Lecture 11: Transforms and Fitting

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 1

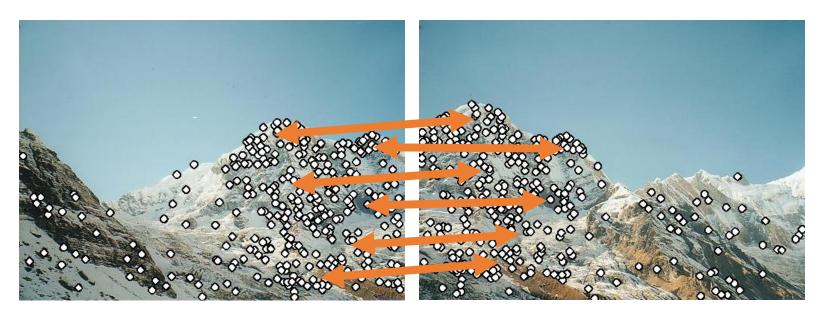
Administrative

• HW2 due 1 week from yesterday, Wednesday 2/19 11:59pm

• HW3 released, due 2 weeks from tomorrow, Friday 2/28 11:59pm

Justin Johnson

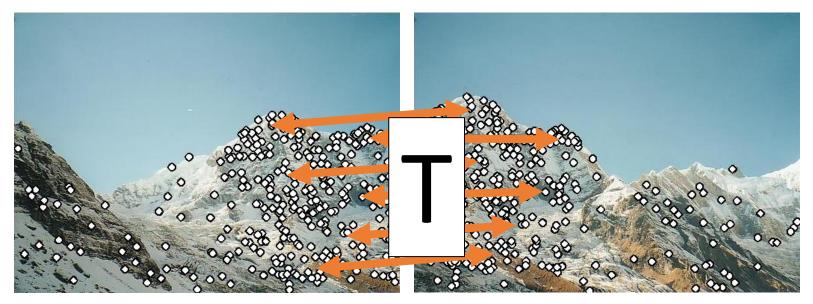
Last Class



- 1. How do we find distinctive / easy to locate features? (Harris/Laplacian of Gaussian)
- 2. How do we describe the regions around them? (Normalize window, use histogram of gradient orientations)

Our Goal

Solving for a Transformation



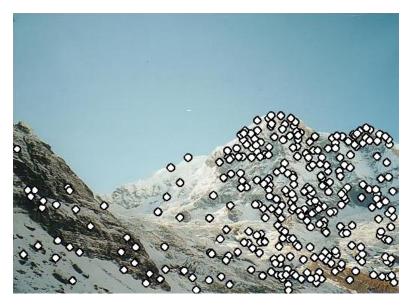
3: Solve for transformation T (e.g. such that **p1** ≡ **T p2**) that fits the matches well

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 4

Remember: Human vs Computer

You, with your gigantic brain, see:



The computer sees:

097 097 097 097	097 097 097	097 096 097 097	096 096 096
100 100 100 100	100 100 101	101 102 101 100	100 100 099
105 105 105 105	105 105 105	103 102 102 101	103 104 105
109 109 109 109	109 110 107	118 145 132 120	112 106 103
113 113 113 112	112 113 110	129 160 160 164	162 157 151
118 117 118 123	119 118 112	125 142 134 135	139 139 175
123 121 125 162	166 157 149	153 160 151 150	146 137 168
127 127 125 168	147 117 139	135 126 147 147	149 156 160
133 130 150 179	145 132 160	134 150 150 111	145 126 121
138 134 179 185	141 090 166	117 120 153 111	153 114 126
144 151 188 178	159 154 172	147 159 170 147	185 105 122
152 157 184 183	142 127 141	133 137 141 131	147 144 147
130 147 185 180	139 131 154	121 140 147 107	147 120 128
035 102 194 175	149 140 179	128 146 168 096	163 101 125

You should expect **noise** (not at quite the right pixel) and **outliers** (random matches)

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 5

Today

- How do we fit models (i.e., a parameteric representation of data that's smaller than the data) to data?
- How do we handle:
 - **Noise** least squares / total least squares
 - **Outliers** RANSAC (random sample consensus)
 - Multiple models Hough Transform (can also make RANSAC handle this with some effort)

Running Example: Lines

- We'll handle lines as our models today since you should be familiar with them
- Next class will cover more complex models. I promise we'll eventually stitch images together
- You can apply today's techniques on next class's models

Model Fitting

Need three ingredients

Data: what data are we trying to explain with a model?

Model: what's the compressed, parametric form of the data?

Objective function: given a candidate model, how well does it fit the data?

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 8

Example: Least-Squares Regression

Fitting a line to data

Data:
$$(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$$

Model: $(m, b) y_i = mx_i + b$
Or $(w) y_i = w^T x_i$
Objective function:
 $(y_i - w^T x_i)^2$

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 9

Least Squares Setup

$$\sum_{i=1}^{k} (y_i - \boldsymbol{w}^T \boldsymbol{x}_i)^2 \quad \rightarrow \quad \|\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{w}\|_2^2$$

$$\boldsymbol{Y} = \begin{bmatrix} y_1 \\ \vdots \\ y_k \end{bmatrix} \qquad \boldsymbol{X} = \begin{bmatrix} x_1 & 1 \\ \vdots & 1 \\ x_k & 1 \end{bmatrix} \qquad \boldsymbol{w} = \begin{bmatrix} m \\ b \end{bmatrix}$$

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 10

Solving Least Squares

$$\|Y - Xw\|_{2}^{2}$$

$$\frac{\partial}{\partial w} \| \mathbf{Y} - \mathbf{X} \mathbf{w} \|_2^2 = 2\mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{X}^T \mathbf{Y}$$

Recall: derivative is 0 at a maximum / minimum. Same is true about gradients.

$$0 = 2X^{T}Xw - 2X^{T}Y$$
$$X^{T}Xw = X^{T}Y$$
$$w = (X^{T}X)^{-1}X^{T}Y$$

Aside: **0** is a vector of 0s. **1** is a vector of 1s.

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 11

(Derivation for the Curious)

$$\|Y - Xw\|_2^2 = (Y - Xw)^T (Y - Xw)$$
$$= Y^T Y - 2w^T X^T Y + (Xw)^T Xw$$

$$\frac{\partial}{\partial w} \quad (Xw)^T (Xw) = 2\left(\frac{\partial}{\partial w} Xw^T\right) Xw = 2X^T Xw$$

$$\frac{\partial}{\partial w} \|Y - Xw\|_2^2 = 0 - 2X^TY + 2X^TXw$$
$$= 2X^TXw - 2X^TY$$

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 12

Two Solutions for Finding W

In One Go Implicit form (normal equations) $X^T X w = X^T Y$

Explicit form (don't do this)

$$w = \left(X^T X\right)^{-1} X^T Y$$

Iteratively

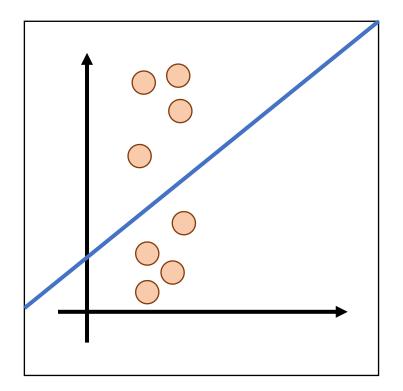
Recall: gradient is also direction that makes function go up the most. What could we do?

Ω

$$w_0 = \mathbf{0}$$
$$w_{i+1} = w_i - \gamma \left(\frac{\partial}{\partial w} \|Y - Xw\|_2^2\right)$$

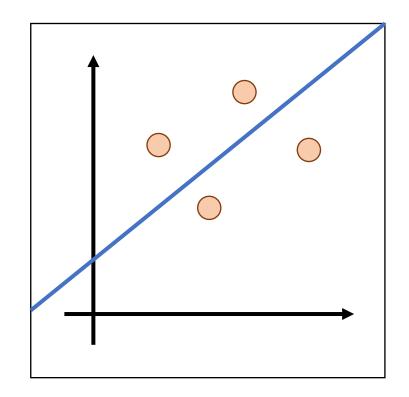
What's the Problem?

- Vertical lines impossible!
 (y = mx + b)
- Not rotationally invariant: the line will change depending on orientation of points



Alternate Formulation

Recall: ax + by + c = 0 $\boldsymbol{l}^T\boldsymbol{p}=0$ $\boldsymbol{l} \equiv [a, b, c] \quad \boldsymbol{p} \equiv [x, y, 1]$ Can always rescale I. Pick a,b,d such that $\|\boldsymbol{n}\|_{2}^{2} = \|[a, b]\|_{2}^{2} = 1$ d = -c

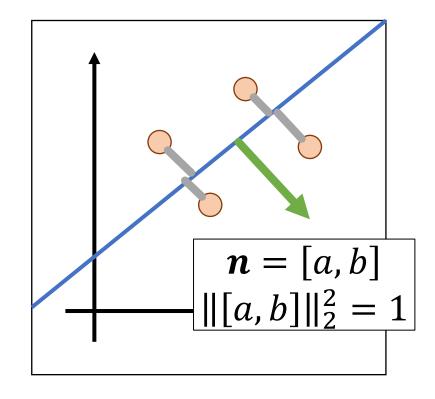


Alternate Formulation

Now: ax + by - d = 0 $n^T[x, y] - d = 0$

Point to line distance:

$$\frac{n^{T}[x, y] - d}{\|n\|_{2}^{2}} = n^{T}[x, y] - d$$



Total Least Squares

Data:
$$(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$$

Model: $(n,d), ||n||^2 = 1$
 $n^T[x_i, y_i] - d = 0$
Dbjective function:
 $(n^T[x_i, y_i] - d)^2$
 $n = [a, b]$
 $||[a, b]||_2^2 = 1$

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 17

Total Least Squares Setup

Figure out objective first, then figure out ||n||=1

$$\sum_{i=1}^{k} (\mathbf{n}^{T}[x, y] - d)^{2} \rightarrow \|\mathbf{X}\mathbf{n} - \mathbf{1}d\|_{2}^{2}$$
$$\mathbf{X} = \begin{bmatrix} x_{1} & y_{1} \\ \vdots & \vdots \\ x_{k} & y_{k} \end{bmatrix} \mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \mathbf{n} = \begin{bmatrix} a \\ b \end{bmatrix} \mathbf{\mu} = \frac{1}{k} \mathbf{1}^{T} \mathbf{X}$$

The mean / center of mass of the points: we'll use it later

Solving Total Least Squares

$$\|Xn - \mathbf{1}d\|_{2}^{2} = (Xn - \mathbf{1}d)^{T}(Xn - \mathbf{1}d)$$

$$= (Xn)^{T}(Xn) - 2d\mathbf{1}^{T}Xn + d^{2}\mathbf{1}^{T}\mathbf{1}$$

First solve for d at optimum (set to 0)

$$\frac{\partial}{\partial d}\|Xn - \mathbf{1}d\|_{2}^{2} = 0 - 2\mathbf{1}^{T}Xn + 2dk$$

$$0 = -2\mathbf{1}^{T}Xn + 2dk \implies 0 = -\mathbf{1}^{T}Xn + dk$$

$$\implies d = \frac{1}{k}\mathbf{1}^{T}Xn = \mu n$$

Solving Total Least Squares

$$\|Xn - \mathbf{1}d\|_2^2 = \|Xn - \mathbf{1}\mu n\|_2^2 \qquad d = \mu n$$
$$= \|(X - \mathbf{1}\mu) n\|_2^2$$

Objective is then:

$$\arg \min_{||n||=1} ||(X - \mathbf{1}\mu) n||_2^2$$

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 20

Recall: Homogenous Least Squares

 $\underset{\|v\|_{2}^{2}=1}{\operatorname{arg\,min}} \|Av\|_{2}^{2} \longrightarrow \operatorname{Eigenvector\,corresponding\,to}$ smallest eigenvalue of A^TA

Why do we need $||v||^2 = 1$ or some other constraint?

Applying it in our case:

 $n = \text{smallest_eigenvec}((X - 1\mu)^T (X - 1\mu))$

Note: technically homogeneous only refers to ||Av||=0 but it's common shorthand in computer vision to refer to the specific problem of ||v||=1

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 21

Connection to ML

Matrix we take the eigenvector of looks like:

$$(\boldsymbol{X} - \boldsymbol{1}\boldsymbol{\mu})^{T}(\boldsymbol{X} - \boldsymbol{1}\boldsymbol{\mu}) = \begin{bmatrix} \sum_{i} (x_{i} - \mu_{x})^{2} & \sum_{i} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) \\ \sum_{i} (x_{i} - \mu_{x})(y_{i} - \mu_{y}) & \sum_{i} (y_{i} - \mu_{y})^{2} \end{bmatrix}$$

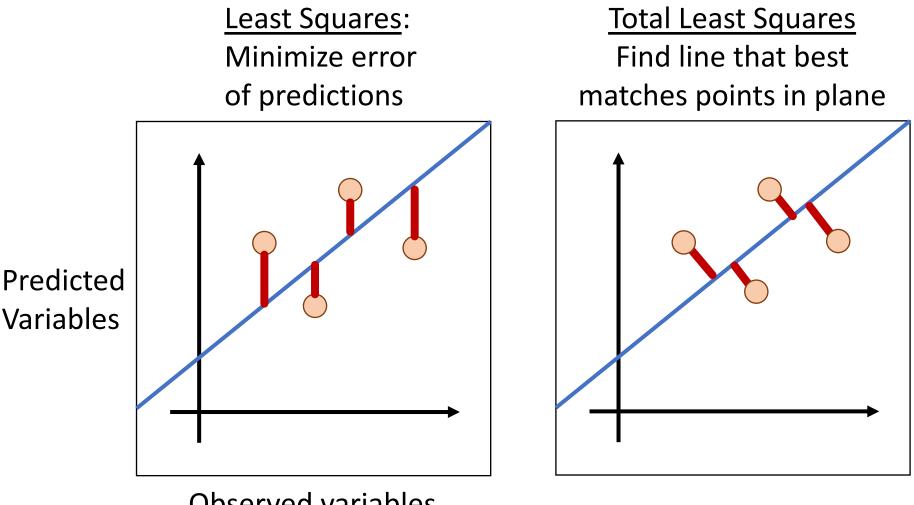
This is a scatter matrix or scalar multiple of the covariance matrix. We're doing PCA, but taking the least principal component to get the normal.

Note: If you don't know PCA, just ignore this slide; it's to help build connections to people with a background in data science/ML.

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 22

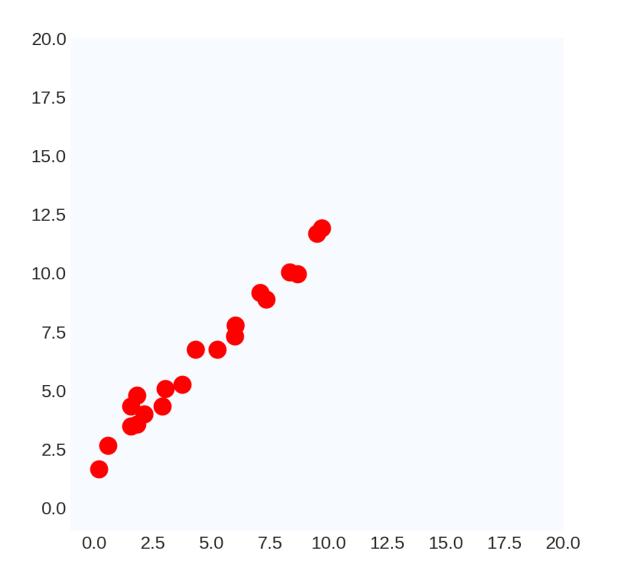
Least Squares vs Total Least Squares



Observed variables

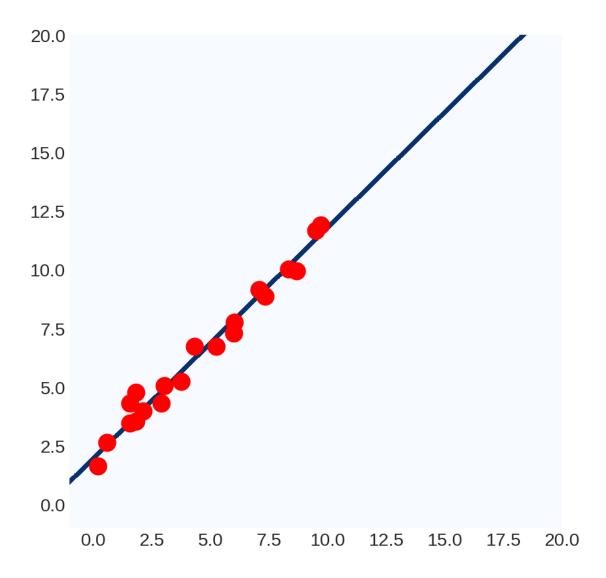
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 23



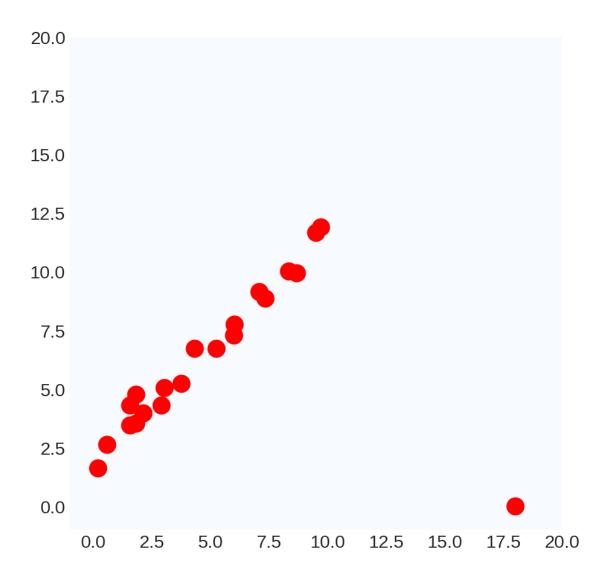
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 24



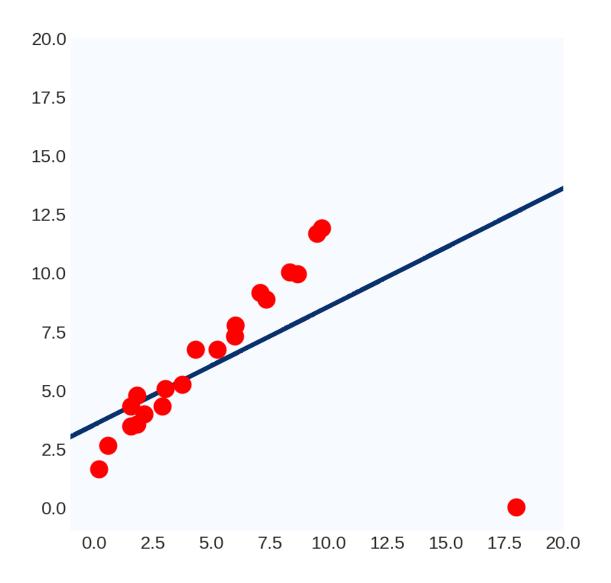
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 25



Justin Johnson

EECS 442 WI 2020: Lecture 11 - 26



Justin Johnson

EECS 442 WI 2020: Lecture 11 - 27

Way to think of it #1: $\|\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{w}\|_2^2$

100^2 >> 10^2: least-squares prefers having no large errors, even if the model is useless overall

Way to think of it #2:

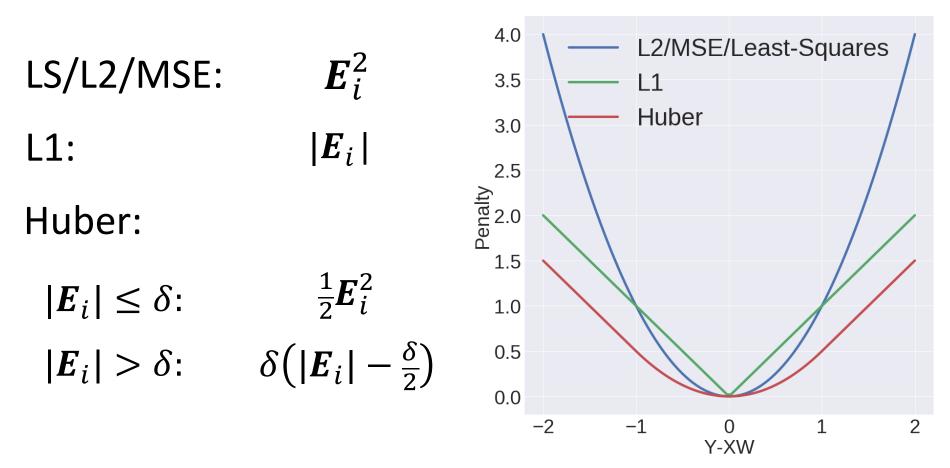
$$\boldsymbol{w} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

Weights are a linear transformation of the output variable: can manipulate W by manipulating Y.

Common Fixes

Replace Least-Squares objective

Let E = Y - XW



Issues with Common Fixes

- Usually complicated to optimize:
 - Often no closed form solution
 - Typically not something you could write yourself
 - Sometimes not convex (local optimum is not necessarily a global optimum)
- Not simple to extend more complex objectives to things like total-least squares
- Typically don't handle a ton of outliers (e.g., 80% outliers)

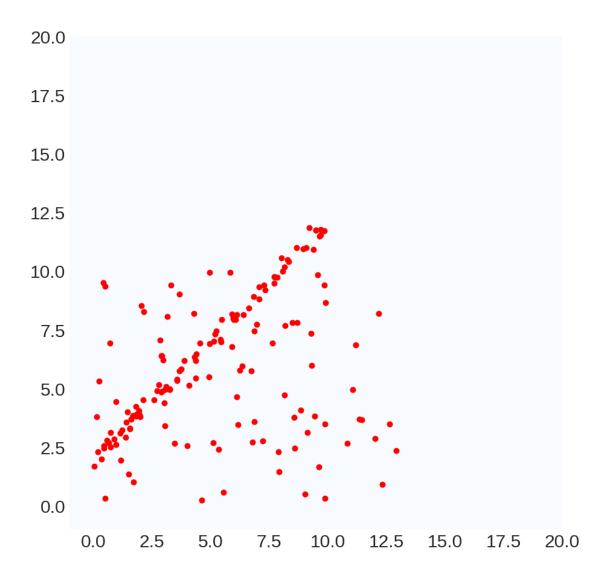
Outliers in Computer Vision

Single outlier: *rare*

20.0 20.0 17.5 17.5 15.0 15.0 12.5 12.5 10.0 10.0 7.5 7.5 5.0 5.0 2.5 2.5 0.0 0.0 0.0 2.5 12.5 15.0 17.520.0 0.0 2.5 12.5 5.0 7.5 10.0 5.0 7.5 10.0 15.0 17.520.0

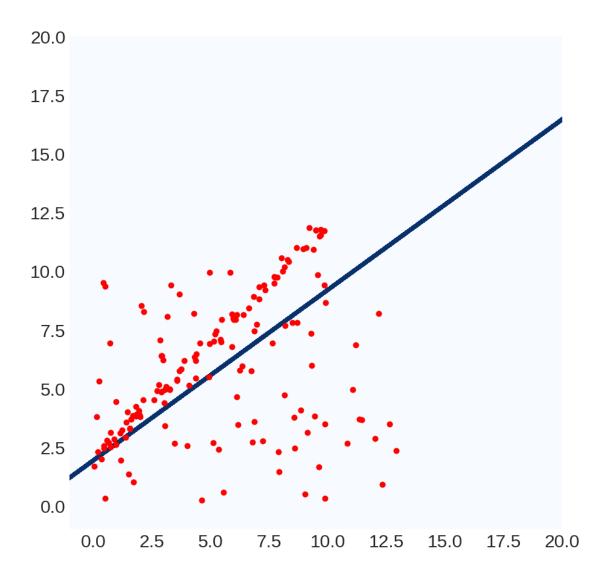
Many outliers: common

EECS 442 WI 2020: Lecture 11 - 31



Justin Johnson

EECS 442 WI 2020: Lecture 11 - 32



Justin Johnson

EECS 442 WI 2020: Lecture 11 - 33

A Simple but Clever Idea

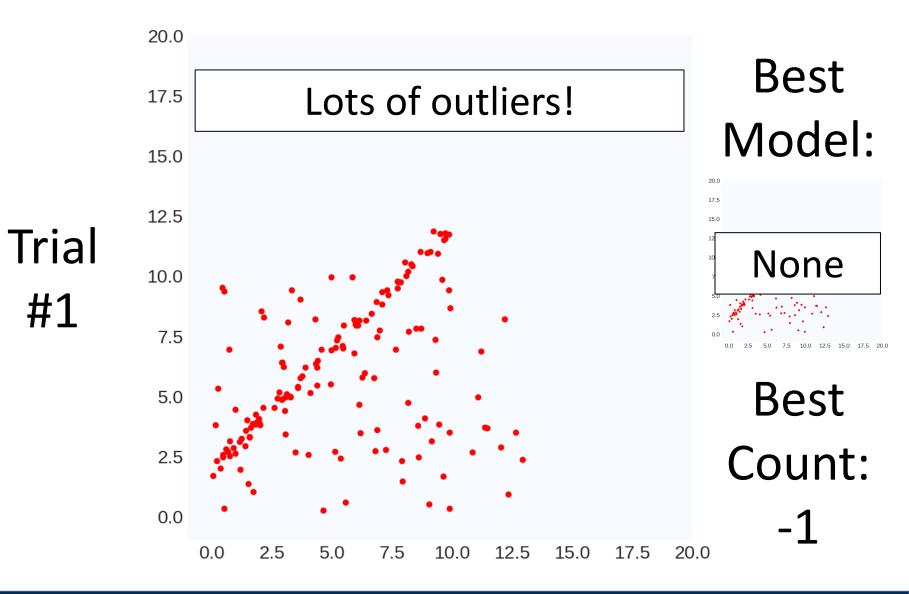
- What we really want: model explains many points "well"
- *Least Squares*: model makes as few big mistakes as possible over the entire dataset
- New objective: find model for which error is "small" for as many data points as possible
- *Method*: RANSAC (**RA**ndom **SA**mple **C**onsensus)

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model Fitting with Applications</u> to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

RANSAC for Lines

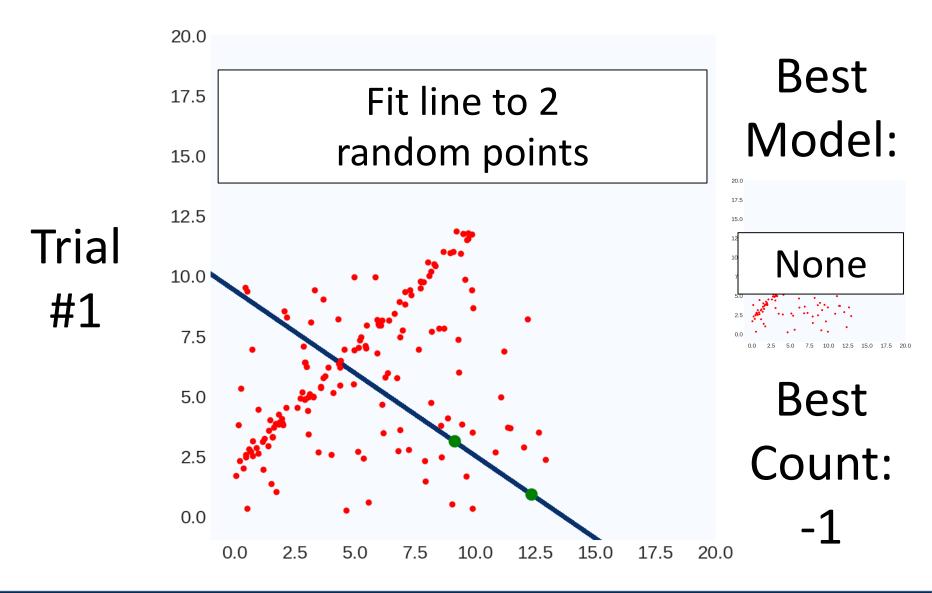
```
bestLine, bestCount = None, -1
for trial in range(numTrials):
      subset = pickPairOfPoints(data)
      line = totalLeastSquares(subset)
      E = linePointDistance(data,line)
      inliers = E < threshold
      if #inliers > bestCount:
             bestLine, bestCount = line, #inliers
```

Running RANSAC



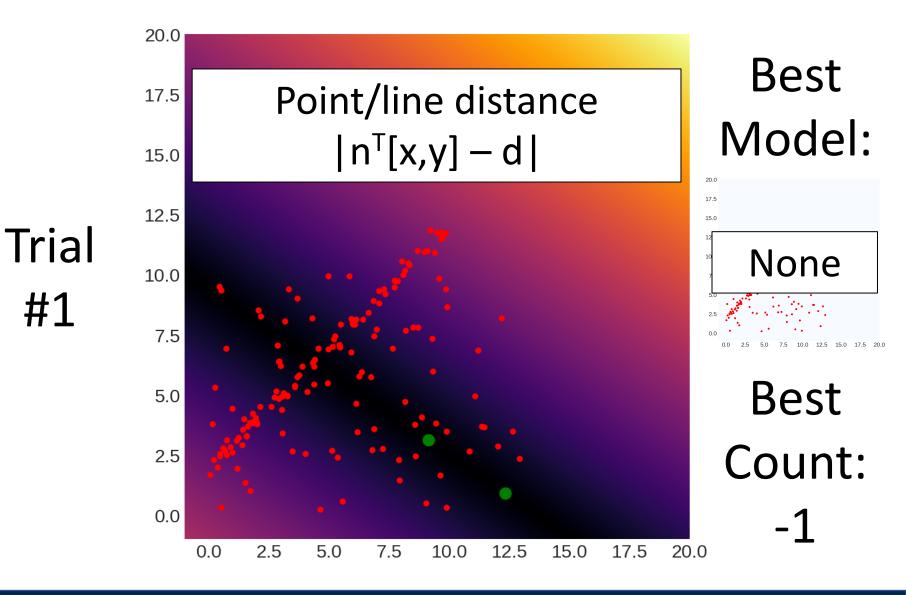
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 36



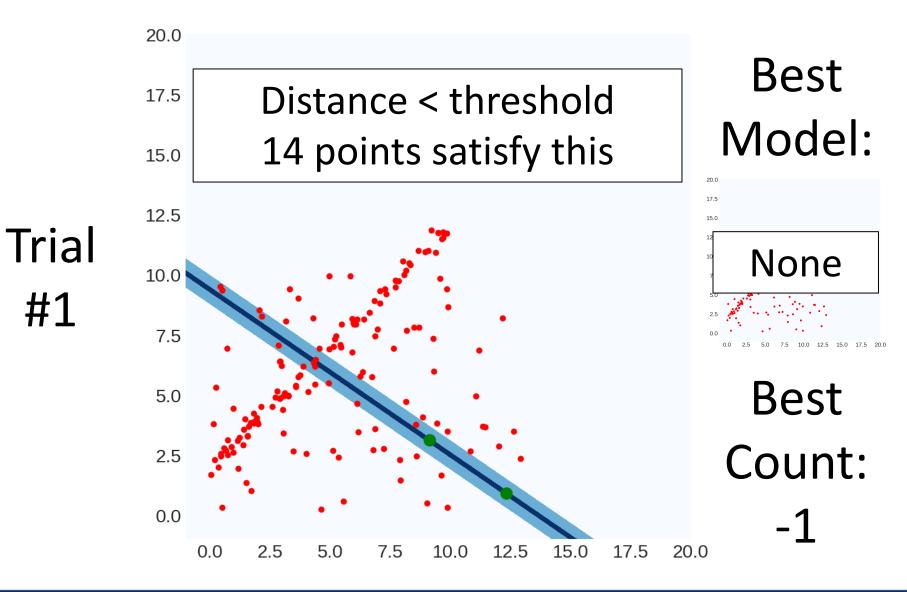
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 37



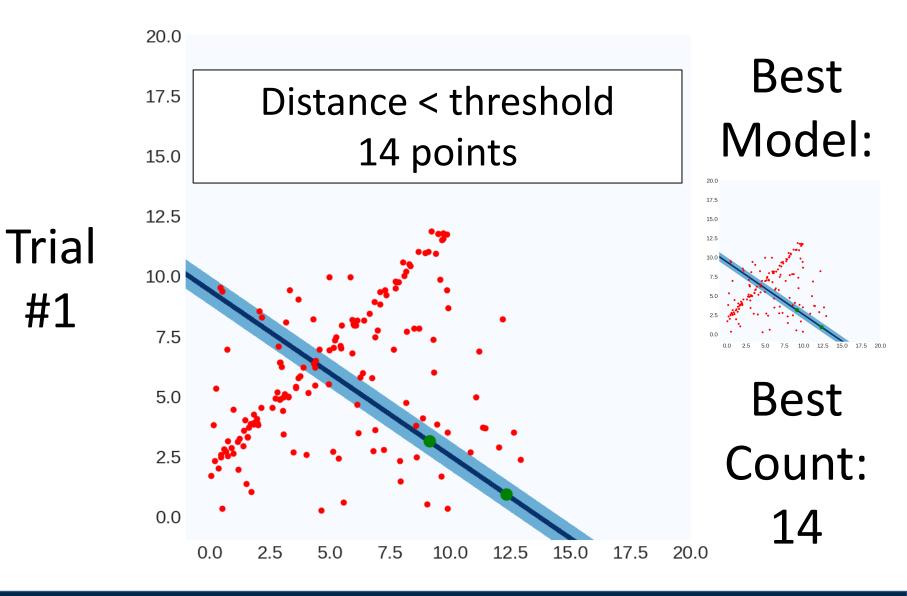
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 38



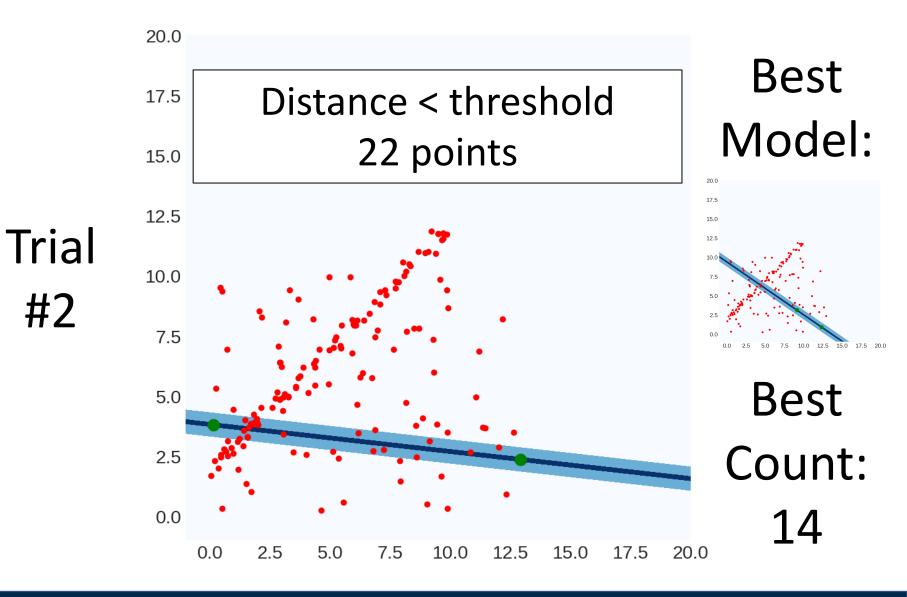
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 39



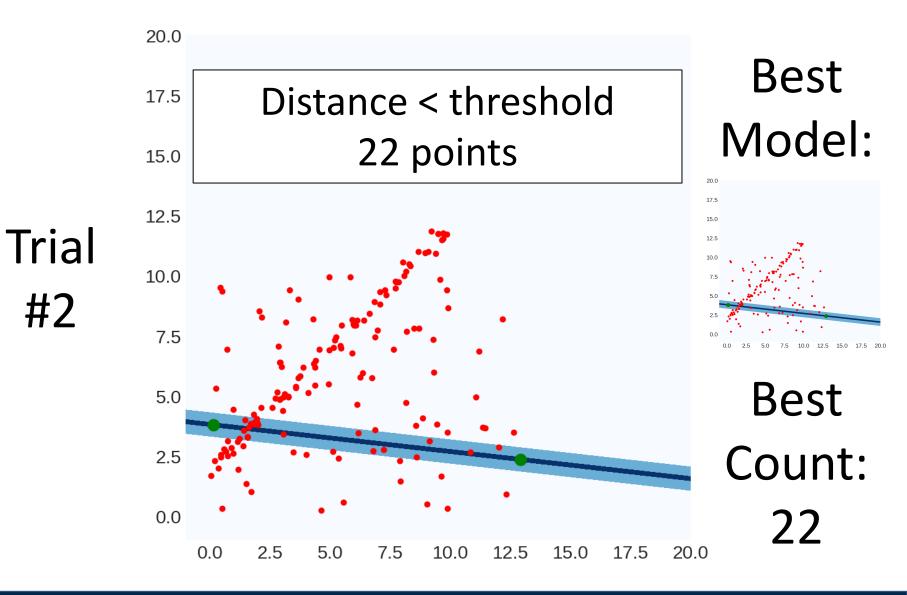
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 40



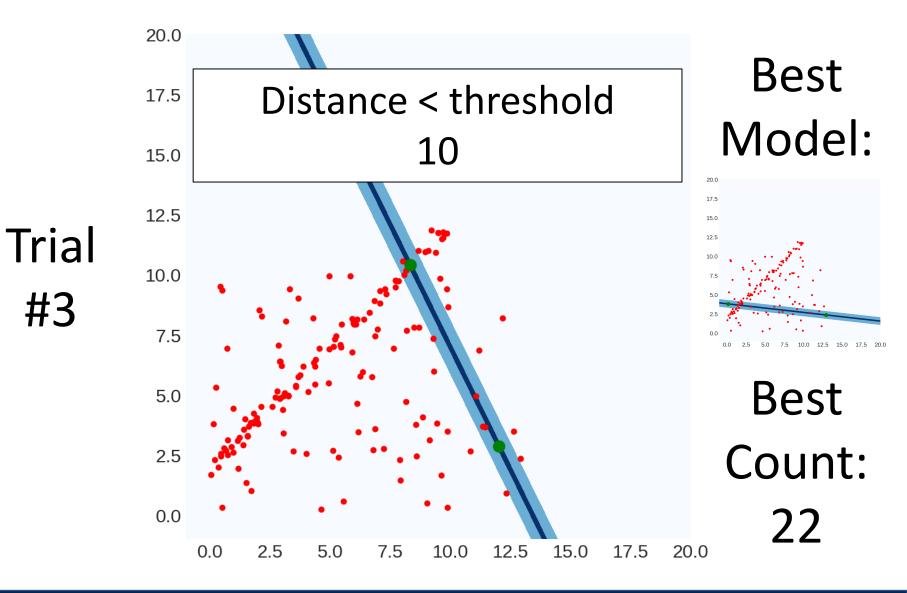
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 41



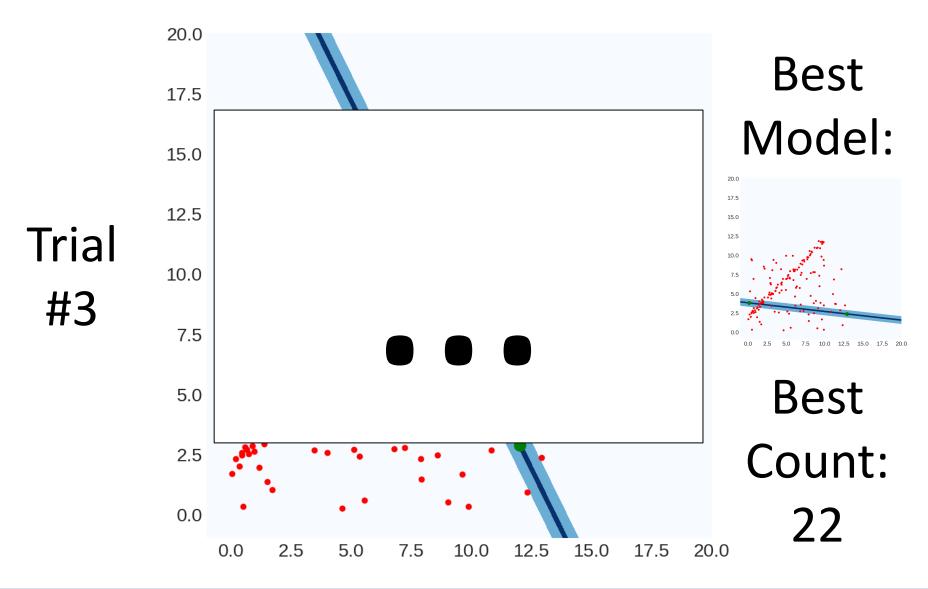
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 42



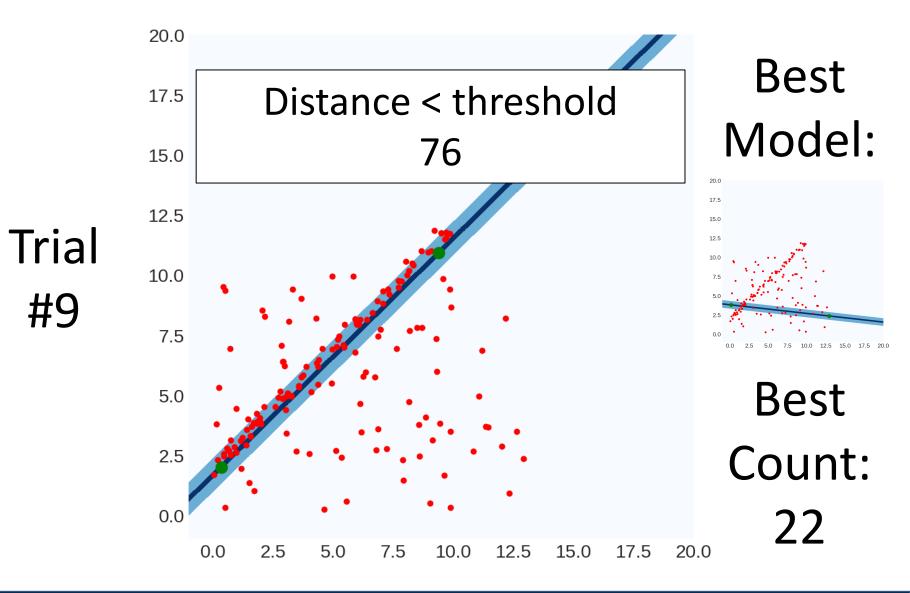
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 43



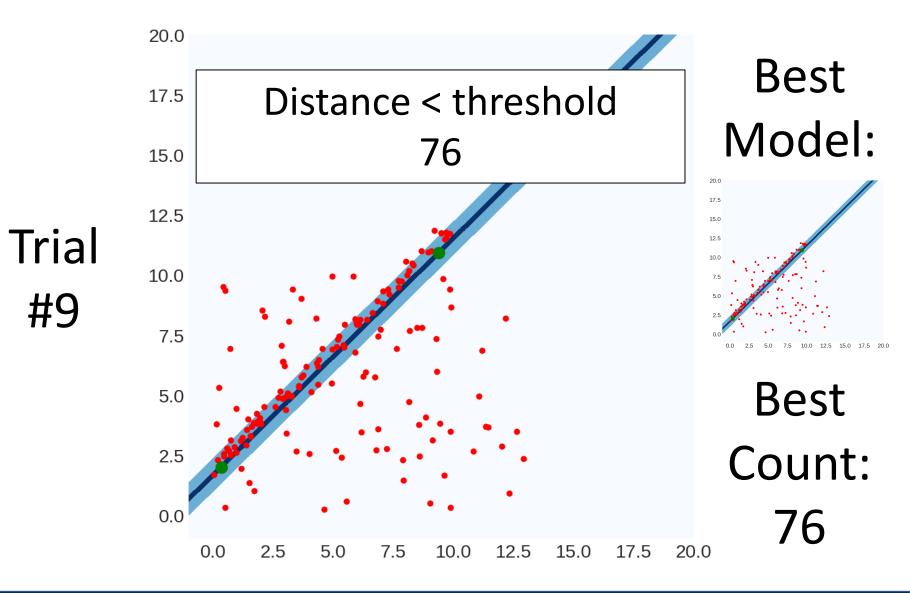
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 44



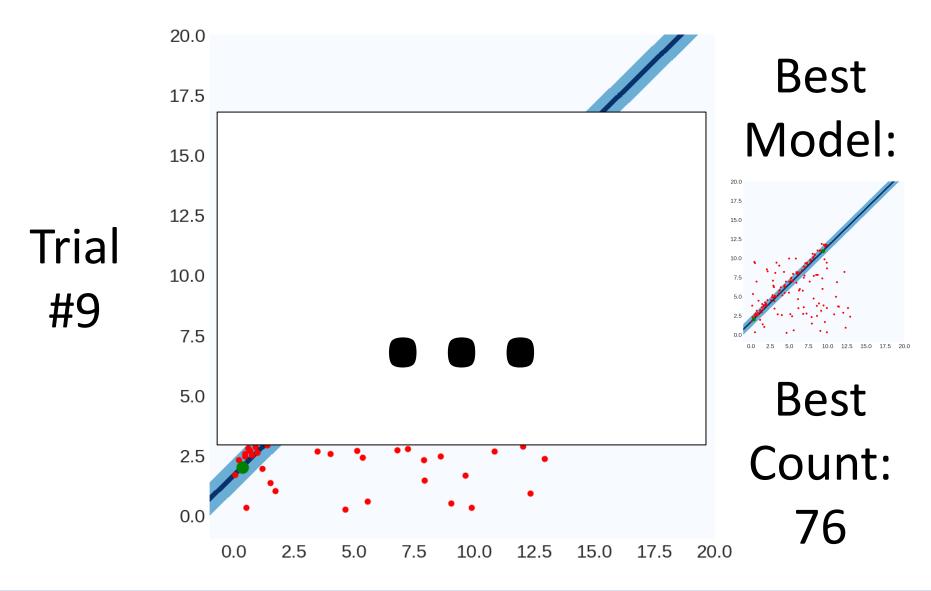
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 45



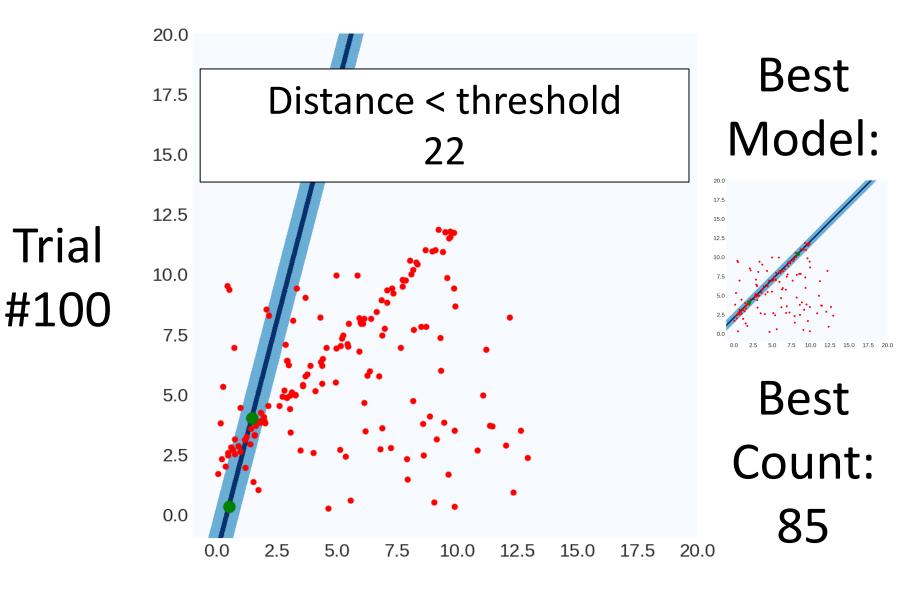
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 46



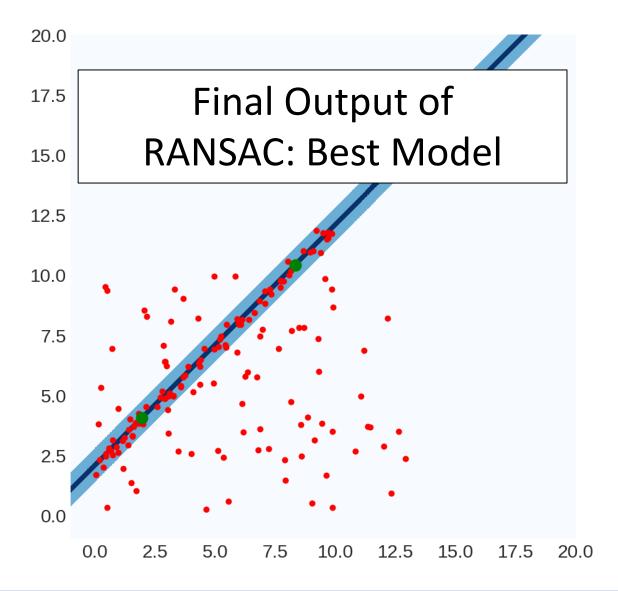
Justin Johnson

EECS 442 WI 2020: Lecture 11 - 47



Justin Johnson

EECS 442 WI 2020: Lecture 11 - 48



Justin Johnson

EECS 442 WI 2020: Lecture 11 - 49

RANSAC in General

```
best, bestCount = None, -1
for trial in range(NUM_TRIALS):
      subset = pickSubset(data,SUBSET_SIZE)
      model = fitModel(subset)
      E = computeError(data,line)
      inliers = E < THRESHOLD
      if #(inliers) > bestCount:
            best, bestCount = model, #(inliers)
(often refit on the inliers for best model)
```

Suppose that:

- r: Fraction of outliers (e.g. 80%)
- **s**: Number of points we pick per set (e.g. 2)
- N: Number of times we run RANSAC (e.g. N=500)

What's the probability of picking a sample set with no outliers?

$$\approx (1-r)^s \tag{4\%}$$

What's the probability of picking a sample set with some outliers?

$$1 - (1 - r)^s$$
 (96%)

Suppose that:

- r: Fraction of outliers (e.g. 80%)
- **s**: Number of points we pick per set (e.g. 2)
- N: Number of times we run RANSAC (e.g. N=500)

What's the probability of picking a sample set with some outliers?

$$1 - (1 - r)^s$$
 (96%)

What's the probability of picking only sample sets some outliers?

$$(1 - (1 - r)^{s})^{N}$$
 (10⁻⁷% N=500)
(13% N=50)

What's the probability of picking any set with no outliers?

$$1 - (1 - (1 - r)^s)^N$$

RANSAC fails to fit a line with 80% outliers after trying only 500 times

P(Failure): 1 / 731,784,961

P(\$157M Jackpot): 1 / 302,575,350

P(Death): ≈1 / 112,000,000

February 13, 2020

Odds/Jackpot amount from 2/7/2019 megamillions.com, unfortunate demise odds from livescience.com

Justin Johnson

Suppose that:

- r: Fraction of outliers (e.g. 80%)
- s: Number of points we pick per set (e.g. 2)
- N: Number of times we run RANSAC (e.g. N=500)
- C: Chance that we find a set with no outliers (e.g. 99.9%)

What's the probability of picking any set with no outliers?

$$C \ge 1 - (1 - (1 - r)^{S})^{N}$$

$$\log(1 - T)$$

$$N \ge \frac{\log(1 - T)}{\log(1 - (1 - r)^{S})}$$

$$\sum_{i=1}^{10^{3}} \frac{10^{3}}{10^{2}}$$

$$\sum_{i=1}^{10^{3}} \frac{10^{3}}{10^{2}}$$

$$\sum_{i=1}^{10^{3}} \frac{10^{3}}{10^{2}}$$

Suppose that:

- r: Fraction of outliers (e.g. 80%)
- s: Number of points we pick per set (e.g. 2)
- N: Number of times we run RANSAC (e.g. N=500)
- C: Chance that we find a set with no outliers (e.g. 99.9%)

What's the probability of picking any set with no outliers?

$$C \ge 1 - (1 - (1 - r)^{s})^{N}$$

$$N \ge \frac{\log(1 - r)}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

r

Suppose that:

- r: Fraction of outliers (e.g. 80%)
- s: Number of points we pick per set (e.g. 2)
- N: Number of times we run RANSAC (e.g. N=500)
- C: Chance that we find a set with no outliers (e.g. 99.9%)

What's the probability of picking any set with no outliers?

$$C \ge 1 - (1 - (1 - r)^{s})^{N}$$

$$N \ge \frac{\log(1 - r)}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

r

Suppose that:

- r: Fraction of outliers (e.g. 80%)
- s: Number of points we pick per set (e.g. 2)
- N: Number of times we run RANSAC (e.g. N=500)
- C: Chance that we find a set with no outliers (e.g. 99.9%)

What's the probability of picking any set with no outliers?

$$C \ge 1 - (1 - (1 - r)^{s})^{N}$$

$$N \ge \frac{\log(1 - T)}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

$$N \ge \frac{\log(1 - r)^{s}}{\log(1 - (1 - r)^{s})}$$

r

RANSAC: Subset Size

- Always the smallest possible set for fitting the model.
- Minimum number for lines: 2 data points
- Minimum number of planes: **how many?**
- Why intuitively?
- You'll find out more precisely in homework 3.

RANSAC: Inlier Threshold

Common sense; there's no magical threshold

RANSAC: Pros and Cons

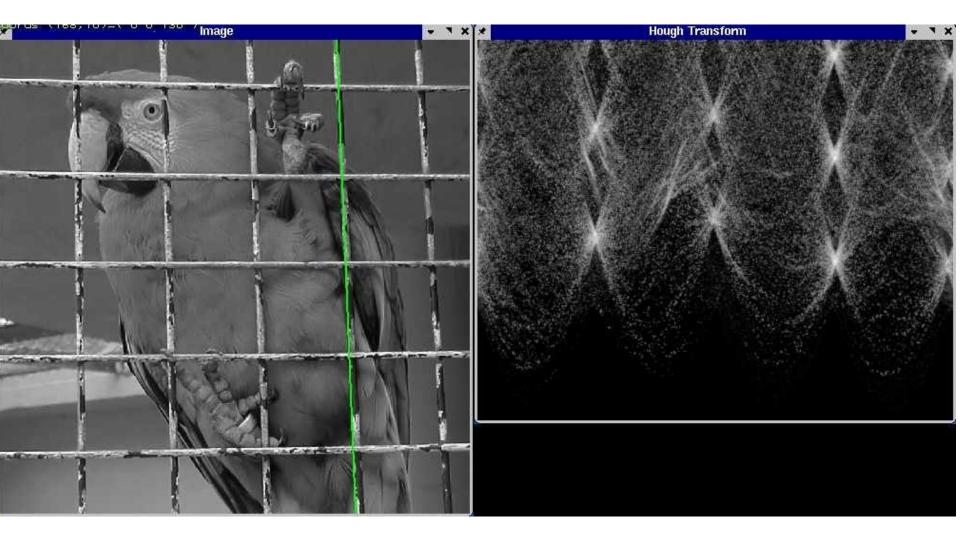
Pros

- 1. Ridiculously simple
- 2. Ridiculously effective
- 3. Works in general

Cons

- Have to tune parameters
- No theory (so can't derive parameters via theory)
- 3. Not magic, especially with lots of outliers

Slide credit: S. Lazebnik

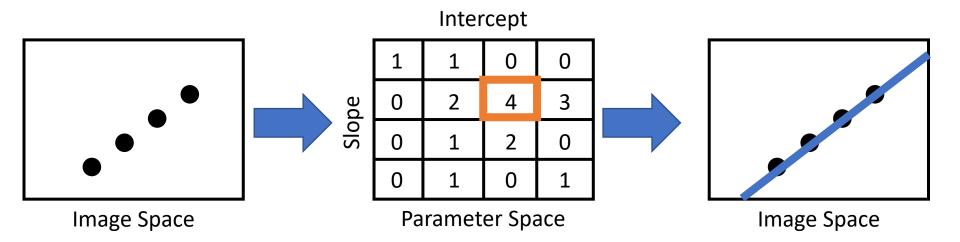


Slide credit: S. Lazebnik

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 61

- 1. Discretize space of parametric models
- 2. Each pixel votes for all compatible models
- 3. Find models compatible with many pixels



P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Slide credit: S. Lazebnik

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 62

Line in image = point in parameter space

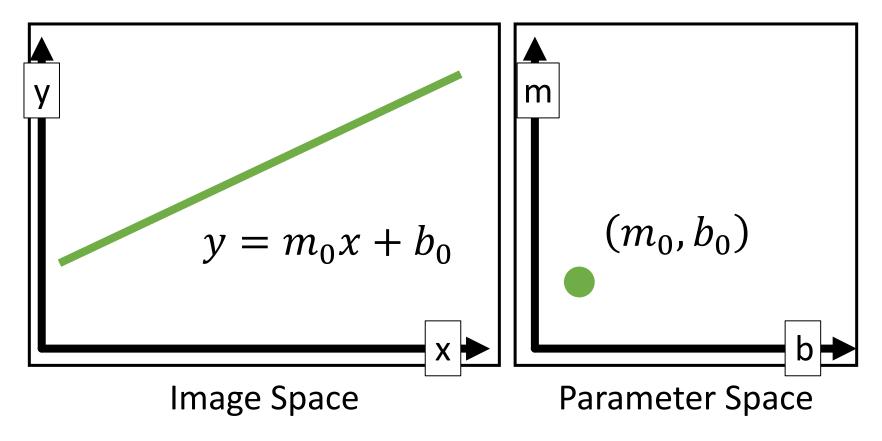


Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real

Justin Johnson

Point in image = line in parameter space All lines through the point: $b = x_0m + y_0$

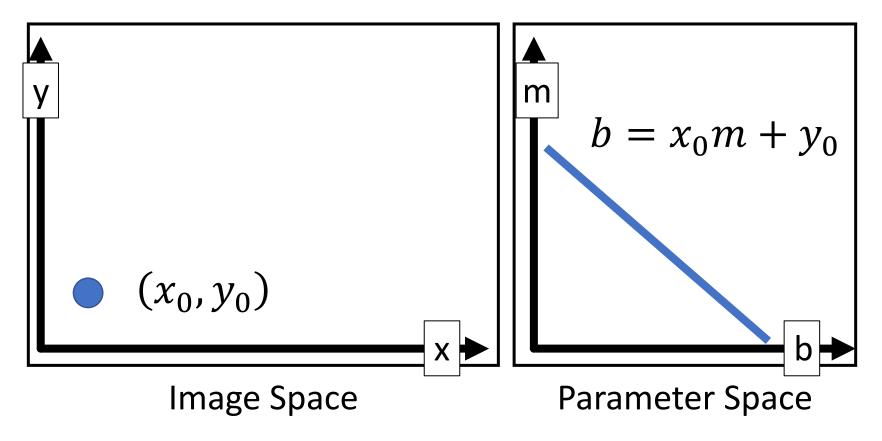


Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real

Justin Johnson

Point in image = line in parameter space All lines through the point: $b = x_1m + y_1$

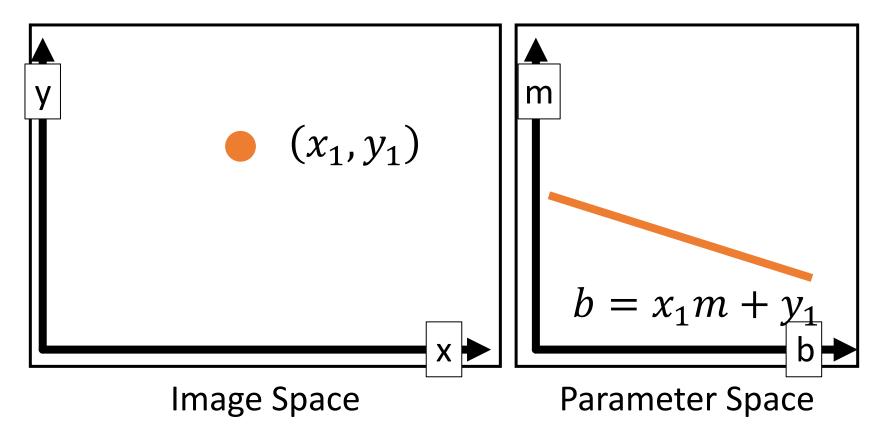


Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real

Justin Johnson

Point in image = line in parameter space All lines through the point: $b = x_1m + y_1$

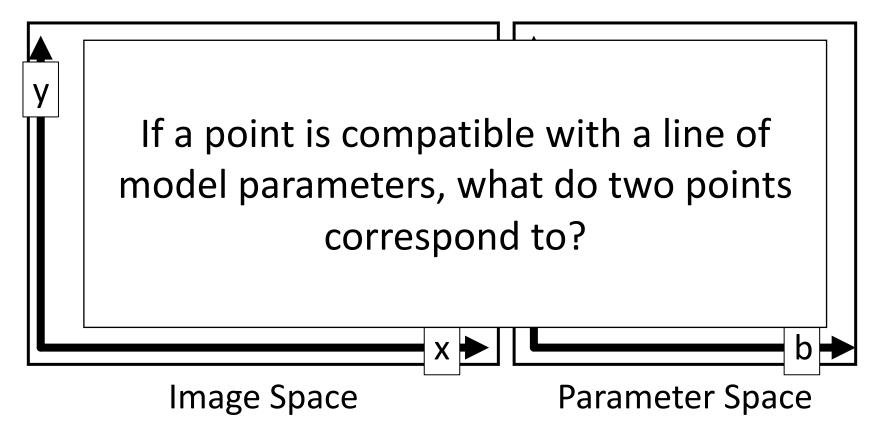


Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 66

Line through two points in image = intersection of two lines in parameter space (i.e., solutions to both equations)

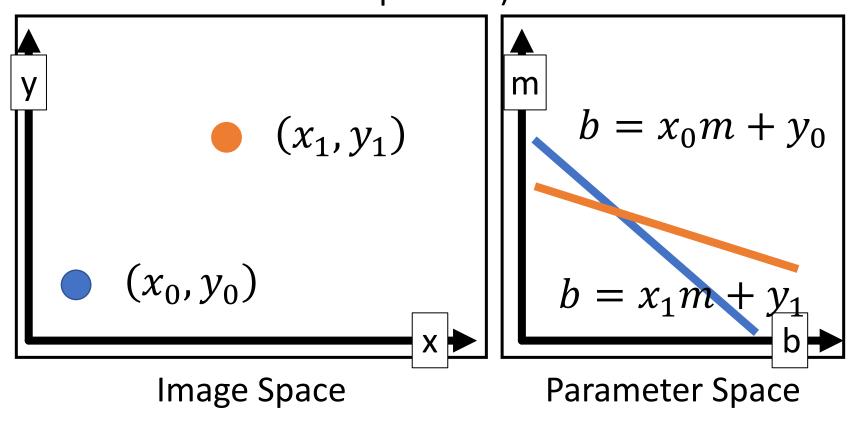


Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 67

Line through two points in image = intersection of two lines in parameter space (i.e., solutions to both equations)

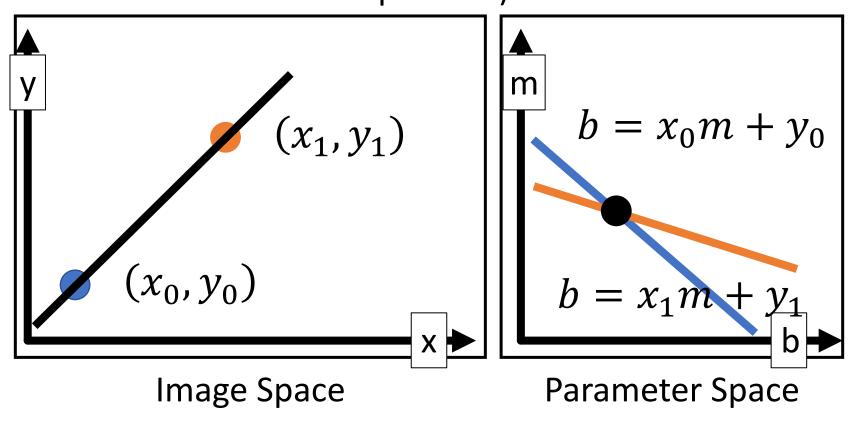


Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real

Justin Johnson

- *Recall*: m, b space is awful
- ax+by+c=0 is better, but unbounded
- Trick: write lines using angle + offset (normally a mediocre way, but makes things bounded)

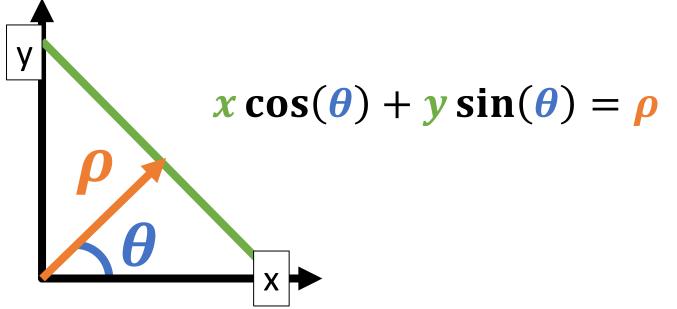


Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real

Hough Transform Algorithm

Remember: $x \cos(\theta) + y \sin(\theta) = \rho$

Accumulator H = zeros(?,?) For x,y in detected_points: For θ in range(0,180,?): $\rho = x \cos(\theta) + y \sin(\theta)$ $H[\theta, \rho] += 1$ #any local maxima (θ , ρ) of H is a line #of the form $\rho = x \cos(\theta) + y \sin(\theta)$

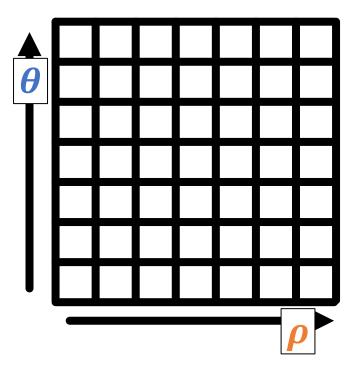


Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real

Hough Transform: Example

Points (x,y) -> sinusoids

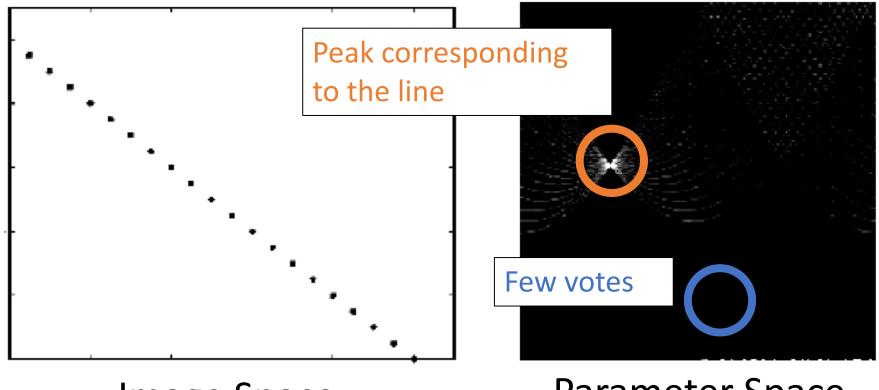


Image Space

Parameter Space

Slide Credit: S. Lazebnik

Justin Johnson

EECS 442 WI 2020: Lecture 11 - 71

Hough Transform: Example

Pros

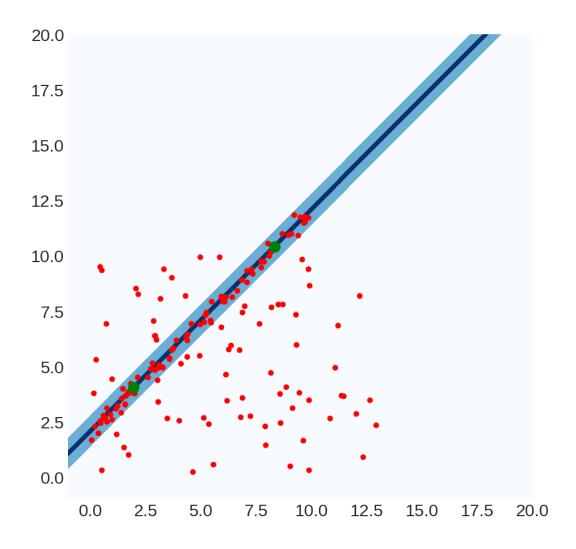
- 1. Handles multiple models
- 2. Some robustness to noise
- 3. In principle, general

Cons

- 1. Have to bin ALL parameters: exponential in #params
- 2. Have to parameterize your space nicely
- Details really, really important (a working version requires a lot more than what I showed you)

Slide Credit: S. Lazebnik

Today: Fitting Lines

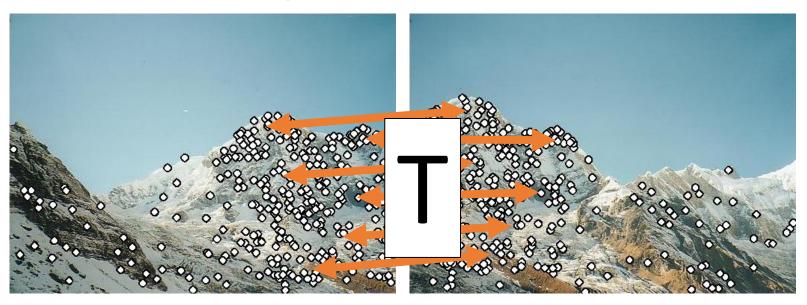


Justin Johnson

EECS 442 WI 2020: Lecture 11 - 73

Next Time: Fitting More Complex Transforms

Solving for a Transformation



3: Solve for transformation T

Justin Johnson