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Lecture 11:
Transforms and Fitting
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Administrative

• HW2 due 1 week from yesterday,
Wednesday 2/19 11:59pm

• HW3 released, due 2 weeks from tomorrow,
Friday 2/28 11:59pm
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Last Class
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1. How do we find distinctive / easy to locate 
features? (Harris/Laplacian of Gaussian)

2. How do we describe the regions around them? 
(Normalize window, use histogram of gradient 
orientations)
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Our Goal
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3: Solve for transformation T (e.g. such that 
p1 ≡ T p2) that fits the matches well

Solving for a Transformation

T
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Remember: Human vs Computer
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You, with your 
gigantic brain, see:

The computer 
sees: 

You should expect noise (not at quite the right pixel) 
and outliers (random matches)
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Today
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• How do we fit models (i.e., a parameteric
representation of data that’s smaller than the data) 
to data?
• How do we handle:
• Noise – least squares / total least squares
• Outliers – RANSAC (random sample consensus)
• Multiple models – Hough Transform (can also make 

RANSAC handle this with some effort)
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Running Example: Lines
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• We’ll handle lines as our models today since you 
should be familiar with them
• Next class will cover more complex models. I 

promise we’ll eventually stitch images together
• You can apply today’s techniques on next class’s 

models
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Model Fitting
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Need three ingredients

Data: what data are we trying to explain with a 
model?

Model: what’s the compressed, parametric form 
of the data?

Objective function: given a candidate model, how 
well does it fit the data?
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Example: Least-Squares Regression
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Fitting a line to data

Data: (x1,y1), (x2,y2), …, 
(xk,yk)

Model: (m,b) yi=mxi+b
Or (w) yi = wTxi

Objective function:
(yi - wTxi)2
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Least Squares Setup
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!
"#$

%

𝑦" − 𝒘)𝒙𝒊 , 𝒀 − 𝑿𝒘 ,
,

𝒀 =
𝑦$
⋮
𝑦%

𝑿 =
𝑥$ 1
⋮ 1
𝑥% 1

𝒘 = 𝑚
𝑏
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Solving Least Squares
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𝜕
𝜕𝒘

𝒀 − 𝑿𝒘 ,
, = 2𝑿𝑻𝑿𝒘 − 2𝑿𝑻𝒀

𝑿𝑻𝑿𝒘 = 𝑿𝑻𝒀

𝒘 = 𝑿𝑻𝑿
8𝟏
𝑿𝑻𝒀

𝒀 − 𝑿𝒘 ,
,

Recall: derivative is 0 
at a maximum / 
minimum. Same is 
true about gradients.

𝟎 = 2𝑿𝑻𝑿𝒘 − 2𝑿𝑻𝒀

Aside: 0 is a vector of 0s. 1 is a vector of 1s. 
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(Derivation for the Curious)
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= 𝒀𝑻𝒀 − 𝟐𝒘𝑻𝑿𝑻𝒀 + 𝑿𝒘 𝑻𝑿𝒘

= 𝒀 − 𝑿𝒘 ) 𝒀 − 𝑿𝒘𝒀 − 𝑿𝒘 ,
,

𝜕
𝜕𝒘

𝒀 − 𝑿𝒘 ,
, = 0 − 2𝑿𝑻𝒀 + 2𝑿𝑻𝑿𝒘

= 2𝑿𝑻𝑿𝒘 − 2𝑿𝑻𝒀

𝜕
𝜕𝒘

𝑿𝒘 𝑻 𝑿𝒘 = 2 >
>𝒘
𝑿𝒘) 𝐗𝐰 = 𝟐𝐗𝐓𝐗𝐰
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Two Solutions for Finding W
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In One Go

𝑿𝑻𝑿𝒘 = 𝑿𝑻𝒀

Implicit form 
(normal equations) 

𝒘 = 𝑿𝑻𝑿 8𝟏𝑿𝑻𝒀

Explicit form
(don’t do this)

𝒘𝟎 = 𝟎

𝒘𝒊B𝟏 = 𝒘𝒊 − 𝜸
𝜕
𝜕𝒘

𝒀 − 𝑿𝒘 ,
,

Iteratively

Recall: gradient is also 
direction that makes 

function go up the most. 
What could we do?
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What’s the Problem?
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• Vertical lines impossible!
(y = mx + b)

• Not rotationally invariant: 
the line will change 
depending on orientation 
of points
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Alternate Formulation
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Recall: 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0
𝒍)𝒑 = 0

𝒑 ≡ [𝑥, 𝑦, 1]𝒍 ≡ [𝑎, 𝑏, 𝑐]

Can always rescale l. 
Pick a,b,d such that
𝒏 ,

, = 𝑎, 𝑏 ,
, = 1

𝑑 = −𝑐
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Alternate Formulation
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Now: 𝑎𝑥 + 𝑏𝑦 − 𝑑 = 0
𝒏𝑻 𝑥, 𝑦 − 𝑑 = 0

𝒏) 𝑥, 𝑦 − 𝑑
𝒏 ,

, = 𝒏𝑻 𝑥, 𝑦 − 𝑑

Point to line distance:

𝒏 = 𝑎, 𝑏
𝑎, 𝑏 ,

, = 1
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Total Least Squares
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𝒏 = 𝑎, 𝑏
𝑎, 𝑏 ,

, = 1

Data: (x1,y1), (x2,y2), …, 
(xk,yk)

Model: (n,d), ||n||2 = 1
nT[xi,yi]-d=0

Objective function:
(nT[xi,yi]-d)2
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Total Least Squares Setup
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!
"#$

%

𝒏𝑻 𝑥, 𝑦 − 𝑑
, 𝑿𝒏 − 𝟏𝑑 ,

,

𝑿 =
𝑥$ 𝑦$
⋮ ⋮
𝑥% 𝑦%

𝒏 = 𝑎
𝑏𝟏 =

1
⋮
1

𝝁 = $
%𝟏

O𝑿

The mean / center of mass of the points: we’ll 
use it later

Figure out objective first, then figure out ||n||=1
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Solving Total Least Squares
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= 𝑿𝒏 𝑻 𝑿𝒏 − 2𝑑𝟏𝑻𝑿𝒏 + 𝑑𝟐𝟏𝑻𝟏
= 𝑿𝒏 − 𝟏𝑑 )(𝑿𝒏 − 𝟏𝑑)𝑿𝒏 − 𝟏𝑑 ,

,

First solve for d at optimum (set to 0)
𝜕
𝜕𝑑

𝑿𝒏 − 𝟏𝑑 ,
, = 0 − 2𝟏𝑻𝑿𝒏 + 2𝑑𝑘

𝑑 =
1
𝑘
𝟏𝑻𝑿𝒏 = 𝝁𝒏

0 = −2𝟏𝑻𝑿𝒏 + 2𝑑𝑘 0 = −𝟏𝑻𝑿𝒏 + 𝑑𝑘
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Solving Total Least Squares
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𝑿𝒏 − 𝟏𝑑 ,
, 𝑑 = 𝝁𝒏= 𝑿𝒏 − 𝟏𝝁𝒏 ,

,

= 𝑿 − 𝟏𝝁 𝒏 ,
,

arg min
𝒏 #$

𝑿 − 𝟏𝝁 𝒏 ,
,

Objective is then: 
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Recall: Homogenous Least Squares
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Note: technically homogeneous only refers to ||Av||=0 but it’s common shorthand in 
computer vision to refer to the specific problem of ||v||=1

arg min
𝒗 Z

Z#$
𝑨𝒗 ,

, Eigenvector corresponding to 
smallest eigenvalue of ATA 

𝒏 = smallest_eigenvec( 𝑿 − 𝟏𝝁 𝑻(𝑿 − 𝟏𝝁))
Applying it in our case:

Why do we need ||v||2 = 1 or 
some other constraint?
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Connection to ML
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𝑿 − 𝟏𝝁 𝑻(𝑿 − 𝟏𝝁) =

!
"

𝑥" − 𝜇d , !
"

𝑥" − 𝜇d 𝑦" − 𝜇e

!
"

𝑥" − 𝜇d 𝑦" − 𝜇e !
"

𝑦" − 𝜇e
,

Matrix we take the eigenvector of looks like:

This is a scatter matrix or scalar multiple of the covariance 
matrix. We’re doing PCA, but taking the least principal 

component to get the normal.

Note: If you don’t know PCA, just ignore this slide; it’s to help build connections to 
people with a background in data science/ML.
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Least Squares vs Total Least Squares
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Observed variables

Least Squares:
Minimize error
of predictions

Predicted 
Variables

Total Least Squares
Find line that best 

matches points in plane
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Running Least Squares
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Running Least Squares
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Running Least Squares
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Running Least Squares
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Running Least Squares
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𝒘 = 𝑿𝑻𝑿 8$𝑿)𝒀
Way to think of it #2:

Weights are a linear transformation of the output variable: 
can manipulate W by manipulating Y.

Way to think of it #1:

𝒀 − 𝑿𝒘 ,
,

100^2 >> 10^2: least-squares prefers having no large errors, 
even if the model is useless overall
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Common Fixes
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Replace Least-Squares objective 
𝑬 = 𝒀 − 𝑿𝑾Let

|𝑬"|L1: 

𝑬",LS/L2/MSE: 

Huber:
$
,𝑬"

,

𝛿 |𝑬"| − j
,

|𝑬"| ≤ 𝛿:

|𝑬"| > 𝛿:
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Issues with Common Fixes
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• Usually complicated to optimize:
• Often no closed form solution
• Typically not something you could write yourself
• Sometimes not convex (local optimum is not necessarily 

a global optimum)

• Not simple to extend more complex objectives to 
things like total-least squares 
• Typically don’t handle a ton of outliers (e.g., 80% 

outliers)
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Outliers in Computer Vision
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Single outlier: 
rare

Many outliers: 
common
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Running Least Squares
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Running Least Squares
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A Simple but Clever Idea
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• What we really want: model explains many points 
“well”
• Least Squares: model makes as few big mistakes as 

possible over the entire dataset

• New objective: find model for which error is “small” 
for as many data points as possible
• Method: RANSAC (RAndom SAmple Consensus)

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications 
to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

http://www.ai.sri.com/pubs/files/836.pdf
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RANSAC for Lines
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bestLine, bestCount = None, -1
for trial in range(numTrials):

subset = pickPairOfPoints(data)
line = totalLeastSquares(subset)
E = linePointDistance(data,line)
inliers = E < threshold
if #inliers > bestCount:

bestLine, bestCount = line, #inliers
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Running RANSAC
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Lots of outliers!

Trial 
#1

Best 
Count:

-1

Best
Model:

None



Justin Johnson February 13, 2020EECS 442 WI 2020: Lecture 11 -

Running RANSAC
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Fit line to 2 
random points

Trial 
#1

Best 
Count:

-1

Best
Model:

None
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Running RANSAC
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Point/line distance
|nT[x,y] – d|

Trial 
#1

Best 
Count:

-1

Best
Model:

None
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Running RANSAC
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Distance < threshold
14 points satisfy this

Trial 
#1

Best 
Count:

-1

Best
Model:

None
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Running RANSAC
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Distance < threshold
14 points

Trial 
#1

Best 
Count:

14

Best
Model:
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Running RANSAC
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Distance < threshold
22 points

Trial 
#2

Best 
Count:

14

Best
Model:



Justin Johnson February 13, 2020EECS 442 WI 2020: Lecture 11 -

Running RANSAC
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Distance < threshold
22 points

Trial 
#2

Best 
Count:

22

Best
Model:
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Running RANSAC
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Distance < threshold
10

Trial 
#3

Best 
Count:

22

Best
Model:
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Running RANSAC
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…Trial 
#3

Best 
Count:

22

Best
Model:
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Running RANSAC
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Distance < threshold
76

Trial 
#9

Best 
Count:

22

Best
Model:
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Running RANSAC
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Distance < threshold
76

Trial 
#9

Best 
Count:

76

Best
Model:
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Running RANSAC
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Trial 
#9

Best 
Count:

76

Best
Model:

…
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Running RANSAC
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Distance < threshold
22

Trial 
#100

Best 
Count:

85

Best
Model:
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Running RANSAC
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Final Output of 
RANSAC: Best Model
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RANSAC in General
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best, bestCount = None, -1
for trial in range(NUM_TRIALS):

subset = pickSubset(data,SUBSET_SIZE)
model = fitModel(subset)
E = computeError(data,line)
inliers = E < THRESHOLD
if #(inliers) > bestCount:

best, bestCount = model, #(inliers)
(often refit on the inliers for best model)
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RANSAC: How Many Trials?
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Suppose that:
r: Fraction of outliers (e.g. 80%)
s: Number of points we pick per set (e.g. 2)
N: Number of times we run RANSAC (e.g. N=500)

What’s the probability of picking a sample set with no outliers?

≈ (1 − 𝑟)p (4%)
What’s the probability of picking a sample set with some outliers?

1 − (1 − 𝑟)p (96%)
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RANSAC: How Many Trials?
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Suppose that:
r: Fraction of outliers (e.g. 80%)
s: Number of points we pick per set (e.g. 2)
N: Number of times we run RANSAC (e.g. N=500)

What’s the probability of picking any set with no outliers?

1 − 1 − 1 − 𝑟 p q

What’s the probability of picking only sample sets some outliers?

1 − 1 − 𝑟 p q (10-7% N=500)
(13% N=50)

What’s the probability of picking a sample set with some outliers?

1 − (1 − 𝑟)p (96%)
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RANSAC: How Many Trials
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1 / 302,575,350

RANSAC fails to fit a line 
with 80% outliers after 
trying only 500 times

P(Failure):
1 / 731,784,961

Death by 
vending 
machine

P(Death):
≈1 / 112,000,000

Odds/Jackpot amount from 2/7/2019 megamillions.com, unfortunate demise odds from livescience.com
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RANSAC: How Many Trials
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What’s the probability of picking any set with no outliers?

𝐶 ≥ 1 − 1 − 1 − 𝑟 p q

Suppose that:
r: Fraction of outliers (e.g. 80%)
s: Number of points we pick per set (e.g. 2)
N: Number of times we run RANSAC (e.g. N=500)
C: Chance that we find a set with no outliers (e.g. 99.9%)

𝑁 ≥
log 1 − 𝑇

log 1 − 1 − 𝑟 p
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RANSAC: How Many Trials
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What’s the probability of picking any set with no outliers?

𝐶 ≥ 1 − 1 − 1 − 𝑟 p q

Suppose that:
r: Fraction of outliers (e.g. 80%)
s: Number of points we pick per set (e.g. 2)
N: Number of times we run RANSAC (e.g. N=500)
C: Chance that we find a set with no outliers (e.g. 99.9%)

𝑁 ≥
log 1 − 𝑇

log 1 − 1 − 𝑟 p

N = 100
r = 0.74
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RANSAC: How Many Trials
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What’s the probability of picking any set with no outliers?

𝐶 ≥ 1 − 1 − 1 − 𝑟 p q

Suppose that:
r: Fraction of outliers (e.g. 80%)
s: Number of points we pick per set (e.g. 2)
N: Number of times we run RANSAC (e.g. N=500)
C: Chance that we find a set with no outliers (e.g. 99.9%)

𝑁 ≥
log 1 − 𝑇

log 1 − 1 − 𝑟 p

N = 1000, r = 0.92



Justin Johnson February 13, 2020EECS 442 WI 2020: Lecture 11 -

RANSAC: How Many Trials
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What’s the probability of picking any set with no outliers?

𝐶 ≥ 1 − 1 − 1 − 𝑟 p q

Suppose that:
r: Fraction of outliers (e.g. 80%)
s: Number of points we pick per set (e.g. 2)
N: Number of times we run RANSAC (e.g. N=500)
C: Chance that we find a set with no outliers (e.g. 99.9%)

𝑁 ≥
log 1 − 𝑇

log 1 − 1 − 𝑟 p

N = 10000, 
r = 0.97
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RANSAC: Subset Size
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• Always the smallest possible set for fitting the model. 
• Minimum number for lines: 2 data points
• Minimum number of planes: how many?

• Why intuitively? 
• You’ll find out more precisely in homework 3.
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RANSAC: Inlier Threshold
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• Common sense; there’s no magical threshold
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RANSAC: Pros and Cons
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Pros Cons
1. Ridiculously simple
2. Ridiculously effective
3. Works in general

1. Have to tune 
parameters

2. No theory (so can’t 
derive parameters via 
theory)

3. Not magic, especially 
with lots of outliers 

Slide credit: S. Lazebnik
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Hough Transform
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Slide credit: S. Lazebnik
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Hough Transform
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Slide credit: S. Lazebnik

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. 
High Energy Accelerators and Instrumentation, 1959 

Image Space Parameter Space

Sl
op

e
Intercept

1. Discretize space of parametric models

20

0

0

1

1

4

2

1 0

0

01 0

3

1

2. Each pixel votes for all compatible models

Image Space

3. Find models compatible with many pixels
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Hough Transform
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Image Space Parameter Space

Line in image = point in parameter space

y

x

𝑦 = 𝑚w𝑥 + 𝑏w

m

b

𝑚w, 𝑏w

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real 
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Hough Transform
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Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real 

Image Space Parameter Space

Point in image = line in parameter space

y

x

m

b

𝑏 = 𝑥w𝑚 + 𝑦wAll lines through the point:

𝑏 = 𝑥w𝑚 + 𝑦w

𝑥w, 𝑦w
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Hough Transform

65

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real 

Image Space Parameter Space

Point in image = line in parameter space

y

x

m

b

𝑏 = 𝑥$𝑚 + 𝑦$All lines through the point:

𝑏 = 𝑥$𝑚 + 𝑦$

𝑥$, 𝑦$
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Hough Transform
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Image Space Parameter Space

Point in image = line in parameter space

y

x

m

b

𝑏 = 𝑥$𝑚 + 𝑦$All lines through the point:

𝑏 = 𝑥$𝑚 + 𝑦$

𝑥$, 𝑦$If a point is compatible with a line of 
model parameters, what do two points 

correspond to?

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real 
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Hough Transform
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Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real 

Image Space Parameter Space

Line through two points in image = intersection of 
two lines in parameter space (i.e., solutions to both 

equations)

y

x

m

b

𝑏 = 𝑥w𝑚 + 𝑦w

𝑥w, 𝑦w 𝑏 = 𝑥$𝑚 + 𝑦$

𝑥$, 𝑦$
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Hough Transform

68

Image Space Parameter Space

Line through two points in image = intersection of 
two lines in parameter space (i.e., solutions to both 

equations)

y

x

m

b

𝑏 = 𝑥w𝑚 + 𝑦w

𝑥w, 𝑦w 𝑏 = 𝑥$𝑚 + 𝑦$

𝑥$, 𝑦$

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real 
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Hough Transform
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• Recall: m, b space is awful
• ax+by+c=0 is better, but unbounded
• Trick: write lines using angle + offset (normally a 

mediocre way, but makes things bounded)

𝜽
𝝆

y

x

𝒙 𝐜𝐨𝐬 𝜽 + 𝒚 𝐬𝐢𝐧 𝜽 = 𝝆

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real 
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Hough Transform Algorithm
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𝜽

𝝆

Accumulator H = zeros(?,?)
For x,y in detected_points:

For θ in range(0,180,?):
ρ = x cos(θ) + y sin(θ)
H[θ, ρ] += 1

#any local maxima (θ, ρ) of H is a line
#of the form ρ = x cos(θ) + y sin(θ)

𝑥 cos 𝜃 + 𝑦 sin 𝜃 = 𝜌Remember:

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real 
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Hough Transform: Example
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Image Space Parameter Space

Points (x,y) -> sinusoids

Slide Credit: S. Lazebnik

Peak corresponding 
to the line 

Few votes
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Hough Transform: Example
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Pros Cons
1. Handles multiple models
2. Some robustness to noise
3. In principle, general

1. Have to bin ALL parameters: 
exponential in #params

2. Have to parameterize your 
space nicely

3. Details really, really 
important (a working 
version requires a lot more 
than what I showed you)

Slide Credit: S. Lazebnik
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Today: Fitting Lines
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Next Time: 
Fitting More Complex Transforms
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3: Solve for transformation T

Solving for a Transformation

T


