Lecture 13: Intro to Machine Learning

Administrative

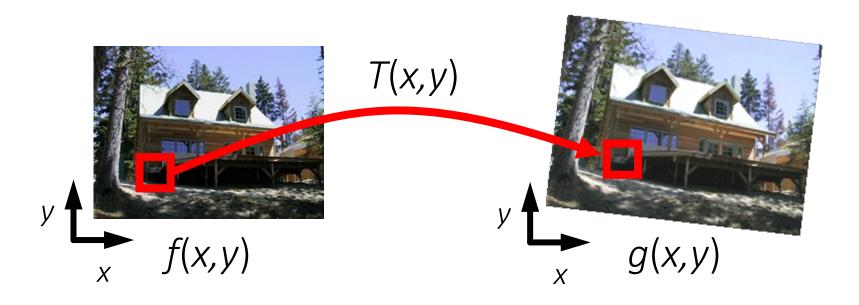
- My Office Hours today cancelled due to travel
- HW2 was due yesterday 2/19
- HW3 due date changed:
 - Old due date: Friday 2/28, 11:59pm
 - New due date: Wednesday 3/4, 11:59pm
 - You are <u>strongly encouraged</u> to finish the assignment before Spring Break
 - GSIs and IAs will not be checking Piazza over Spring Break

Last Time: Creating Panoramas

Creating Panoramas

Categories of Transformations
Fitting Transformations
Applying Transformations
Blending Images

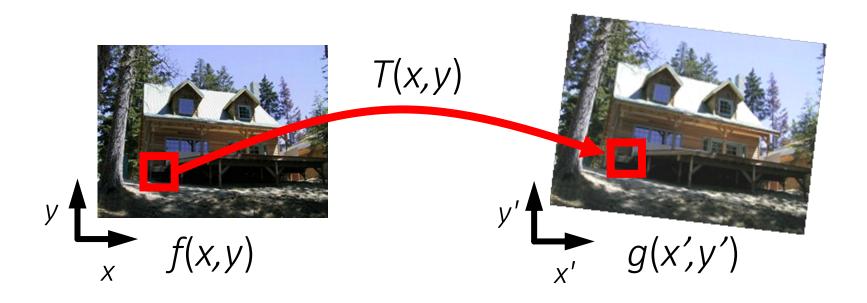
Image Warping



Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Slide Credit: A. Efros

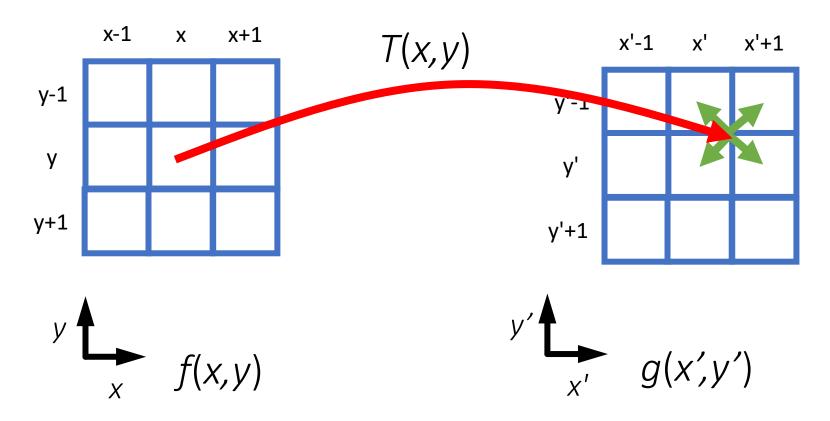
Forward Warping



Send the value at each pixel (x,y) to the new pixel (x',y') = T([x,y])

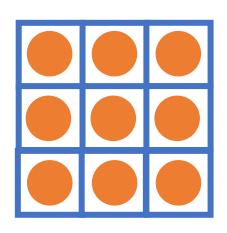
Slide Credit: A. Efros

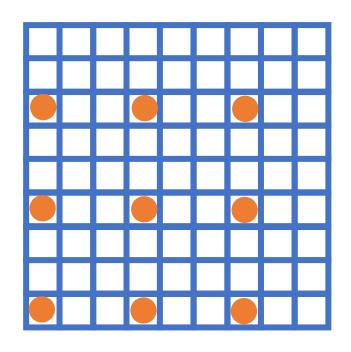
Forward Warping



If you don't hit an exact pixel, give the value to each of the neighboring pixels ("splatting").

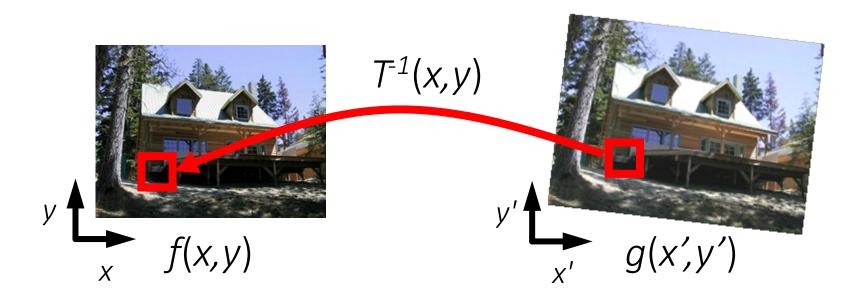
Forward Warping





Suppose T(x,y) scales by a factor of 3. Hmmmm.

Backward Warping

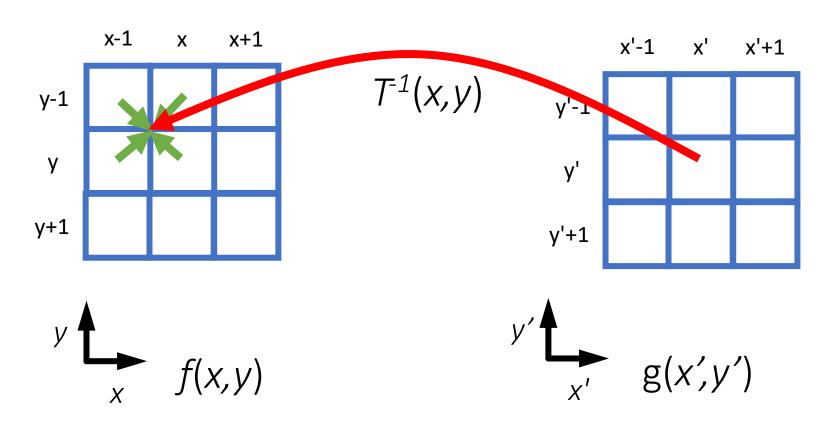


Find out where each pixel g(x',y') should get its value from, and steal it.

Note: requires ability to invert T

Slide Credit: A. Efros

Backward Warping



If you don't hit an exact pixel, figure out how to take it from the neighbors.

Creating Panoramas

Categories of Transformations
Fitting Transformations
Applying Transformations
Blending Images

Blending Images

Warped Input 1 I_1

Warped Input 2

α

 $\alpha I_1 + (1-\alpha)I_2$

Slide Credit: A. Efros

Simple Approach: Two-Band Blending

- Brown & Lowe, 2003
 - Break up each image into high frequency + low frequency
 - Linearly blend low-frequency information
 - No blending for high-frequency: at each pixel take from one image or the other

Figure Credit: Brown & Lowe

Simple Approach: Two-Band Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

Creating Panoramas

Categories of Transformations
Fitting Transformations
Applying Transformations
Blending Images

Putting It All Together

How do you make a panorama?

Step 1: Find "features" to match

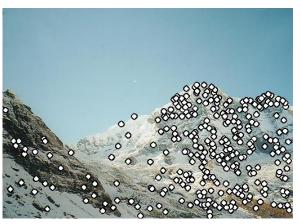
Step 2: Describe Features

Step 3: Match by Nearest Neighbor

Step 4: Fit H via RANSAC

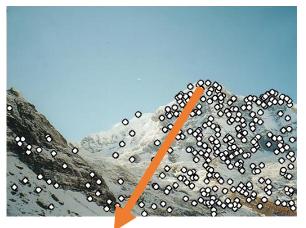
Step 5: Blend Images

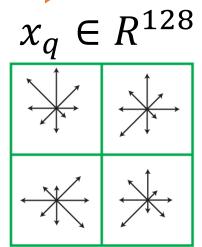
Find corners/blobs



- (Multi-scale) Harris; or
- Laplacian of Gaussian

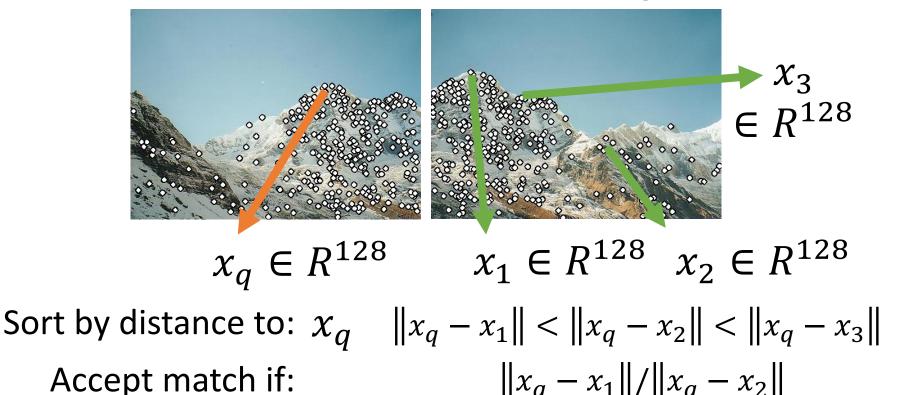
Describe Regions Near Features





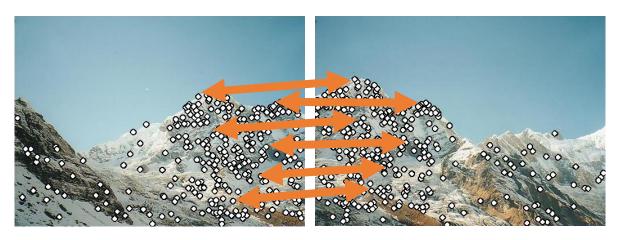
Build histogram of gradient orientations (SIFT)

Match Features Based On Region



Nearest neighbor is far closer than 2nd nearest neighbor

Fit transformation H via RANSAC



for trial in range(Ntrials):

Pick sample

Fit model

Check if more inliers

Re-fit model with most inliers

$$\arg\min_{\|\boldsymbol{h}\|=1} \|\boldsymbol{A}\boldsymbol{h}\|^2$$

Warp images together

Resample images with inverse warping and blend

Course Roadmap

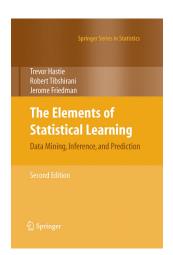
- Basics (Done)
- Image Stitching/Warping (Done)
- Learning-based Vision (Most of March)
- 3D Vision (April)

Machine Learning

Next Few Classes

- Machine Learning (ML) Crash Course
- I can't cover everything
- ML really won't solve all problems and is incredibly dangerous if misused
- But ML is a powerful tool and not going away

Pointers



Useful book (Free too!):
The Elements of Statistical Learning
Hastie, Tibshirani, Friedman
https://web.stanford.edu/~hastie/ElemStatLearn/

Useful set of data:

UCI ML Repository

https://archive.ics.uci.edu/ml/datasets.html

A lot of important and hard lessons summarized:

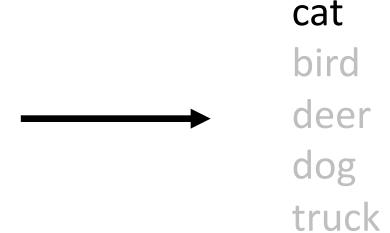
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

Image Classification: Core Vision Task

Input: image

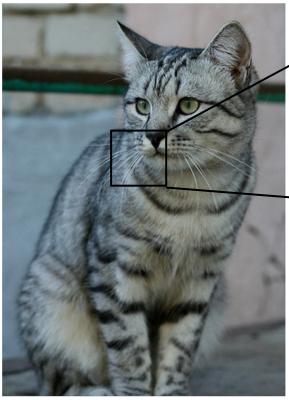
<u>This image</u> by <u>Nikita</u> is licensed under CC-BY 2.0

Output: Assign image to one of a fixed set of categories



Problem: Semantic Gap

Input: image



<u>This image</u> by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u>

1	[[105	112	100	111	104	00	100	99	06	102	112	119	104	97	93	071
ı	[[105						106									87]
ı	[91	98		106		79		103	99			136		105	94	85]
ı	[76	85	90		128		87	96	95			112		103	99	85]
ı	[99	81	81	93		131		100	95	98	102	99	96	93	101	94]
ı	[106	91	61	64	69	91	88	85	101	107	109	98	75	84	96	95]
ı	[114	108	85	55	55	69	64	54	64	87	112	129	98	74	84	91]
ı	[133	137	147	103	65	81	80	65	52	54	74	84	102	93	85	82]
ı	[128	137	144	140	109	95	86	70	62	65	63	63	60	73	86	101]
ı	[125	133	148	137	119	121	117	94	65	79	80	65	54	64	72	98]
ı	[127	125	131	147	133	127	126	131	111	96	89	75	61	64	72	84]
ı	[115	114	109	123	150	148	131	118	113	109	100	92	74	65	72	78]
ı	[89	93	90	97	108	147	131	118	113	114	113	109	106	95	77	80]
ı	[63	77	86	81	77	79	102	123	117	115	117	125	125	130	115	87]
ı	[62	65	82	89	78	71	80	101	124	126	119	101	107	114	131	119]
ı	[63	65	75	88	89	71	62	81	120	138	135	105	81	98	110	118]
ı	[87	65	71	87	106	95	69	45	76	130	126	107	92	94	105	112]
ı	[118	97	82	86	117	123	116	66	41	51	95	93	89	95	102	107]
ı	[164	146	112	80	82	120	124	104	76	48	45	66	88	101	102	109]
ı	[157	170	157	120	93	86	114	132	112	97	69	55	70	82	99	94]
ı	[130	128	134	161	139	100	109	118	121	134	114	87	65	53	69	86]
ı	[128	112	96	117	150	144	120	115	104	107	102	93	87	81	72	79]
ı	[123	107	96	86	83	112	153	149	122	109	104	75	80	107	112	991
ı	[122	121	102	80	82	86	94	117	145	148	153		58	78	92	1071
	[122				71	56	78	83		103			102	61	69	84]]

What the computer sees

An image is just a big grid of numbers between [0, 255]:

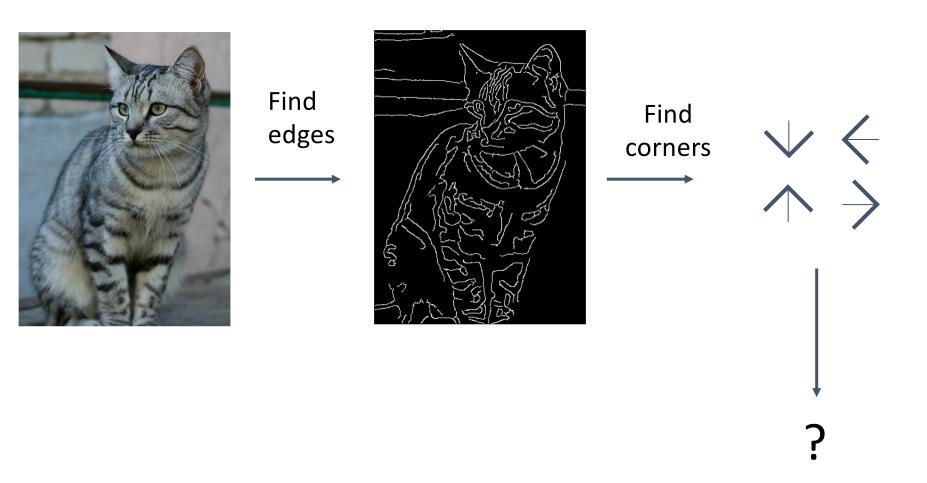
An Image Classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

An Image Classifier



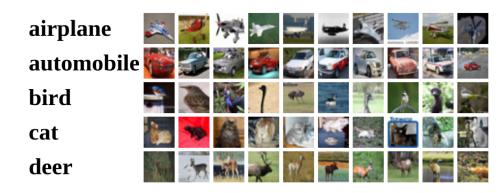
Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

```
def train(images, labels):
    # Machine learning!
    return model
```

```
def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set



Supervised Learning

Input: x

Output: **y**

Feature vector/Data point:

Vector representation of datapoint. Each dimension or "feature" represents some aspect of the data.

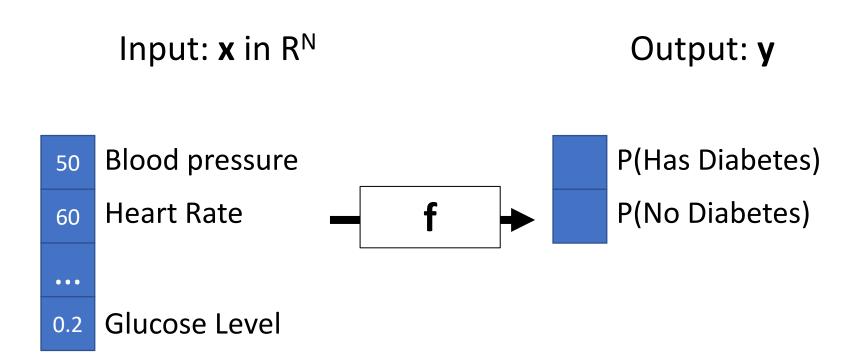
Label / target:

Fixed length vector of desired output. Each dimension represents some aspect of the output data

Goal: Given a dataset (x, y), learn a function f that maps from inputs to outputs

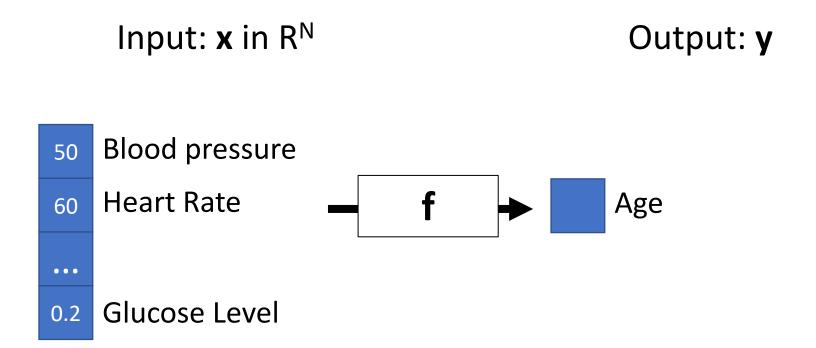
An objective function evaluates functions f

Example: Health



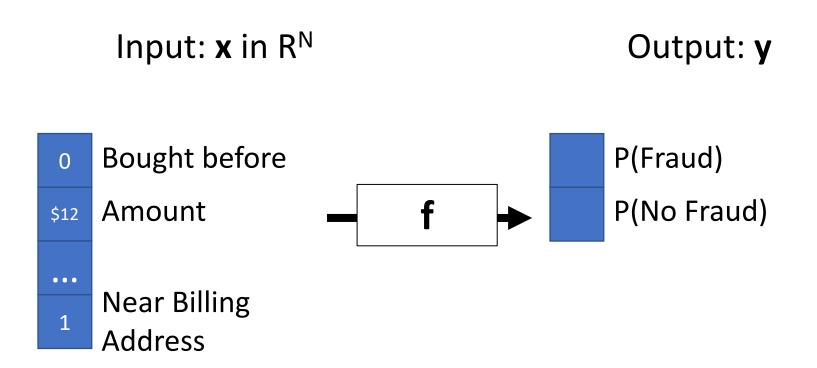
Intuitive objective function: Want correct category to be likely with our model.

Example: Health



Intuitive objective function: Want our prediction of age to be "close" to true age.

Example: Credit Card Fraud



Intuitive objective function: Want correct category to be likely with our model.

Unsupervised Learning

Input: x

Output: **y**

Feature vector/Data point:

Vector representation of datapoint. Each dimension or "feature" represents some aspect of the data.

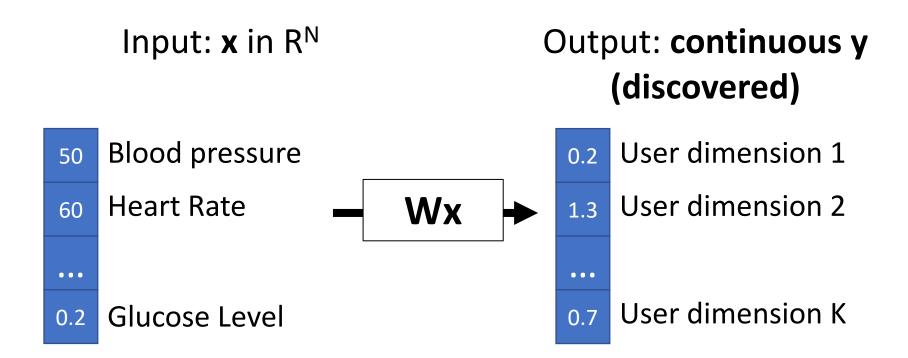
Label / target:

Fixed length vector of desired output. Each dimension represents some aspect of the output data

Goal: Given a dataset of only x, learn a function f that uncovers structure in the data

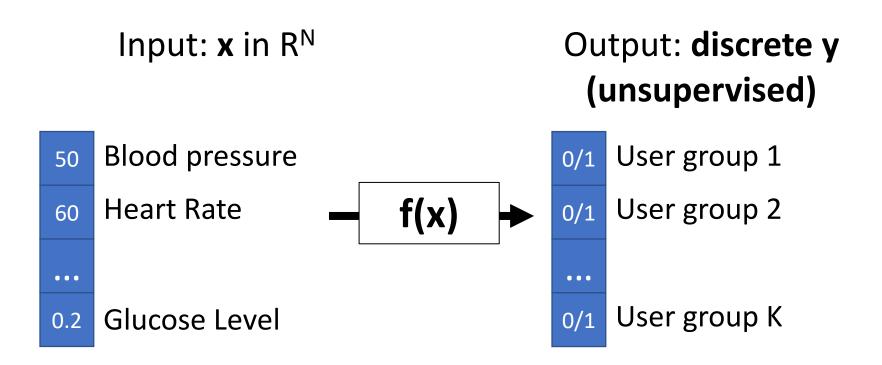
An **objective function** evaluates functions f

Example: Health



Intuitive objective function: Want to K dimensions (often two) that are easier to understand but capture the variance of the data.

Example: Health



Intuitive objective function: Want to find K groups that explain the data we see.

Image credit: Wikipedia

Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output

Classification/ Categorization

Continuous Output

Slide adapted from J. Hays

Categorization/Classification Binning into K mutually-exclusive categories

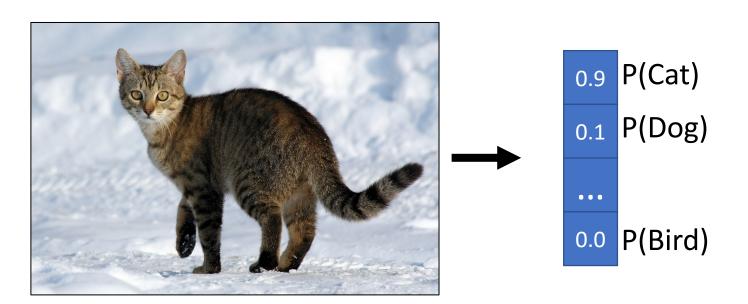


Image credit: Wikipedia

Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output

Classification/ Categorization

Continuous Output

Regression

Slide adapted from J. Hays

RegressionEstimating continuous variable(s)

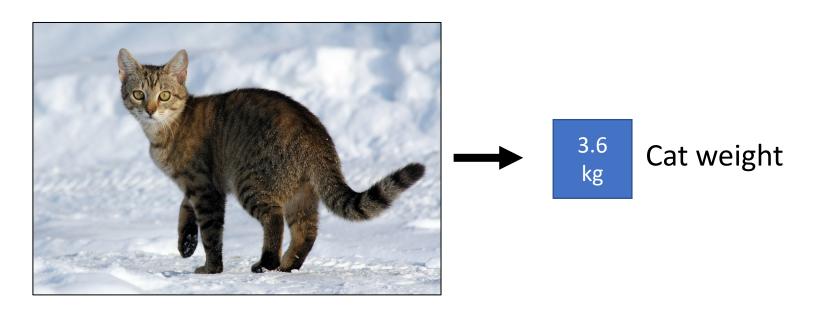


Image credit: Wikipedia

Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output

Classification/ Categorization

Clustering

Continuous Output

Regression

Slide adapted from J. Hays

Clustering

Given a set of cats, automatically discover clusters or *cat*egories.

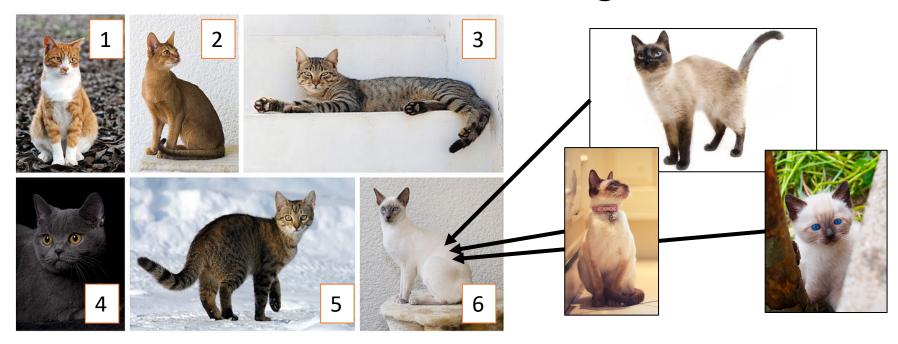


Image credit: Wikipedia, cattime.com

Supervised (Data+Labels)

Unsupervised (Just Data)

Discrete Output

Classification/ Categorization

Clustering

Continuous Output

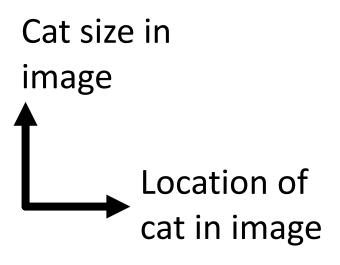
Regression

Dimensionality Reduction

Slide adapted from J. Hays

Dimensionality Reduction

Find dimensions that best explain the whole image/input



For ordinary images, this is currently a totally hopeless task. For certain images (e.g., faces, this works reasonably well)

Image credit: Wikipedia

Practical ML Example

- Let's start with:
 - A model you learned in middle/high school (a line)
 - Least-squares
- One thing to remember:
 - N eqns, <N vars = overdetermined (will have errors)
 - N eqns, N vars = exact solution
 - N eqns, >N vars = underdetermined (infinite solns)

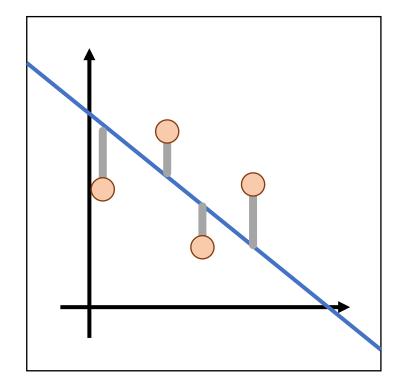
Let's make the world's worst weather model

Data: (x_1,y_1) , (x_2,y_2) , ..., (x_k,y_k)

Model: $(m,b) y_i = mx_i + b$ Or $(\mathbf{w}) y_i = \mathbf{w}^T \mathbf{x}_i$

Objective function:

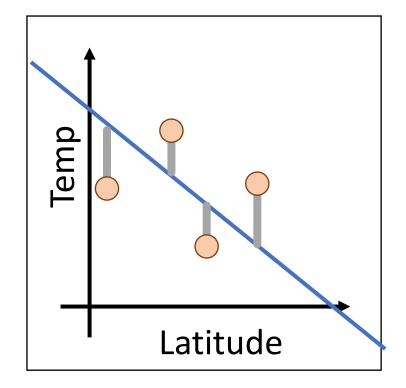
$$(y_i - \mathbf{w}^T \mathbf{x}_i)^2$$



World's Worst Weather Model

Given latitude (distance above equator), predict temperature by fitting a line

<u>City</u>	<u>Latitude (°)</u>	Temp (F)
Ann Arbor	42	33
Washington, DC	39	38
Austin, TX	30	62
Mexico City	19	67
Panama City	9	83



$$\sum_{i=1}^{\kappa} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 \longrightarrow \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

Output:

Temperature

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix}$$

Inputs:

Latitude, 1

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_k & 1 \end{bmatrix}$$

Model/Weights:

Latitude, "Bias"

$$\mathbf{w} = \begin{bmatrix} m \\ b \end{bmatrix}$$

Training
$$(\mathbf{x}_i, \mathbf{y}_i)$$
:

$$\arg\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} \quad \text{or}$$

$$\arg\min_{\mathbf{w}} \sum_{i=1}^{n} \|\mathbf{w}^{T}\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2}$$

Loss function/objective: evaluates correctness.

Here: Squared L2 norm / Sum of Squared Errors

Training/Learning/Fitting: try to find model that optimizes/minimizes an objective / loss function

$$\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Training $(\mathbf{x}_i, \mathbf{y}_i)$:

$$\arg\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} \quad \text{or}$$

$$\arg\min_{\mathbf{w}} \sum_{i=1}^{n} \|\mathbf{w}^{T}\mathbf{x}_{i} - \mathbf{y}_{i}\|^{2}$$

Inference (x):

$$\boldsymbol{w}^T\boldsymbol{x} = w_1x_1 + \dots + w_Fx_F$$

Testing/Inference:

Given a new output, what's the prediction?

Least Squares: Learning

Data Model

<u>City</u>	<u>Latitude</u>	<u> Temp</u>	
Ann Arbor	42	33	
Washington, DC	39	38	Temp =
Austin, TX	30	62	-1.47*Lat + 97
Mexico City	19	67	-1.4/ Lat + 9/
Panama City	9	83	

$$\boldsymbol{X}_{5x2} = \begin{bmatrix} 42 & 1 \\ 39 & 1 \\ 30 & 1 \\ 19 & 1 \end{bmatrix} \, \boldsymbol{y}_{5x1} = \begin{bmatrix} 33 \\ 38 \\ 62 \\ 67 \\ 83 \end{bmatrix} \, (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

$$w_{2x1} = \begin{bmatrix} -1.47 \\ 97 \end{bmatrix}$$

Least Squares: Prediction

The EECS 442 Weather Channel

<u>City</u>	<u>Latitude</u>	<u>Temp</u>	<u>Temp</u>	<u>Error</u>
Ann Arbor	42	33	35.3	2.3
Washington, DC	39	38	39.7	1.7
Austin, TX	30	62	52.9	10.9
Mexico City	19	67	69.1	2.1
Panama City	9	83	83.8	0.8

Is this a good idea?

The EECS 442 Weather Channel The Weather Channel

Pittsburgh: Temp =
$$-1.47*40 + 97 = 38$$

Actual Pittsburgh: 45

Berkeley:
$$Temp = -1.47*38 + 97 = 41$$

Actual Berkeley: 53

Sydney: Temp =
$$-1.47*-33 + 97 = 146$$

Actual Sydney: 74

Won't do so well in the Australian market...

What is going wrong?

Da	ata	Model	
<u>City</u>	<u>Latitude</u>	<u> Temp</u>	Tomp -
Ann Arbor	42	33	Temp =
Washington, DC	39	38	-1.66*Lat + 103

How well can we predict Ann Arbor and DC and why?

Testing the model

Overfitting: Model might be fit data too precisely Remember: #datapoints = #params = perfect fit

Model may only work under some conditions (e.g., trained on northern hemisphere).

Sydney:
$$Sydney = -1.47*-33 + 97 = 146$$

Training and Testing

Fit model parameters on **training** set; evaluate on *entirely unseen* **test** set.

Training Test

Nearly any model can predict data it's seen. If your model can't accurately interpret "unseen" data, it's probably useless. We have no clue whether it has just memorized.

If one feature does ok, what about more features!?

<u>City</u> <u>Name</u>	<u>Latitude</u> (deg)	<u>Avg July</u> <u>High (F)</u>	<u>Avg</u> Snowfall	<u>Тетр</u> <u>(F)</u>
Ann Arbor	42	83	58	33
Washington, DC	39	88	15	38
Austin, TX	30	95	0.6	62
Mexico City	19	74	0	67
Panama City	9	93	0	83

4 features + a feature of 1s for intercept/bias

 y_{5x1}

All the math works out!

Data
$$w^* = (X^T X)^{-1} X^T y$$
 Model X_{5x4} y_{5x1} w_{4x1}

New EECS 442 Weather Rule:

$$w_1$$
*latitude + w_2 *(avg July high) + w_3 *(avg snowfall) + w_4 *1

In general called linear regression

If one feature does ok, what about LOTS of features!?

<u>City</u> <u>Name</u>	<u>Latitude</u> (deg)	<u>Avg July</u> <u>High (F)</u>	<u>Avg</u> Snowfall	<u>Day of</u> <u>Year</u>	<u>Elevation</u> (ft)	<u>% Letter</u> <u>M</u>	<u>Тетр</u> <u>(F)</u>
Ann Arbor	42	83	58	45	840	100	33
Washington, DC	39	88	15	45	409	3	38
Austin, TX	30	95	0.6	45	489	2	62
Mexico City	19	74	0	45	7200	4	67
Panama City	9	93	0	45	7	1	83
							\

 X_{5x7}

6 features + a feature of 1s for intercept/bias

 y_{5x1}

Data
$$w^* = (X^T X)^{-1} X^T y$$
 Model X_{5x7} y_{5x1} $w^* = (X^T X)^{-1} X^T y$

X^TX is a 7x7 matrix but is **rank deficient** (rank 5) *and has no inverse. There are an infinite number of solutions.*

Have to express some preference for which of the infinite solutions we want.

Exercise for the mathematically-inclined folks: derive what the space of solutions looks like.

The Fix: Regularization

Add **regularization** to objective that prefers some solutions:

Before:
$$\arg \min_{\mathbf{w}} ||\mathbf{y} - \mathbf{X}\mathbf{w}||_2^2 \longrightarrow \text{Loss}$$

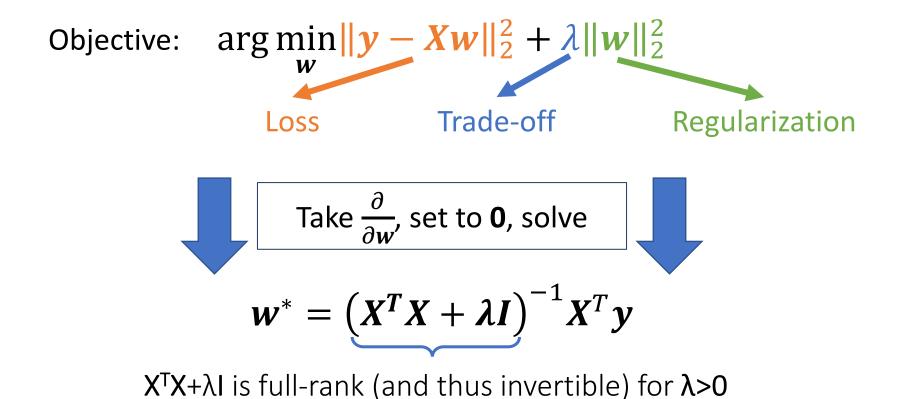
After:
$$\underset{w}{\operatorname{arg min}} \| \mathbf{y} - \mathbf{X} \mathbf{w} \|_{2}^{2} + \lambda \| \mathbf{w} \|_{2}^{2}$$

Loss Trade-off Regularization

Want model "smaller": pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too complex (low regularization). λ controls how much of each.

The Fix: Regularization



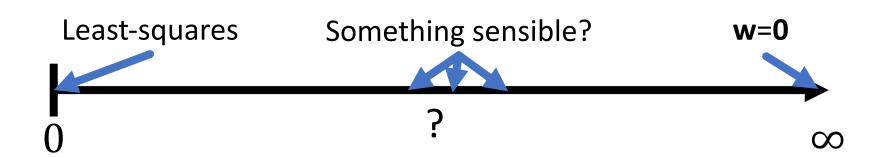
Called *lots of things:* regularized least-squares, Tikhonov regularization (after Andrey Tikhonov), ridge regression, Bayesian linear regression with a multivariate normal prior.

The Fix: Regularization

What happens (and why) if:

•
$$\lambda = 0$$

•
$$\lambda = \infty$$



Training and Testing

Fit model parameters on training set; evaluate on *entirely unseen* test set.

Training Test

How do we pick λ? (hyperparameter)

Training and Testing

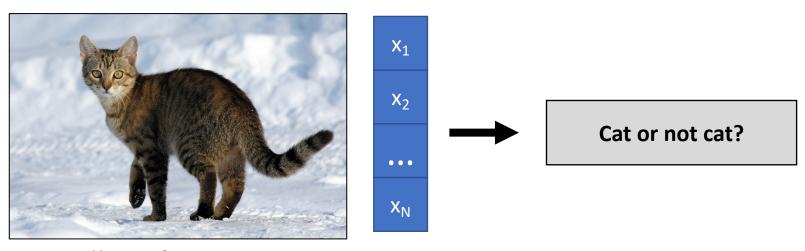
Fit model parameters on training set; find *hyperparameters* by testing on validation set; evaluate on *entirely unseen* test set.

Training Validation Test

Use these data points to fit $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$ Evaluate on these points for different λ, pick the best

Image Classification

Start with simplest example: binary classification



Actually: a feature vector representing the image

Classification with Least Squares

Treat as regression: x_i is image feature; y_i is 1 if it's a cat, 0 if it's not a cat. Minimize least-squares loss.

Training
$$(\mathbf{x}_i, \mathbf{y}_i)$$
:
$$\arg\min_{\mathbf{w}} \sum_{i=1}^{n} ||\mathbf{w}^T \mathbf{x}_i - \mathbf{y}_i||^2$$

Inference (x): $\mathbf{w}^T \mathbf{x} > t$

Unprincipled in theory, but often effective in practice The reverse (regression via discrete bins) is also common

Rifkin, Yeo, Poggio. *Regularized Least Squares Classification* (http://cbcl.mit.edu/publications/ps/rlsc.pdf). 2003 Redmon, Divvala, Girshick, Farhadi. *You Only Look Once: Unified, Real-Time Object Detection*. CVPR 2016.

Classification via Memorization

Just **memorize** (as in a Python dictionary) Consider cat/dog/hippo classification.

If this: cat.

If this: dog.

If this: hippo.

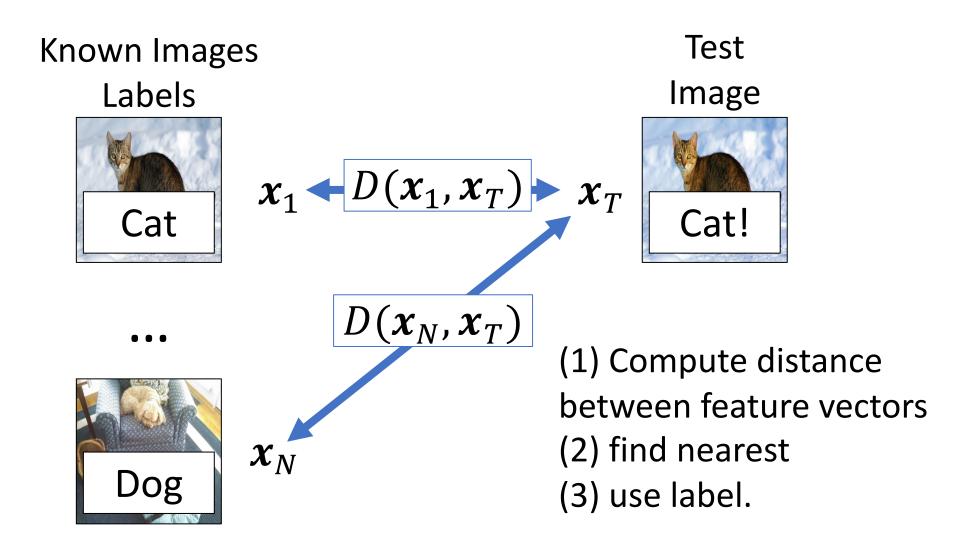
Classification via Memorization

Where does this go wrong?

Rule: if this, then cat

Hmmm. Not quite the same.

Classification via Memorization



"Algorithm"

Training (x_i, y_i) : Memorize training set

Inference (x):

```
bestDist, prediction = Inf, None
for i in range(N):
    if dist(x<sub>i</sub>,x) < bestDist:
        bestDist = dist(x<sub>i</sub>,x)
        prediction = y<sub>i</sub>
```

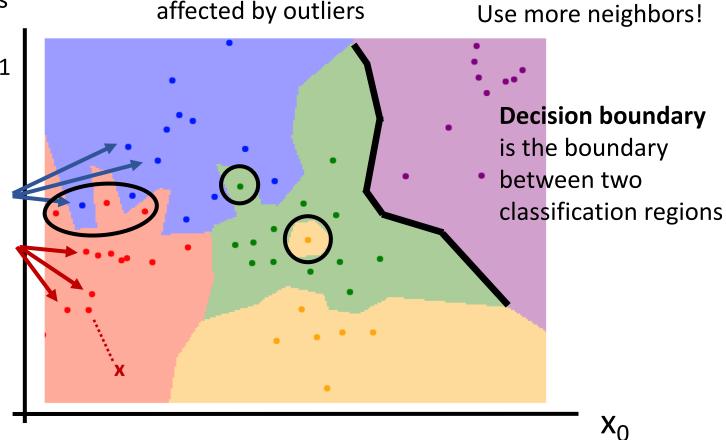
Nearest neighbors in two dimensions

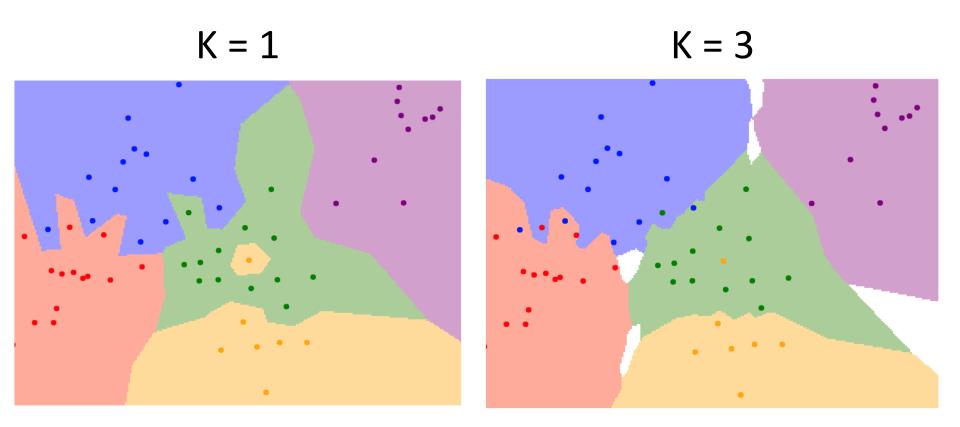
Decision boundaries can be noisy; affected by outliers

How to smooth out decision boundaries? Use more neighbors!

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

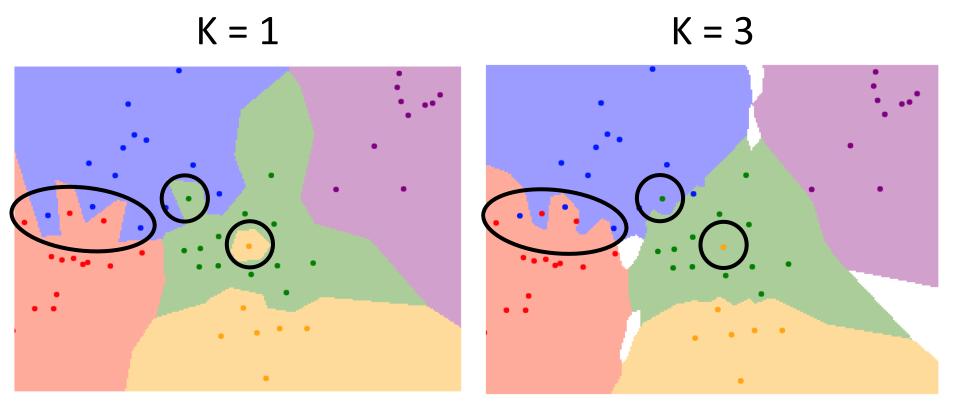




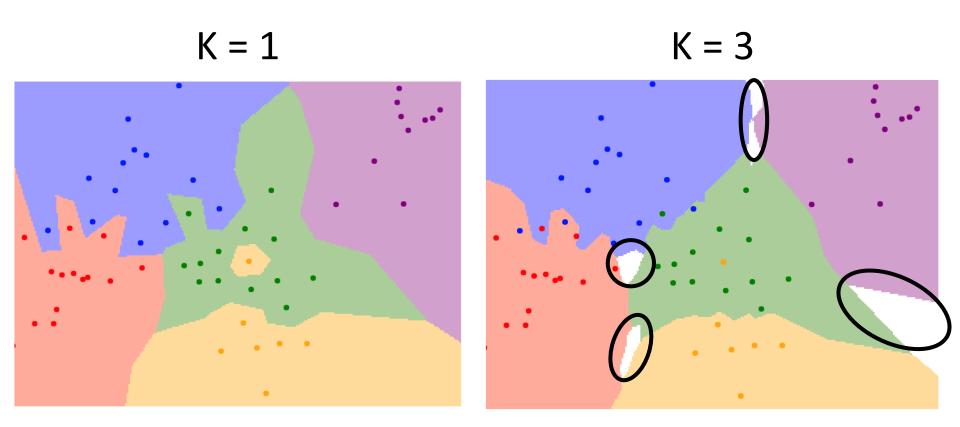
Instead of copying label from nearest neighbor, take **majority vote** from K closest points



Using more neighbors helps smooth out rough decision boundaries



Using more neighbors helps reduce the effect of outliers

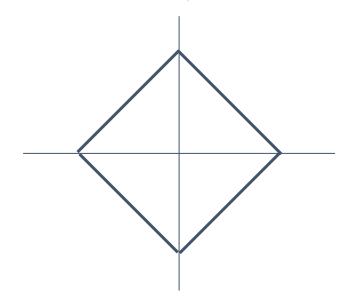


When K > 1 there can be ties! Need to break them somehow

K-Nearest Neighbors: Distance Metric

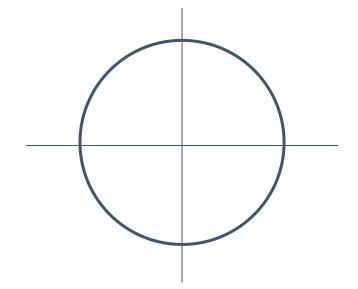
L1 (Manhattan) Distance

$$d(x,y) = \sum_{i} |x_i - y_i|$$



L2 (Euclidean) Distance

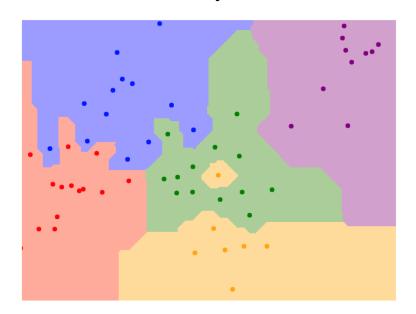
$$d(x,y) = \left(\sum_{i} (x_i - y_i)^2\right)^{1/2}$$



K-Nearest Neighbors: Distance Metric

L1 (Manhattan) Distance

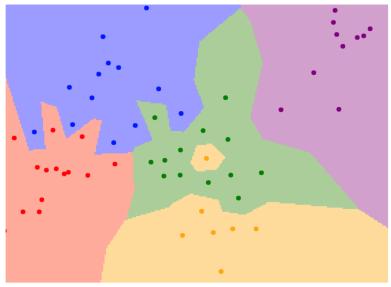
$$d(x,y) = \sum_{i} |x_i - y_i|$$



K = 1

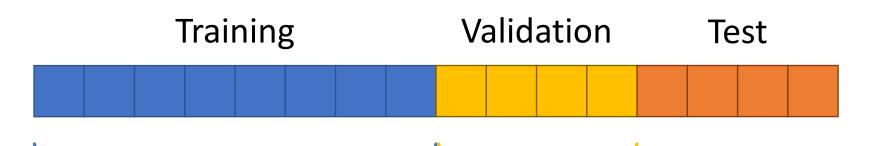
L2 (Euclidean) Distance

$$d(x,y) = \left(\sum_{i} (x_i - y_i)^2\right)^{1/2}$$



K = 1

What distance? What value for K?



Use these data points for lookup

Evaluate on these points for different k, distances

- No learning going on but usually effective
- Same algorithm for every task
- As number of datapoints → ∞, error rate is guaranteed to be at most 2x worse than optimal you could do on data
- Training is fast, but inference is slow.
 Opposite of what we want!

Justin Johnson

Next Time: Linear Classification