Lecture 10:
Scales and Descriptors

EECS 442 WI 2020: Lecture 10- 1 February 11, 2020



Administrative

HW?2 out, due 1 week from tomorrow:
Wednesday 2/19/2019, 11:59pm

HW3 out tomorrow, due 2 weeks from Friday:
Friday 2/27, 11:59pm

Justin Johnson EECS 442 WI 2020: Lecture 10 - 2 February 11, 2020



Last Time: Motivation

Are these pictures of the same object?
If so, how are they related?

P
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Last Time: Finding + Matching

Finding and Matching

1: find corners+features
2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe
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Last Time: Edges + Corners

Part 1: Finding Edges
Part 2: Finding Corners

i Corner of SRR,
the glasses IR,
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\ Edge next to [
% panel ‘
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Last Time: Edges via Image Gradients

Compute derivatives Ix and ly with filters
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Last Time: Edges via Image Gradients

Gradient Direction: atan2(lx, ly)
Gradient Magnitude: sqgrt(Ix? + ly?)

I’m making the lightness equal to gradient magnitude
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Last Time: Edges via Image Gradients
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Slide Credit: S. Seitz
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Last Time: Corners

Can localize the location, or any shift —
big intensity change.

“flat” region: “‘edge”: ‘corner’;

no change in no change significant

all directions along the edge change in all
direction directions

Diagram credit: S. Lazebnik
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Last Time: Detecting Corners

By doing a taylor expansion of the image, the second
moment matrix tells us how quickly the image
changes and in which directions.

Can compute at each

. Directions
pixel
z IZ Z I 1,
| xyew xX,yEW .
M= =[5 0 | R

z L1, z I;

LX,YEW xX,YEW -
Amounts
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Last Time: Detecting Corners

R = det(M) — a trace(M)?
= 1Ay — a(Ay + 1,)?

a: constant (0.04 to 0.06)

Slide credit: S. Lazebnik; Note: this refers to visualization ellipses, not original M ellipse. Other slides on the internet may vary
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Harris Corner Detector

1. Compute partial derivatives Ix, ly per pixel
2. Compute M at each pixel, using Gaussian

weighting w
2 W(x»ZV)Ia% 2 W(x»Y)Iny
M = X,YEW X, YEW
2 w(x, y) L1, 2 w(x, y)I2
LX,YEW X, YEW

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik
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http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Corner Detector

Compute partial derivatives Ix, ly per pixel

Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

R = det(M) — a trace(M)*
= 1Ay — a(Aq + 1;)?

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik
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http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Computing R

Slide credit: S. Lazebnik
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Computing R

Slide credit: S. Lazebnik
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Harris Corner Detector

Compute partial derivatives Ix, ly per pixel

Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R
Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik
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http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Corner Detector

Slide credit: S. Lazebnik
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Harris Corner Detector

Compute partial derivatives Ix, ly per pixel

Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R
Threshold R

5. Take only local maxima
(Non-Maxima Suppression, NMS)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik
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http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Harris Corner Detector: NMS

Local Maxima are pixels with a
higher R value than their neighbors

R

threshold AV/.\ 2.
VAN

X (image coordinate)
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Harris Corner Detector

Slide credit: S. Lazebnik
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Harris Corner Detector: Result

Slide credit: S. Lazebnik
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Desirable Properties

If our detectors are repeatable, they should be:

* Invariant to some things: image is transformed
and corners remain the same: D(T(I)) = D(l)

* Covariant/equivariant with some things: image

is transformed and corners transform with it:
D(T(1)) = T(D(1))

Where | is an image, T is a transformation, and D
is our detector

Slide credit: S. Lazebnik
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Affine Intensity Change

Lew = alpig + b
M only depends on derivatives, so b is irrelevant

But a scales derivatives and there’s a threshold

threshold / A\ w \ \/\/ \

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik
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Image Translation

™

=)

™

All done with convolution. Convolution is translation

invariant.

Equivariant with translation

Slide credit: S. Lazebnik

Justin Johnson
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Image Rotation
Sl
57 S

Rotations just cause the corner rotation to change.
Eigenvalues remain the same.

Equivariant with rotation
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Image Scaling

&) )

Corner

One pixel can become many pixels and vice-versa.

Not equivariant with scaling
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Today
* Fixing scaling by making detectors
in both location and scale

* Enabling matching between
features by describing regions
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Key |dea: Scale

Left to right: each image is half-sized
Upsampled with big pixels below

1/2 — 1/2 — 1/2 —

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)
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https://en.wikipedia.org/wiki/Aliasing

Key |dea: Scale

Left to right: each image is half-sized
If | apply a KxK filter, how much of the original
image does it see in each image?

1/2 —

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)
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https://en.wikipedia.org/wiki/Aliasing

Solution to Scales: Try them all!

Harris Detection

Harris Detection

Harris Detection

Harris Detection

See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

¢

Justin Johnson
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Aside: This is a common trick!

Given a 50x16 person detector, how do | detect:
(a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

Sample people from image
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Aside: This is a common trick!

Detecting all the people
The red box is a fixed size

Sample people from image
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Aside: This is a common trick!

Detecting all the people
The red box is a fixed size

Sample people from image
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Aside: This is a common trick!

Detecting all the people
The red box is a fixed size

Sample people from image
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Blob Detection

Another detector (has some nice properties)

oo
G arima

Maxima

2 <
o le?.'t’h\r\N

Find maxima and minima of blob filter response in scale
and space

Slide credit: N. Snavely
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Gaussian Derivatives (1D)
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x) = ex
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Gaussian Derivatives (1D)

86()_ X x4 B xG()
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Gaussian Derivatives (1D)
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Gaussian Derivatives (2D)

15t Deriv 2nd Deriv

Gaussian
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Laplace of Gaussian (2D)

0% 0%
02 %g | azyg

02 0°
Slight detail: for technical reasons, you need to scale the Laplacian. v72107‘m: 0'2 6_2 g + —
X

0%y
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Edge Detection with Laplacian

Sigma = 50
f 5 Edge
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Figure credit: S. Seitz
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Blob Detection with Laplacian

Edge: zero-crossing
Blob = Two edges in opposite directions

When blob is just the right size,
Laplacian gives a large absolute value

Original signal
ok ) | : ok . ot - ok

-20 -10 10 20 -20 -7 7 20 -20 -3 3 20 -20 =11

Convolved with Laplacian (o = 1)
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Figure credit: S. Lazebnik maXI m Ll m
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Scale Selection with Laplacian

Given binary circle and Laplacian filter of scale o, we can
compute the response as a function of the scale.

Image g =2 og=26 =10
Radius: 8 R: 0.02 R: 2.9 R:1.8
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Characteristic Scale

Characteristic scale of a blob is the scale
that produces the maximum response

Abs. Response

2000

gsn0fsssspiessslisesonnn i tmna sl

1000} - - - - - SRR e R R EREEE

Slide credit: S. Lazebnik. For more, see: T. Lindeberg (1998).
"Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116.
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http://www.nada.kth.se/cvap/abstracts/cvap198.html

Blob Detection in Scale Space

1. Convolve image with scale-normalized Laplacian
at several scales

Slide credit: S. Lazebnik
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Blob Detection in Scale Space

Slide credit: S. Lazebnik
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Blob Detection in Scale Space

sigma = 11.9912

Slide credit: S. Lazebnik
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Blob Detection in Scale Space

1. Convolve image with scale-normalized Laplacian
at several scales

2. Find local maxima and minima of squared
Laplacian response in image+scale space

Slide credit: S. Lazebnik
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Image and Scale Space

Image o=2 o=26
Radius: 8 R: 0.02 R: 2.9

=10
R:1.8
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Image-Space Neighbors

Blue points are image-space neighbors

Image g =2 og=26 =10
Radius: 8 R: 0.02 R: 2.9 R:1.8

® ogo -
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Scale Space Neighbors

Red points are neighbors in scale space

Image g =2 og=26 =10
Radius: 8 R: 0.02 R: 2.9 R:1.8

® ® . e
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Local Maxima in Scale and Image

is a local maxima in both image and scale space if:
it is larger than its image-space neighbors (blue)
and larger than its scale-space neighbors (red)

Image g =2 og=26 =10
Radius: 8 R: 0.02 R: 2.9 R:1.8

® ® oczizuo .
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Blob Detection in Scale Space

Slide credit: S. Lazebnik
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Blob Detection in Scale Space
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Slide credit: S. Lazebnik
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Efficient Implementation

 Approximating the Laplacian with a difference of
Gaussians:

(Laplacian) °

DoG = G(xayako-)_G(xayao-)

(Difference of Gaussians)

Gaussian is separable, so B T T e I B e
cheaper to compute!

Slide credit: S. Lazebnik
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Efficient Implementation

Gaussian, sigma=2

1

Downsample
by 2x
g

Gaussian, sigma=1
o Downsample
Original Image I by 2x

>

Save computation by downsampling before blurring
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Efficient Implementation

1 A— »
ot fﬁﬁ? ==
octave) >’9 ﬁ

e w2

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” [JCV
60 (2), pp. 91-110, 2004.

Slide credit: S. Lazebnik
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Recall Two Problems for Today:
* Fixing scaling by making detectors
in both location and scale

* Enabling matching between
features by describing regions
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Problem 1 Solved!

* How do we deal with scales: try them all
 Why is this efficient?

Vast majority of effort is in the first and second scales

1+1+1+1+1 K
4 16 64 4177 3
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Second Problem: Describing Features

Finding and Matching

1: find corners+features
2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe
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Second Problem: Describing Features

Image — 40 1/2 size, rot. 45°
Lightened+40

Image

100x100 crop
at Glasses
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Second Problem: Describing Features

Once we’ve found a corner/blobs, we can’t just use
the image nearby. What about:

1. Scale?
2. Rotation?
3. Additive light?
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Handling Scale

Given characteristic scale (maximum Laplacian
response), we can just rescale image

Slide credit: S. Lazebnik
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Handling Rotation

Given window, can compute dominant
orientation and then rotate image

Compute gradient

direction at each pixel Build a histogram of gradient
directions in window

0 T 2™
Find dominant direction

Rotate so dominant direction is up from histogram
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Scale and Rotation

Keypoints at characteristic scales
and dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
1JCV 60 (2), pp. 91-110, 2004.
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Scale and Rotation

Keypoints at characteristic scales
and dominant orientations

“ | _\"Q.‘('.
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Rotate and set to e !
common scale 22 ST
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—

“} \ .A ";‘_”‘.
21 Sk "g-&l Rotate and set to
R T &2 common scale
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Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
1JCV 60 (2), pp. 91-110, 2004.
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Scale and Rotation

Now if we had two images of the same scene but different
scale / rotation, we would find the same keypoints and set
them to a common scale / rotation

Pixels of the rotated,
rescaled patches
should be the same!
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llumination, Out-of-plane rotation?

We would like to be able But the local patches
to match these two points look very different!

|Idea: Instead of comparing the pixels, instead use a feature vector
to describe the appearance of each patch
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SIFT Descriptors

X
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Normalize the rotation / scale of the patch
Compute gradient at each pixel

Divide into sub-patches (here 2x2, actually 4x4)
In each sub-patch, compute histogram of 8

gradient directions
5. Describe the patch with 4*4*8 = 128 numbers

B wnN e

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” I/CV 60 (2), pp. 91-110, 2004.
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptors
K X SREE B>

Nice properties of SIFT:
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1. Using gradients gives invariance to illumination

2. Using histograms of patches gives invariance to
small shifts / rotations

3. Compactly describe local appearance of patches
with 128-dim vector

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” I/CV 60 (2), pp. 91-110, 2004.
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptors

* In principle: build a histogram of the gradients

* In reality: quite complicated
* Gaussian weighting: smooth response
* Normalization: reduces illumination effects
* Clamping
* Affine adaptation

Read the paper for all the gory details...

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” I/CV 60 (2), pp. 91-110, 2004.
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Properties of SIFT

 Can handle: up to ~¥60 degree out-of-plane rotation,
Changes of illumination
* Fast and efficient and lots of code available

Slide credit: N. Snavely
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Feature Descriptors

Think of feature as some non-linear filter
that maps pixels to 128D feature

128D
vector X

Distance between
vectors gives us the
visual appearance
between patches

Photo credit: N. Snavely

February 11, 2020
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SIFT Features: Instance Matching
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Example credit: J. Hays
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SIFT Features: Instance Matching

Example credit: J. Hays
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2"d Nearest Neighbor Trick

* Given a feature x, nearest neighbor to x is a good match,
but distances can’t be thresholded.

* Instead, find nearest neighbor and second nearest
neighbor. This ratio is a good test for matches:

Xg — X1NN

Xg — X2NN
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2"d Nearest Neighbor Trick
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1

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” [/CV 60 (2), pp. 91-110, 2004.

Justin Johnson
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

1: find corners+features
2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe
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ext Task: Find a Transform

Find a transform
that brings our
matched features
together!
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