpolation Threshold
1
0.1 1
1
1
1
1
0.0 :

1 10 20 30 40 50 60
ResNet18 Width Parameter

@ Test Train
Advani and Saxe, “High-dimensional dynamics of generalization error in neural networks”, 2017
Geiger et al, “The jamming transition as a paradigm to understand the loss landscape of deep neural networks”, 2018
Belkin et al, “Reconciling modern machine learning practice and the bias-variance trade-off”, 2018
Nakkiran et al, “Deep Double Descent: Where Bigger Models and More Data Hurt”, 2019

Justin Johnson EECS 442 WI 2020: Lecture 15- 70 February 26, 2020

Recap

Justin Johnson EECS 442 WI 2020: Lecture 15- 71 February 26, 2020

Next Time:
Nonlinear Models,
Neural Networks!

EECS 442 WI 2020: Lecture 15- 72 February 26, 2020

