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Lecture 15:
Optimization

(Under/over)fitting
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Administrative

2

• HW3 due Wednesday, March 4 11:59pm

• TAs will not be checking Piazza over Spring Break. 
You are strongly encouraged to finish the 
assignment by Friday, February 25
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Last Time: Regularized Least Squares
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Add regularization to objective that prefers some solutions:

argmin
𝒘

𝒚 − 𝑿𝒘 +
+ LossBefore:

After: argmin
𝒘

𝒚 − 𝑿𝒘 +
+ + 𝜆 𝒘 +

+

Loss RegularizationTrade-off

Want model “smaller”: pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too complex (low 
regularization). λ controls how much of each.
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Last Time: Nearest Neighbor
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Known Images
Labels

…

𝒙/

𝒙0

Test
Image

𝒙1

𝐷(𝒙0, 𝒙1)

𝐷(𝒙/, 𝒙1)

(1) Compute distance between 
feature vectors (2) find nearest 
(3) use label.

Cat

Dog

Cat!
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Last Time: Choosing Hyperparameters

5

What distance? What value for k / λ?

Training TestValidation

Use these data 
points for lookup

Evaluate on these 
points for different k, 

λ, distances
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Last Time: Linear Classifiers
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Example Setup: 3 classes

𝒘6,𝒘/,𝒘+Model – one weight per class:
big if cat𝒘6

1𝒙
big if dog𝒘/1𝒙

big if hippo𝒘+
1𝒙

𝑾𝟑𝒙𝑭Stack together: where x is in RF

Want: 
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Last Time: Linear Classifiers

7

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0.0 0.3 0.2 -0.3

1.1

3.2

-1.2

𝑾

56

231

24

2

1

𝒙𝒊

Cat weight vector

Dog weight vector

Hippo weight vector

𝑾𝒙𝒊

-96.8

437.9

61.95

Cat score

Dog score

Hippo score

Diagram by: Karpathy, Fei-Fei

Weight matrix a collection of scoring 
functions, one per class

Prediction is vector 
where jth component is 
“score” for jth class.
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Last Time: Multiclass SVM Loss
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”The score of the correct class should 
be higher than all the other scores”

Loss

Score for 
correct class

Highest score 
among other 
classes

“Margin”

Given an example 𝑥<, 𝑦<
(𝑥< is image, 𝑦< is label)

Let  𝑠 = 𝑓(𝑥<,𝑊) be scores

Then the SVM loss has the form:

𝐿< = C
DEFG

max 0, 𝑠D − 𝑠FG + 1

“Hinge Loss”
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Last Time: Multiclass SVM Loss
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SVM = Support Vector Machine

Lots of great theory as to why this 
is a sensible thing to do. See

Useful book (Free too!):
The Elements of Statistical Learning
Hastie, Tibshirani, Friedman 
https://web.stanford.edu/~hastie/ElemStatLearn/

https://web.stanford.edu/~hastie/ElemStatLearn/
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Last Time: Cross-Entropy Loss
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Loss is –log(P(correct class))

𝐿< = − log
exp 𝑠FG
∑D exp(𝑠D)

-0.9

0.4

0.6

Cat score

Dog score

Hippo score

exp(x)

e-0.9

e0.4

e0.6

0.41

1.49

1.82

∑=3.72

Norm

0.11

0.40

0.49

P(cat)

P(dog)

P(hippo)

Converting Scores to “Probability Distribution”

exp (𝑊𝑥 D)
∑P exp( 𝑊𝑥 P)

Generally P(class j):

Called softmax function
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Today: Optimization
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arg min
𝒘∈RS

𝐿(𝒘)Goal: find the w minimizing
some loss function L.

𝐿 𝑾 = 𝝀 𝑾 𝟐
𝟐 + C

<V/

W

− log
exp( 𝑊𝑥 FG)

∑P exp( 𝑊𝑥 P))

𝐿(𝒘)=𝜆 𝒘 +
+ + C

<V/

W

𝑦< − 𝒘𝑻𝒙𝒊
+

𝐿 𝒘 =𝐶 𝒘 +
+ +C

<V/

W

max 0,1 − 𝑦<𝒘1𝒙𝒊

Works for lots of 
different Ls:
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Sample Function to Optimize

12

Global minimum

f(x,y) = (x+2y-7)2 + (2x+y-5)2

Warning: This is 
2D, intuition may 
not generalize to 
high dimension
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Optimization: A Caveat

13

• Each point in the picture is a 
function evaluation

• Here it takes microseconds – so we 
can easily see the answer

• Functions we want to optimize may 
take hours to evaluate
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Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php%3Fimage=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php%3Fimage=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Idea #1A: Grid Search
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#systematically try things
best, bestScore = None, Inf
for dim1Value in dim1Values:

….
for dimNValue in dimNValues:

w = [dim1Value, …, dimNValue]
if L(w) < bestScore:

best, bestScore = w, L(w)
return best



Justin Johnson February 26, 2020EECS 442 WI 2020: Lecture 15 -

Idea #1A: Grid Search

17



Justin Johnson February 26, 2020EECS 442 WI 2020: Lecture 15 -

Idea #1A: Grid Search
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Pros:
1. Super simple
2. Only requires being able 

to evaluate model

Cons:
1. Scales horribly to high 

dimensional spaces

Complexity: samplesPerDimnumberOfDims
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Option #1B: Random Search

19

#Do random stuff RANSAC Style
best, bestScore = None, Inf
for iter in range(numIters):

w = random(N,1) #sample
score = 𝐿 𝒘 #evaluate
if score < bestScore:

best, bestScore = w, score
return best
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Option #1B: Random Search

20
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Option #1B: Random Search

21

Pros:
1. Super simple
2. Only requires being able 

to sample model and 
evaluate it

Cons:
1. Slow –throwing darts at 

high dimensional dart 
board

2. Might miss something

Good parameters

All parameters
0 1

ε
P(all correct) = 

εN
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When To Use Options 1A / 1B?

22

Use these when
• Number of dimensions small, space bounded
• Objective is impossible to analyze (e.g., test 

accuracy if we use this distance function)

Random search is arguably more effective; grid 
search makes it easy to systematically test something 
(people love certainty)
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Idea #2: Follow the slope

23
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Idea #2: Follow the slope

24

Arrows:
gradient
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Idea #2: Follow the slope

25

Arrows:
gradient

direction
(scaled to unit 

length)
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Idea #2: Follow the slope

26

argmin
𝒘
𝐿(𝒘)

∇𝒘𝐿 𝒘 =
𝜕𝐿/𝜕𝒙/

⋮
𝜕𝐿/𝜕𝒙0

What’s the geometric 
interpretation of:

Want:

Which is bigger (for small α)?

𝐿 𝒘 𝐿 𝒘 + 𝛼∇𝒘𝐿(𝒘)
≤?

>?
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Idea #2: Follow the slope

27

w0 = initialize() #initialize
for iter in range(numIters):

g = ∇𝒘𝐿 𝒘 # eval gradient
w = w + -stepsize(iter)*g # update w

return w

Method: at each step, move in 
direction of negative gradient
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Gradient Descent

28

Given starting point (blue)
wi+1 = wi + -9.8x10-2 x gradient
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Computing Gradients: Numeric
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How Do You Compute The Gradient?
Numerical Method:

∇𝒘𝐿 𝒘 =

𝜕𝐿(𝑤)
𝜕𝑤/
⋮

𝜕𝐿(𝑤)
𝜕𝑤W

𝜕𝑓(𝑥)
𝜕𝑥

= lim
c→6

𝑓 𝑥 + 𝜖 − 𝑓(𝑥)
𝜖

How do you compute this?

𝑓 𝑥 + 𝜖 − 𝑓 𝑥 − 𝜖
2𝜖

In practice, use:
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Computing Gradients: Numeric

30

∇𝒘𝐿 𝒘 =

𝜕𝐿(𝑤)
𝜕𝑥/
⋮

𝜕𝐿(𝑤)
𝜕𝑥W

How many function 
evaluations per dimension?

𝑓 𝑥 + 𝜖 − 𝑓 𝑥 − 𝜖
2𝜖

Use:

How Do You Compute The Gradient?
Numerical Method:
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Computing Gradients: Analytic

31

∇𝒘𝐿 𝒘 =

𝜕𝐿(𝑤)
𝜕𝑥/
⋮

𝜕𝐿(𝑤)
𝜕𝑥W

How Do You Compute The Gradient?

This image is in the public domain This image is in the public domain

Better Idea: Use Calculus!

https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
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Computing Gradients: Analytic

32

∇𝒘𝐿(𝒘) = 2𝜆𝒘 +C
<V/

W

− 2 𝑦< − 𝒘1𝒙𝒊 𝒙<

𝜕
𝜕𝒘

𝐿(𝒘)=𝜆 𝒘 +
+ + C

<V/

W

𝑦< − 𝒘𝑻𝒙𝒊
+
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Interpreting Gradients: 1 Sample
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𝐿(𝒘)=𝜆 𝒘 +
+ + 𝑦< − 𝒘𝑻𝒙𝒊

+

∇𝒘𝐿(𝒘) = 2𝜆𝒘 + − 2 𝑦 − 𝒘1𝒙 𝒙

−∇𝒘𝐿 𝒘 = −2𝜆𝒘 + 2 𝑦 − 𝒘1𝒙 𝒙

Push w towards 0 

If y > wTx (too low): then w = w + αx for some α
Before: wTx

After: (w+ αx)Tx = wTx + αxTx

α

Recall: w = w + -∇𝒘𝐿 𝒘 #update w
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Computing Gradients

34

- Numeric gradient: approximate, slow, 
easy to write

- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but 
check implementation with numerical 
gradient. This is called a gradient check.
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negative 
gradient 
direction

W_1

W_2 original W
Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Gradient Descent
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Batch Gradient Descent

36

𝐿 𝑊 =
1
𝑁
C
<V/

0

𝐿< 𝑥<, 𝑦<,𝑊 + 𝜆𝑅(𝑊)

∇i𝐿 𝑊 =
1
𝑁
C
<V/

0

∇i𝐿< 𝑥<, 𝑦<,𝑊 + 𝜆∇i𝑅(𝑊)
Solution: Approximate 
sum using a minibatch
of examples, e.g. 32

Problem: Full sum 
is expensive when 
N is large!
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Stochastic Gradient Descent (SGD)

37

𝐿 𝑊 =
1
𝑁
C
<V/

0

𝐿< 𝑥<, 𝑦<,𝑊 + 𝜆𝑅(𝑊)

∇i𝐿 𝑊 =
1
𝑁
C
<V/

0

∇i𝐿< 𝑥<, 𝑦<,𝑊 + 𝜆∇i𝑅(𝑊)

Problem: Full sum 
is expensive when 
N is large!

Solution: Approximate 
sum using a minibatch
of examples, e.g. 32

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

Note: Some people say “stochastic gradient descent” is batch size 1, and “minibatch gradient descent” for other 
batch sizes. I think this distinction is confusing, and use “stochastic gradient descent” for any minibatch size
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Gradient Descent: Learning Rate

38

Step size (also called learning rate / lr)
critical parameter

10x10-2

converges
12x10-2

diverges
1x10-2

falls short
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Gradient Descent: Learning Rate

39

11x10-2 :oscillates
(Raw gradients)
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Learning Rate Decay

40

Idea: Start with high learning rate, reduce it over time.
Step Decay: Reduce by some factor at fixed iterations
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Learning Rate Decay

41

Idea: Start with high learning rate, reduce it over time.

Cosine Decay: 𝛼j =
/
+
𝛼6 1 + 𝑐𝑜𝑠 jm

1
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Problems with SGD

42

What if loss changes quickly in one direction and slowly in another?

Loss function has high condition number: ratio of largest to 
smallest singular value of the Hessian matrix is large
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Problems with SGD

43

What if loss changes quickly in one direction and slowly in another?
Slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to 
smallest singular value of the Hessian matrix is large
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Problems with SGD

44

What if the loss function 
has a local minimum or 
saddle point?

Local 
Minimum

Saddle 
point

Gradient is zero,
SGD gets stuck
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Problems with SGD

45

Our gradients come 
from minibatches so 
they can be noisy!

𝐿 𝑊 =
1
𝑁
C
<V/

0

𝐿< 𝑥<, 𝑦<,𝑊 + 𝜆𝑅(𝑊)
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SGD

Lectur
e 4 - 46

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

𝑥jn/ = 𝑥j − 𝛼∇𝑓 𝑥j
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SGD + Momentum

47

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically 𝜌 = 0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD + Momentum

𝑥jn/ = 𝑥j − 𝛼∇𝑓 𝑥j
𝑣jn/ = 𝜌𝑣j + ∇𝑓 𝑥j
𝑥jn/ = 𝑥j − 𝛼𝑣jn/
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SGD + Momentum

48

SGD + Momentum

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD + Momentum

𝑣jn/ = 𝜌𝑣j + ∇𝑓 𝑥j
𝑥jn/ = 𝑥j − 𝛼𝑣jn/

𝑣jn/ = 𝜌𝑣j − 𝛼∇𝑓 𝑥j
𝑥jn/ = 𝑥j + 𝑣jn/

You may see SGD+Momentum formulated different ways, but 
they are equivalent - give same sequence of x
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SGD + Momentum

49

Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Other Update Rules: Adam

50

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 
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Adam: Very Common in Practice!

51

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

Johnson, Gupta, and Fei-Fei, CVPR 2018

Gupta, Johnson, et al, CVPR 2018

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS
2019
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Optimization in Practice

52

• Conventional wisdom: minibatch stochastic 
gradient descent (SGD) + momentum (package 
implements it for you) + some sensibly changing 
learning rate

• The above is typically what is meant by “SGD”
• Other update rules exist (Adam very common); 

sometimes better, sometimes worse than SGD
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Optimizing Everything

53

• Optimize w on training set with SGD to maximize 
training accuracy

• Optimize λ with random/grid search to maximize 
validation accuracy

• Note: Optimizing λ on training sets it to 0

𝐿 𝑾 = 𝝀 𝑾 𝟐
𝟐 + C

<V/

W

− log
exp( 𝑊𝑥 FG)

∑P exp( 𝑊𝑥 P))

𝐿(𝒘)=𝜆 𝒘 +
+ + C

<V/

W

𝑦< − 𝒘𝑻𝒙𝒊
+
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Overfitting / Underfitting
and Model Complexity

54
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(Over/Under)fitting and Complexity

55

Let’s fit a polynomial: given x, predict y
𝑦 = 𝑤6 + 𝑤/𝑥 + 𝑤+𝑥+ + 𝑤s𝑥s + ⋯+𝑤u𝑥u

Note: can do non-linear regression with copies of x

𝑦/
⋮
𝑦0

=
𝑥/u
⋮
𝑥0u

⋯
⋱
⋯

𝑥/+
⋮
𝑥0+

𝑥/
⋮
𝑥0

1
⋮
1

𝑤u
⋮
𝑤+
𝑤/
𝑤6

Weights: one per polynomial degree

Matrix of all polynomial degrees
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(Over/Under)fitting and Complexity

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)
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Underfitting

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)



Justin Johnson February 26, 2020EECS 442 WI 2020: Lecture 15 - 58

Underfitting

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)

Model isn’t “complex” 
enough to fit the data

Bias (statistics): Error 
intrinsic to the model. 
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Overfitting

Ground-Truth: 1.5x2 + 2.3x+2 + N(0,0.5)
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Overfitting
Model has high variance: remove one point, 

and model changes dramatically
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(Continuous) Model Complexity

61

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + C

<V/

W

− log
exp( 𝑊𝑥 FG)

∑P exp( 𝑊𝑥 P))

Regularization: penalty 
for complex model 

Pay penalty for negative log-
likelihood of correct class

Intuitively: big weights = more complex model 

Model 1: 0.01*x1 + 1.3*x2 + -0.02*x3 + -2.1x4 + 10

Model 2: 37.2*x1 + 13.4*x2 + 5.6*x3 + -6.1x4 + 30
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Fitting a Model

62

Again, fitting polynomial, but with regularization

argmin
w

𝒚 − 𝑿𝒘 + 𝜆 𝒘

𝑥/u
⋮
𝑥0u

⋯
⋱
⋯

𝑥/+
⋮
𝑥0+

𝑥/
⋮
𝑥0

1
⋮
1

𝑤u
⋮
𝑤6
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Adding Regularization

63

No regularization: 
fits all data points

Regularization: 
can’t fit all data points
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Bias / Variance Tradeoff

64

Error on new data comes from combination of:
1. Bias: model is oversimplified and can’t fit 

the underlying data
2. Variance: you don’t have the ability to 

estimate your model from limited data
3. Inherent: the data is intrinsically difficult
Bias and variance trade-off. Fixing one hurts the 
other. You can prove theorems about this.
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Underfitting and Overfitting

65

Low Bias
High Variance

High Bias
Low Variance

Diagram adapted from: D. Hoiem

Test 
Error

Training 
Error

Model 
Complexity

Ove
rfi

tti
ng!

Getting Better
Error

Underfitting!
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Underfitting and Overfitting

66

Low Bias
High Variance

High Bias
Low Variance

Complexity

Test
Error

Small data
Overfits w/small model

Big data
Overfits w/bigger model

Diagram adapted from: D. Hoiem
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Underfitting

67

Do poorly on both training and 
validation data due to bias.
Solution:
1. More features
2. More powerful model
3. Reduce regularization
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Overfitting
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Do well on training data, but poorly 
on validation data due to variance
Solution:
1. More data
2. Less powerful model
3. Regularize your model more

Heuristic: First make sure you can
overfit, then stop overfitting.
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Double Descent

69



Justin Johnson February 26, 2020EECS 442 WI 2020: Lecture 15 -

Double Descent
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Advani and Saxe, “High-dimensional dynamics of generalization error in neural networks”, 2017
Geiger et al, “The jamming transition as a paradigm to understand the loss landscape of deep neural networks”, 2018
Belkin et al, “Reconciling modern machine learning practice and the bias-variance trade-off”, 2018
Nakkiran et al, “Deep Double Descent: Where Bigger Models and More Data Hurt”, 2019
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Recap
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Next Time:
Nonlinear Models,
Neural Networks!
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