Lecture 15:
Optimization
(Under/over)fitting

EECS 442 WI 2020: Lecture 15- 1 February 26, 2020



Administrative

* HW3 due Wednesday, March 4 11:59pm

* TAs will not be checking Piazza over Spring Break.
You are strongly encouraged to finish the
assignment by Friday, February 25
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Last Time: Regularized Least Squares

Add regularization to objective that prefers some solutions:

Before: arg min
w

After: arg min ‘}/1
w

Trade-off

Want model “smaller”: pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too complex (low
regularization). A controls how much of each.
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Last Time: Nearest Neighbor

Known Images Test
Labels Image

h X1AD(x1» XT) %’ XT

Cat /

ses D(xNJxT)

(1) Compute distance between

feature vectors (2) find nearest
(3) use label.
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Last Time: Choosing Hyperparameters

What distance? What value for k / \?

Training Validation Test
Use these data Evaluate on these
points for lookup points for different k,

A, distances
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Last Time: Linear Classifiers

Example Setup: 3 classes

Model — one weight per class: Wo, Wi, Wy
wox big if cat f I
Want: wix bigifdog

ng big if hippo
Stack together: W3, r where xisin R"
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Last Time: Linear Classifiers

Cat weight vector | 0.2 | -05| 0.1 | 2.0 | 1.1 56 -96.8 | Cat score

Dog weight vector | 1.5 | 1.3 | 2.1 | 0.0 | 3.2 | | 231 | == | 437.9 | Dog score

Hippo weight vector | 0.0 | 0.3 | 0.2 | -0.3 | -1.2 24 61.95 | Hippo score
2
w Wx;
1

Prediction is vector
where jth component is
i “score” for jth class.

Weight matrix a collection of scoring
functions, one per class X

Diagram by: Karpathy, Fei-Fei
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Last Time: Multiclass SVM Loss

"The score of the correct class should
be higher than all the other scores” Given an example (x;, y;)

(x; is image, y; is label)

Loss Y .
Hinge Loss Let s = f(x;, W) be scores

Score for Then the SVM loss has the form:
| correct class L = Z max(0,s; — s, + 1)

|

/ H_J J#Yi
Highest score “Margin”

among other

classes
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Last Time: Multiclass SVM Loss

SVM = Support Vector Machine

Lots of great theory as to why this
IS a sensible thing to do. See

Useful book (Free too!):

The Elements of Statistical Learning

Hastie, Tibshirani, Friedman
https://web.stanford.edu/~hastie/ElemStatLearn/

Data Mining, Inference, and Prediction
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https://web.stanford.edu/~hastie/ElemStatLearn/

Last Time: Cross-Entropy Loss

Converting Scores to “Probability Distribution”

Cat score | -0.9 e0-9 0.41 0.11 | P(cat)

Dog score | 0.4 exp(x) = e04 1.49 |1 Norm = | 0.40 | P(dog)

Hippo score | 0.6 e0-6 1.82 0.49 | P(hippo)
5>=3.72
Generally P(class j): Loss is —log(P(correct class))
exp((Wx) ;) e exp(syi)
> exp((Wx)y) LT TR exp(s))

Called softmax function
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Today: Optimization

Goal: find thewm|n|m|2|ng arg min L(w)
some loss function L. weRrN

exp((Wx),,) >

LW) = A[|w||5 + ; —log (zk exp((Wx)))

Works for lots of
different Ls: L(w) = A||w2 + Z(yi - wix)’
i=1

n
Lw) =Cllwl + ) max(0,1 - yw'x)

i=1
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Sample Function to Optimize

f(x,y) = (x+2y-7)% + (2x+y-5)?

15

6000
5000
Warning: Thisis ™

8000
7000
4000
. 3000
2D, intuition may
0 15 20

2000
1000

not generalize to =,

high dimension
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Optimization: A Caveat

| [ [T
======= function evaluation
....... e Here it takes microseconds — so we
| | | can easily see the answer

* Each pointin the pictureis a

======= * Functions we want to optimize may

“.....5 | take hours to evaluate
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This image is CC0 1.0 Walking man image is CC0O 1.0
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http://www.publicdomainpictures.net/view-image.php%3Fimage=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

This image is CC0 1.0 Walking man image is CC0O 1.0
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http://www.publicdomainpictures.net/view-image.php%3Fimage=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/

ldea #1A: Grid Search

#systematically try things
best, bestScore = None, Inf
for dim1Value in dim1Values:

for dimNValue in dimNValues:
w = [dim1Value, ..., dimNValue]
if L(w) < bestScore:

best, bestScore = w, L(w)
return best
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ldea 1A: Grid Search

- T

—20 15 20

Justin Johnson EECS 442 WI 2020: Lecture 15 - 17 February 26, 2020



ldea #1A: Grid Search

Cons:
1. Super simple 1. Scales horribly to high
2. Only requires being able dimensional spaces

to evaluate model

Complexity: samplesPerDimnumberOibims
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Option #1B: Random Search

#Do random stuff RANSAC Style
best, bestScore = None, Inf
for iter in range(numlters):
w = random(N,1) #sample
score = L(w) #evaluate
if score < bestScore:
best, bestScore = w, score

return best
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Option 1B: Random Search

~15 !g‘.-.!
20 .-.i-.

=20 -1 15 20
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Option #1B: Random Search

Cons:
1. Super simple 1. Slow —throwing darts at
2. Only requires being able high dimensional dart
to sample model and board
evaluate it 2. Might miss something

P(all correct) =

N
€ E
Good parameters =———e

0 1
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When To Use Options 1A / 1B?

Use these when
* Number of dimensions small, space bounded

* Objective is impossible to analyze (e.g., test
accuracy if we use this distance function)

Random search is arguably more effective; grid
search makes it easy to systematically test something
(people love certainty)
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|[dea #2: Follow the slope
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|dea #2: Follow the slope
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|[dea #2: Follow the slope
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|[dea #2: Follow the slope

Want: arg min L(w)
w
dL/0x,
What'’s the geometric _ :
. . VwL(w) =
interpretation of:

_GL/OxN_

Which is bigger (for small a)?

<?

L(w) L(w + aV,, L(w))
>7?
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|[dea #2: Follow the slope

Method: at each step, move in
direction of negative gradient

wO = initialize() #initialize
for iter in range(numlters):

g=V,L(w) # eval gradient
W = W + -stepsize(iter)*g # update w
return w
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Computing Gradients: Numeric

How Do You Compute The Gradient?
Numerical Method:

How do you compute this?

_a I
2w faro -1
1 = lim
Vwlw) =| ox €0 €
oLw) In practice, use:
. dw,,

flx+e)—flx—e)
2€
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Computing Gradients: Numeric

How Do You Compute The Gradient?
Numerical Method:

Use: f(x+e)—f(x—e)

dL(w)) S e
0x4
VwL(w) = : How many function
OL(w) evaluations per dimension?
. dx,

Justin Johnson EECS 442 WI 2020: Lecture 15- 30 February 26, 2020



Computing Gradients: Analytic

How Do You Compute The Gradient?

Better Idea: Use Calculus!

Vo,L(w) =

This image is in the public domain This image is in the public domain
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https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz

Computing Gradients: Analytic

n
2
Low) = 21wl + ) (v —w'x)
=1

| 5 |

V. L(W) = 2Aw + Z — 20y — wTx)x;)
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Interpreting Gradients: 1 Sample

2
Lw) =2wll3 + (vi — w'x;)
Recall: w=w + -V, L(w) #update w

Vo, L(W) = 2Aw + —(2(y —wlx)x)

(0 |
A
' N\
—V,L(w) = 22w + 2(y — wlx)x)
|\ J/
Y
If y>wx (too low): then w = w + ax for some a
Before: w'x

After: (w+ ax)™x = wTx + ax'x
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Computing Gradients

- Numeric gradient: approximate, slow,
easy to write
- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but
check implementation with numerical
gradient. This is called a gradient check.

toxrch.autograd.gradcheck(func, inputs, eps=1e-06, atol=1e-05, rtol=0.001,

. ) [SOURCE] (4’
raise_exception=True, check_sparse_nnz=False, nondet_tol=0.0)

Check gradients computed via small finite differences against analytical gradients w.r.t. tensors in inputs
that are of floating point type and with requires_grad=True.

The check between numerical and analytical gradients uses allclose() .
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Gradient Descent

negative

Iteratively step in the direction of gradient .
w2 direction original W

the negative gradient 4 W
(direction of local steepest descent)

# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
dw = compute_gradient(loss_fn, data, w)

w —= learning_rate * dw

Hyperparameters:
- Weight initialization method

- Number of steps
- Learning rate
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Batch Gradient Descent

1 N Problem: Full sum
L(W) = NE Li(xl-, Vi, W) + AR(W) IS gxpensive when
i—1 N is large!

Solution: Approximate

N
1 . L L3
Vi L(W) = m E VL O, v, W) 4+ AV R(W) sum using a minibatch

of examples, e.g. 32
i=1
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Stochastic Gradient Descent (SGD)

1 N Problem: Full sum
L(W) = NE Li(xl-, Vi, W) + AR(W) IS gxpensive when
i—1 N is large!

Solution: Approximate

N
1 . L] L3
Vi L(W) = m g VL O, v, W) 4+ AV R(W) sum using a minibatch

of examples, e.g. 32
i=1

Hyperparameters:
# Stochastic gradient descent - Weightinitialization

w = initialize_weights()

for t in range(num_steps):
minibatch = sample_data(data, batch_size)
dw = compute_gradient(loss_fn, minibatch, w) - Batch size

w —= learning_rate * dw - Data sampling

Note: Some people say “stochastic gradient descent” is batch size 1, and “minibatch gradient descent” for other
batch sizes. | think this distinction is confusing, and use “stochastic gradient descent” for any minibatch size

- Number of steps
- Learning rate
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Gradient Descent: Learning Rate

Step size (also called learning rate / Ir)

critical parameter
1x10-2 10x10-2 12x102
falls short converges diverges

[T L .
| ./
| 7/

v 4

) .
0 _2920 -15 -10 -5 0 5 10 15 20 0 5 10 15 20
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Gradient Descent: Learning Rate

11x102:oscillates
(Raw gradients)

20

15 ﬁn....

L | | .
R . | .
b
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Learning Rate Decay

Idea: Start with high learning rate, reduce it over time.
Step Decay: Reduce by some factor at fixed iterations

Training Loss Learning Rate
0.10 1

0.08 -

0.06 -

0.04 4

0.02 -

0.00 {
0 20 40 60 80 100 0 20 40 60 80 100
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Learning Rate Decay

Idea: Start with high learning rate, reduce it over time.

Cosine Decay: a; = %050 (1 + Cos (tFn))

Training Loss Learning Rate
10 -

10 7

0.8 1

0.6 1

Loss

0.4 1

0.2 1

0.0 1
E) Sb 1(::0 15lO 260 250 300 E) Zb 4b Gb Bb ldO
Epoch Epoch

Justin Johnson EECS 442 WI 2020: Lecture 15 - 41 February 26, 2020



Problems with SGD

What if loss changes quickly in one direction and slowly in another?

—

Loss function has high condition number: ratio of largest to
smallest singular value of the Hessian matrix is large
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Problems with SGD

What if loss changes quickly in one direction and slowly in another?
Slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to
smallest singular value of the Hessian matrix is large
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Problems with SGD

Local
Minimum

What if the loss function
has a local minimum or
saddle point?

Saddle

Gradient is zero,
SGD gets stuck
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Problems with SGD

Our gradients come
from minibatches so
they can be noisy!

1 N
LOW) =+ ) LiCxy v W) + AR(W)
i=1
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SGD

SGD
Xey1 = X — aVf(xe)

for t in range(num_steps):
dw = compute_gradient(w)
—-= learning_rate * dw

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Lectur
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SGD + Momentum

SGD SGD + Momentum

Ver1 = pVe + Vf(x¢)

Xer1 = X — aVf(x;) Xpsq = Xp — AUy 1

v=20
for t in range(num_steps): for t in range(num_steps):
dw = compute_gradient(w) dw = compute_gradient(w)
—= learning_rate *x dw V = rho *x v + dw
w —= learning_rate * v

Build up “velocity” as a running mean of gradients
Rho gives “friction”; typically p = 0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum

SGD + Momentum SGD + Momentum

Vegr = PV —aVF(x)  Vepq = pvp + V()

Xt+1 = Xt T Vst Xt+1 = Xt — AVpyq
v==~0 v =20 .
for t in range(num_steps): for t in range(num_steps):
dw = compute_gradient(w) dw = compute_gradient(w)
v = rho x v — learning_rate * dw V = rho * v + dw
W=V w —= learning_rate * v

You may see SGD+Momentum formulated different ways, but
they are equivalent - give same sequence of x

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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SGD + Momentum

Gradient Noise

Local Minima Saddle points

e N\

Poor Conditioning

l'hﬁ]’ fiwe > >>

m— ) === SGD+Momentum

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Other Update Rules: Adam

momentl = 0
moment2 = 0
for t in range(num_steps):
dw = compute_gradient(w)
momentl = betal x momentl + (1 - betal) * dw
moment2 = beta2 * moment2 + (1 — beta2) * dw * dw
momentl_unbias = momentl / (1 - betal *x t)
moment2_unbias = moment2 / (1 - beta2 *x t)
w —= learning_rate * momentl_unbias / (moment2_unbias.sqrt() + 1le-7)

Adam with betal = 0.9,
beta2 =0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015
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Adam: Very Common in Practice!

. We train all models using Adam [23] with learning rate
. N . N  Following {1104 4nd batch size 32 for 1 million iterations;
common practice, the network is trained end-to-end using stochastic gradient descent with the Adam ’

optimizer [22].

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurlPS Johnson, Gupta, and Fei-Fei, CVPR 2018

—2010

We train for 25 epochs For gradient descent, we use
P Adam [29] with a learning rate of 10~3 and default hyperparameters. All models

ing Ad ith 1 i te 10~% and 32 i
using Adam 2] withleaming rate 10™ and 32 mases per || £ P00 Ry

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

with a batch size of 64 for 200 epochs Adam with betal = 0.9, _
using Adam [22] with an initial learning rate of 0.001. beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1le-4

Gupta, Johnson, et al, CVPR 2018 is a great starting point for many models!
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Optimization in Practice

* Conventional wisdom: minibatch stochastic
gradient descent (SGD) + momentum (package
implements it for you) + some sensibly changing
learning rate

* The above is typically what is meant by “SGD”

e Other update rules exist (Adam very common);
sometimes better, sometimes worse than SGD
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Optimizing Everything

- = eXp((Wx)yl')
Lw) = AW + Z ~log (Zkexp((Wx)k))>

n
2
Low) =AlIwli3 + ) (i —w'x,)
=1

* Optimize w on training set with SGD to maximize
training accuracy

* Optimize A with random/grid search to maximize
validation accuracy

* Note: Optimizing A on training sets itto O
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Overfitting / Underfitting
and Model Complexity
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(Over/Under)fitting and Complexity

Let’s fit a polynomial: given x, predict y
Y =Wy + wix + wyx? + wax3 + -+ wpxt

Note: can do non-linear regression with copies of x

_ L [WFT

Vi1 |xi o oxE X1 1]
. — . ) : : : W2
YNl |xy o oxy Xn 1wy
Wy,

Matrix of all polynomial degreest

Weights: one per polynomial degree
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(Over/Under)fitting and Complexity

Ground-Truth: 1.5x% + 2.3x+2 + N(0,0.5)

12 —— Ground-truth
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Undertitting

Ground-Truth: 1.5x% + 2.3x+2 + N(0,0.5)

12 —— Ground-truth 12 —— Ground-truth

—— 0O dimensional —— 1 dimensional
10 10
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Undertitting

Ground-Truth: 1.5x% + 2.3x+2 + N(0,0.5)

12 — Ground-truth
—— 1 dimensional

Model isn’t “complex” 10
enough to fit the data 5

Bias (statistics): Error
intrinsic to the model.
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Overfitting

Ground-Truth: 1.5x% + 2.3x+2 + N(0,0.5)

——  Ground-truth ——  Ground-truth

12 . . 20 . .
—— 8 dimensional — 9 dimensional
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Overfitting

Model has high variance: remove )
and model changes dramatically

1, H— Ground-truth 10 —— Ground-truth
—— 8 dimensional —— 8 dimensional

10 10

8 8

6 . 6

4 4

2 J /4 2

0 . 0
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(Continuous) Model Complexity

n
arg min +
w
i=1

Intuitively: big weights = more complex model

Model 1: 0.01*x, + 1.3*x, + -0.02*x3 + -2.1x, + 10
Model 2: 37.2%x, + 13.4*x, + 5.6*x3 + -6.1x, + 30
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Fitting a Model

Again, fitting polynomial, but with regularization

arg min||y — Xw/|| + A||w||
W

XFoox2 x 1] e

xy  toxp X 1] [Wol
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Adding Regularization

No regularization: Regularization:
fits all data points can’t fit all data points
14
—— Ground-truth —— Ground-truth
? 9 dimensional 12 —— 9 dimensional
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Bias / Variance Tradeoff

Error on new data comes from combination of:

1. Bias: model is oversimplified and can’t fit
the underlying data

2. Variance: you don’t have the ability to
estimate your model from limited data

3. Inherent: the data is intrinsically difficult

Bias and variance trade-off. Fixing one hurts the
other. You can prove theorems about this.
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Underfitting and Overfitting

Underfitting!

Test

Error
Error

Training
Error

High Bias Model Low Bias
Low Variance High Variance

Complexity

Diagram adapted from: D. Hoiem
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Underfitting and Overfitting
_

Small data
Overfits w/small model

Test
T
Error G e LR
High I?Tias Complexity .Low B.las
Low Variance High Variance

Diagram adapted from: D. Hoiem
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Undertitting

2 N Do poorly on both training and
10 validation data due to bias.
‘ [ Solution:

: \_/ 1. More features

o2 4 o . . 2. More powerful model
" N " 3. Reduce regularization
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Overfitting

j, — Ground-rutn Do well on training data, but poorly

—— 8 dimensional

on validation data due to variance
Solution:

| 1. More data

. ... 2. Less powerful model

0w goundtn 3. Regularize your model more

—— 9 dimensional

15

10

Heuristic: First make sure you can
overfit, then stop overfitting.

Justin Johnson EECS 442 WI 2020: Lecture 15 - 68 February 26, 2020



Double Descent

Classical Regime
Bias-Variance Tradeoff

0.5 \

-

0.3

0.2

Test / Train Error

0.1

0.0

ResNet18 Width Parameter

@ Test Train
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Double Descent

Classical Regime Modern Regime
Bias-Variance Tradeoff Larger Model is Better
AN A
4 Y
\ .
0.5 \ :
\ 1
. : -—— Critical Regime

S 04 ,
L :
= ,
@ 0.3 .
~ |
~~ 1
02 |

& :< Interpolation Threshold
1
0.1 1
1
1
1
1
0.0 :

1 10 20 30 40 50 60
ResNet18 Width Parameter

@ Test Train
Advani and Saxe, “High-dimensional dynamics of generalization error in neural networks”, 2017
Geiger et al, “The jamming transition as a paradigm to understand the loss landscape of deep neural networks”, 2018
Belkin et al, “Reconciling modern machine learning practice and the bias-variance trade-off”, 2018
Nakkiran et al, “Deep Double Descent: Where Bigger Models and More Data Hurt”, 2019
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Recap
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Next Time:
Nonlinear Models,
Neural Networks!
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