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Lecture 10:
Scales and Descriptors
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Administrative

HW2 out, due 1 week from tomorrow: 
Wednesday 2/19/2019, 11:59pm

HW3 out tomorrow, due 2 weeks from Friday: 
Friday 2/27, 11:59pm
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Last Time: Motivation
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Are these pictures of the same object?
If so, how are they related?
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Last Time: Finding + Matching
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1: find corners+features
2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

Finding and Matching
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Corner of 
the glasses

Edge next to 
panel 

Part 1: Finding Edges
Part 2: Finding Corners

Last Time: Edges + Corners
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Last Time: Edges via Image Gradients
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Compute derivatives Ix and Iy with filters

Ix Iy



Justin Johnson February 11, 2020EECS 442 WI 2020: Lecture 10 -

Last Time: Edges via Image Gradients
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I’m making the lightness equal to gradient magnitude

Gradient Direction: atan2(Ix, Iy)
Gradient Magnitude: sqrt(Ix2 + Iy2)
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Last Time: Edges via Image Gradients
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g
dx
df *

f

g
dx
d

Slide Credit: S. Seitz

𝑑
𝑑𝑥

𝑓 ∗ 𝑔 = 𝑓 ∗
𝑑
𝑑𝑥
𝑔
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Last Time: Corners
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“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Can localize the location, or any shift →
big intensity change.

Diagram credit: S. Lazebnik
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Last Time: Detecting Corners
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𝑴 =

(
),+∈-

𝐼)/ (
),+∈-

𝐼)𝐼+

(
),+∈-

𝐼)𝐼+ (
),+∈-

𝐼+/
= 𝑹12 𝜆2 0

0 𝜆/
𝑹

By doing a taylor expansion of the image, the second 
moment matrix tells us how quickly the image 

changes and in which directions. 

Can compute at each 
pixel

Directions

Amounts 
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Last Time: Detecting Corners
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𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 /

= 𝜆2𝜆/ − 𝛼 𝜆2 + 𝜆/ / “Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

α: constant (0.04 to 0.06)

Slide credit: S. Lazebnik; Note: this refers to visualization ellipses, not original M ellipse. Other slides on the internet may vary
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Harris Corner Detector
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1. Compute partial derivatives Ix, Iy per pixel
2. Compute M at each pixel, using Gaussian 

weighting w

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑴 =

(
),+∈-

𝑤(𝑥, 𝑦)𝐼)/ (
),+∈-

𝑤(𝑥, 𝑦)𝐼)𝐼+

(
),+∈-

𝑤(𝑥, 𝑦)𝐼)𝐼+ (
),+∈-

𝑤(𝑥, 𝑦)𝐼+/

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Harris Corner Detector
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1. Compute partial derivatives Ix, Iy per pixel
2. Compute M at each pixel, using Gaussian 

weighting w
3. Compute response function R

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 /

= 𝜆2𝜆/ − 𝛼 𝜆2 + 𝜆/ /

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Computing R
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Slide credit: S. Lazebnik
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Computing R
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Slide credit: S. Lazebnik
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Harris Corner Detector

16

1. Compute partial derivatives Ix, Iy per pixel
2. Compute M at each pixel, using Gaussian 

weighting w
3. Compute response function R
4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Justin Johnson February 11, 2020EECS 442 WI 2020: Lecture 10 -

Harris Corner Detector
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Slide credit: S. Lazebnik
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Harris Corner Detector
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1. Compute partial derivatives Ix, Iy per pixel
2. Compute M at each pixel, using Gaussian 

weighting w
3. Compute response function R
4. Threshold R
5. Take only local maxima

(Non-Maxima Suppression, NMS)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Harris Corner Detector: NMS
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R

x (image coordinate)

threshold

Local Maxima are pixels with a 
higher R value than their neighbors
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Harris Corner Detector
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Slide credit: S. Lazebnik



Justin Johnson February 11, 2020EECS 442 WI 2020: Lecture 10 -

Harris Corner Detector: Result
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Slide credit: S. Lazebnik
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Desirable Properties
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If our detectors are repeatable, they should be:

• Invariant to some things: image is transformed 
and corners remain the same: D(T(I)) = D(I)
• Covariant/equivariant with some things: image 

is transformed and corners transform with it:
D(T(I)) = T(D(I))

Where I is an image, T is a transformation, and D 
is our detector

Slide credit: S. Lazebnik
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Affine Intensity Change

23

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity changes
Slide credit: S. Lazebnik

𝐼EFG = 𝑎𝐼HIJ + 𝑏
M only depends on derivatives, so b is irrelevant

But a scales derivatives and there’s a threshold
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Image Translation
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All done with convolution. Convolution is translation 
invariant. 

Equivariant with translation

Slide credit: S. Lazebnik
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Image Rotation
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Rotations just cause the corner rotation to change. 
Eigenvalues remain the same.

Equivariant with rotation
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Image Scaling
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Corner

One pixel can become many pixels and vice-versa.

Not equivariant with scaling
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Today
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• Fixing scaling by making detectors 
in both location and scale

• Enabling matching between 
features by describing regions
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Key Idea: Scale
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1/2 1/2 1/2

Note: I’m also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)  

Left to right: each image is half-sized
Upsampled with big pixels below

https://en.wikipedia.org/wiki/Aliasing
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Key Idea: Scale

29

1/2 1/2 1/2

Note: I’m also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)  

Left to right: each image is half-sized
If I apply a KxK filter, how much of the original 

image does it see in each image? 

https://en.wikipedia.org/wiki/Aliasing
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Solution to Scales: Try them all!
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See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

Harris Detection Harris Detection Harris Detection Harris Detection
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Aside: This is a common trick!

31

Given a 50x16 person detector, how do I detect:
(a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

Sample people from image
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Aside: This is a common trick!

32

Detecting all the people
The red box is a fixed size

Sample people from image
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Aside: This is a common trick!
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Sample people from image

Detecting all the people
The red box is a fixed size
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Aside: This is a common trick!
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Sample people from image

Detecting all the people
The red box is a fixed size
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Blob Detection
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Another detector (has some nice properties)

∗ =

Find maxima and minima of blob filter response in scale 
and space

Slide credit: N. Snavely

Minima

Maxima
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Gaussian Derivatives (1D)
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𝐺M 𝑥

𝐺M 𝑥 =
1

𝜎 2𝜋
exp −

𝑥/

2𝜎/
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Gaussian Derivatives (1D)
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𝐺M 𝑥 𝜕
𝜕𝑥
𝐺M 𝑥

𝜕
𝜕𝑥
𝐺M 𝑥 =

𝑥
𝜎U 2𝜋

exp −
𝑥/

2𝜎/
= −

𝑥
𝜎/
𝐺M 𝑥
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Gaussian Derivatives (1D)
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𝐺M 𝑥 𝜕
𝜕𝑥
𝐺M 𝑥 𝜕/

𝜕𝑥/
𝐺M 𝑥

𝜕/

𝜕𝑥/
𝐺M 𝑥 =

𝑥/ − 𝜎/

𝜎V 2𝜋
exp −

𝑥/

2𝜎/
=

𝑥/

𝜎W
−
1
𝜎/

𝐺M 𝑥
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Gaussian Derivatives (2D)

𝜕
𝜕𝑦
𝑔

𝜕
𝜕𝑥
𝑔

Gaussian

1st Deriv

𝜕/

𝜕/𝑦
𝑔

𝜕/

𝜕/𝑥
𝑔

2nd Deriv



Justin Johnson February 11, 2020EECS 442 WI 2020: Lecture 10 -

Laplace of Gaussian (2D)
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𝜕/

𝜕/𝑦
𝑔

𝜕/

𝜕/𝑥
𝑔

𝜕/

𝜕/𝑥
𝑔 +

𝜕/

𝜕/𝑦
𝑔

+

Slight detail: for technical reasons, you need to scale the Laplacian.  ∇EHYZ/ = 𝜎/
𝜕/

𝜕𝑥/ 𝑔 +
𝜕/

𝜕/𝑦 𝑔
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Edge Detection with Laplacian

41

𝑓 Edge

𝜕/

𝜕/𝑥
𝑔 Laplacian 

Of Gaussian

𝑓 ∗
𝜕/

𝜕/𝑥 𝑔
Edge = 

Zero-crossing

Figure credit: S. Seitz
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Blob Detection with Laplacian
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Figure credit: S.  Lazebnik maximum

Edge: zero-crossing
Blob = Two edges in opposite directions

When blob is just the right size, 
Laplacian gives a large absolute value
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Scale Selection with Laplacian
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Given binary circle and Laplacian filter of scale σ, we can 
compute the response as a function of the scale.

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image
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Characteristic Scale

44

Characteristic scale of a blob is the scale
that produces the maximum response 

Image Abs. Response

Slide credit: S. Lazebnik. For more, see: T. Lindeberg (1998). 
"Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html
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Blob Detection in Scale Space
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1. Convolve image with scale-normalized Laplacian 
at several scales

Slide credit: S. Lazebnik
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Blob Detection in Scale Space
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Slide credit: S. Lazebnik
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Blob Detection in Scale Space
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Slide credit: S. Lazebnik
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Blob Detection in Scale Space
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1. Convolve image with scale-normalized Laplacian 
at several scales

2. Find local maxima and minima of squared 
Laplacian response in image+scale space

Slide credit: S. Lazebnik
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Image and Scale Space
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𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image
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Image-Space Neighbors

50

Blue points are image-space neighbors

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image
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Scale Space Neighbors

51

Red points are neighbors in scale space

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image
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Local Maxima in Scale and Image
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𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image

Green point is a local maxima in both image and scale space if:
it is larger than its image-space neighbors (blue) 
and larger than its scale-space neighbors (red)
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Blob Detection in Scale Space
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Slide credit: S. Lazebnik
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Blob Detection in Scale Space
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Slide credit: S. Lazebnik
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Efficient Implementation
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• Approximating the Laplacian with a difference of 
Gaussians:

( )2 ( , , ) ( , , )xx yyL G x y G x ys s s= +

( , , ) ( , , )DoG G x y k G x ys s= -

(Laplacian)

(Difference of Gaussians)

Slide credit: S. Lazebnik

Gaussian is separable, so
cheaper to compute!
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Efficient Implementation
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Original Image

Gaussian, sigma=2

Downsample
by 2x

Downsample
by 2x

Gaussian, sigma=1

Save computation by downsampling before blurring
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Efficient Implementation

57

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV
60 (2), pp. 91-110, 2004. 

Slide credit: S. Lazebnik

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Recall Two Problems for Today:

58

• Fixing scaling by making detectors 
in both location and scale

• Enabling matching between 
features by describing regions
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Problem 1 Solved!

59

• How do we deal with scales: try them all
• Why is this efficient?

1 +
1
4
+
1
16

+
1
64

+
1
4a
… =

4
3

Vast majority of effort is in the first and second scales
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Second Problem: Describing Features
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1: find corners+features
2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

Finding and Matching
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Second Problem: Describing Features

61

Image – 40

Image

1/2 size, rot. 45°
Lightened+40

100x100 crop 
at Glasses
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Second Problem: Describing Features

Once we’ve found a corner/blobs, we can’t just use 
the image nearby. What about:
1. Scale?
2. Rotation?
3. Additive light?
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Handling Scale
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Given characteristic scale (maximum Laplacian 
response), we can just rescale image

Slide credit: S. Lazebnik
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Handling Rotation
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0 2 p

Given window, can compute dominant 
orientation and then rotate image

“y”

“x”

Compute gradient 
direction at each pixel Build a histogram of gradient 

directions in window

Find dominant direction 
from histogramRotate so dominant direction is up
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Scale and Rotation
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Keypoints at characteristic scales 
and dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Scale and Rotation
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Keypoints at characteristic scales 
and dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

Rotate and set to 
common scale

j

Rotate and set to 
common scale

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Scale and Rotation
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Now if we had two images of the same scene but different 
scale / rotation, we would find the same keypoints and set 
them to a common scale / rotation

Pixels of the rotated, 
rescaled patches 
should be the same!



Justin Johnson February 11, 2020EECS 442 WI 2020: Lecture 10 -

Illumination, Out-of-plane rotation?
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We would like to be able 
to match these two points

But the local patches 
look very different!

Idea: Instead of comparing the pixels, instead use a feature vector
to describe the appearance of each patch
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SIFT Descriptors

69

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

j

1. Normalize the rotation / scale of the patch
2. Compute gradient at each pixel
3. Divide into sub-patches (here 2x2, actually 4x4)
4.   In each sub-patch, compute histogram of 8       

gradient directions
5.   Describe the patch with 4*4*8 = 128 numbers

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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SIFT Descriptors

70

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

j

Nice properties of SIFT:

1. Using gradients gives invariance to illumination
2. Using histograms of patches gives invariance to 

small shifts / rotations
3. Compactly describe local appearance of patches 

with 128-dim vector

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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SIFT Descriptors
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• In principle: build a histogram of the gradients
• In reality: quite complicated
• Gaussian weighting: smooth response
• Normalization: reduces illumination effects
• Clamping
• Affine adaptation

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

Read the paper for all the gory details…

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Properties of SIFT
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• Can handle: up to ~60 degree out-of-plane rotation, 
Changes of illumination

• Fast and efficient and lots of code available

Slide credit: N. Snavely
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Feature Descriptors
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128D 
vector x

Think of feature as some non-linear filter 
that maps pixels to 128D feature

Photo credit: N. Snavely

Distance between 
vectors gives us the 
visual appearance 
between patches
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SIFT Features: Instance Matching

𝒙2

𝒙/
𝒙2 − 𝒙/ = 0.61

𝒙U
𝒙2 − 𝒙U = 1.22

Example credit: J. Hays



Justin Johnson February 11, 2020EECS 442 WI 2020: Lecture 10 -

SIFT Features: Instance Matching

Example credit: J. Hays

𝒙W

𝒙V 𝒙f 𝒙g

𝒙W − 𝒙V = 0.34

𝒙W − 𝒙f = 0.30

𝒙W − 𝒙f = 0.40
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2nd Nearest Neighbor Trick
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• Given a feature x, nearest neighbor to x is a good match, 
but distances can’t be thresholded.

• Instead, find nearest neighbor and second nearest 
neighbor. This ratio is a good test for matches:

𝑟 =
𝒙h − 𝒙2ii
𝒙h − 𝒙/ii
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2nd Nearest Neighbor Trick
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Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Recap
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1: find corners+features
2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

Finding and Matching
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Next Task: Find a Transform
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Find a transform 
that brings our 
matched features 
together!


