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Lecture 9:
Edge + Corner Detection
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Administrative

• HW1 due yesterday!

• HW2 out yesterday, due Wednesday 2/19 11:59pm
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Motivating Problem
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Are these pictures of the same object?
If so, how are they related?
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Applications to Have in Mind
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Object Recognition by matching against templates

Labeled Images

Stop Sign

Image to Recognize

Yield Sign
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Applications to Have in Mind
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Building a 3D Reconstruction Out Of Images

Slide Credit: N. Seitz
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Applications to Have in Mind

6

Stitching photos taken at different angles
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One Familiar Example
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Given two images: how do you align them?
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One (Hopefully Familiar) Solution

8

for y in range(-ySearch,ySearch+1):
for x in range(-xSearch,xSearch+1):

#Touches all HxW pixels! 
check_alignment_with_images()
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A Motivating Example
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Given these images: how do you align them?

Photo credit: M. Brown, D. Lowe

These aren’t off by a small 2D translation but instead by a 3D 
rotation + translation of the camera.
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One (Hopefully Familiar) Solution
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for y in yRange:
for x in xRange:

for z in zRange:
for xRot in xRotVals:

for yRot in yRotVals:
for zRot in zRotVals:

#touches all HxW pixels!
check_alignment_with_images() 

This code should make you really unhappy
Note: this actually isn’t even the full number of parameters; it’s actually 8 for loops. 
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An Alternative Approach
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Given these images: how would you align them?

A mountain peak!
A mountain peak!

This dark spot This dark spot
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An Alternative Approach
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1: find corners+features
2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

Finding and Matching
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An Alternative Approach
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Given pairs
p1,p2 of 
correspondence, how 
do I align?

Consider translation-
only case from HW1.
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An Alternative Approach
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Blend Them Together

Photo Credit: M. Brown, D. Lowe

Key insight: we don’t work with full image. We 
work with only parts of the image.  
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An Alternative Approach
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Problem #1 (today): How do we detect points in images?
Problem #2 (next time): How do we describe points in images?

Our points must be robust to viewpoint and illumination change!
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Today
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Corner of 
the glasses

Edge next to 
panel 

Part 1: Finding Edges
Part 2: Finding Corners
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Part I: Edges
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Where do Edges Come From?
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Where do Edges Come From?
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Depth / Distance 
Discontinuity

Why?
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Where do Edges Come From?
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Surface Normal / Orientation 
Discontinuity

Why?
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Where do Edges Come From?
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Surface Color / Reflectance Properties 
Discontinuity
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Where do Edges Come From?
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Illumination
Discontinuity
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Last Time: Image Gradient
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Compute derivatives Ix and Iy with filters

Ix Iy
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Last Time: Image Gradient
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Compute derivatives Ix and Iy with filters

Ix Iy
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Last Time: Gradient Magnitude
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Gradient Magnitude (Ix2 + Iy2 )1/2

Gives rate of change at each pixel
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Last Time: Gradient Magnitude
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Gradient Magnitude (Ix2 + Iy2 )1/2

Gives rate of change at each pixel



Justin Johnson February 6, 2020EECS 442 WI 2020: Lecture 9 -

Last Time: Gradient Direction
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Gradient Direction atan2(Ix, Iy)
Gives direction of change at each pixel
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Last Time: Gradient Direction
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Gradient Direction atan2(Ix, Iy)
Gives direction of change at each pixel

I’m making the lightness equal to gradient magnitude
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Last Time: Gradient Direction
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Gradient Direction atan2(Ix, Iy)
Gives direction of change at each pixel

Showing the gradient direction at every pixel
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Gradient Direction
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atan2(Iy,Ix): orientation

Why is there structure at 1 and not at 2?

1
2
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Gradients of Noisy Images
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Slide Credit: S. Seitz
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Gradients of Noisy Images

32

-1 0 1Conv. image + per-pixel noise with

𝐷",$ = (𝐼",$()+𝜖",$()) − (𝐼",$.)+𝜖",$.) )

𝐼",$ = True image 𝜖",$ ∼ 𝑁(0, 𝜎3)

𝐷",$ = (𝐼",$()−𝐼",$.)) + 𝜖",$() − 𝜖",$.)

True 
difference

Sum of 2 
Gaussians

𝜖",$ − 𝜖4,5 ∼ 𝑁 0, 2𝜎3 → Variance doubles!
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Gradients of Noisy Images
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Slide Credit: S. Seitz

How can we use the last class to fix this?
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Handling Noise
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f

g

f * g

)( gf
dx
d

*

Slide Credit: S. Seitz
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Noise in 2D
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Noisy Input Ix via [-1,01] Zoom
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Noise + Smoothing
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Smoothed Input Ix via [-1,01] Zoom
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Smooth + Derivative in One Pass (1D)
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g
dx
df *

f

g
dx
d

Slide Credit: S. Seitz

𝑑
𝑑𝑥

𝑓 ∗ 𝑔 = 𝑓 ∗
𝑑
𝑑𝑥
𝑔
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Smooth + Derivative in One Pass (2D)
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Which one finds the X direction?
Slide Credit: L. Lazebnik

Gaussian Derivative Filter
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Gaussian Derivative Filter
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1 pixel 3 pixels 7 pixels

Removes noise, but blurs edge

Slide Credit: D. Forsyth
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Filters We’ve Seen
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Why would anybody use the bottom filter?

Gaussian 
Derivative

1 0 −1
2 0 −2
1 0 −1

1 2 1
0 0 0
−1 −2 −1

Sobel
Filter
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Filters We’ve Seen
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Smoothing

Slide Credit: J. Deng

Derivative

Example Gaussian Deriv. of gauss

Only +? Yes No

Goal Remove noise Find edges

Sums to 1 0

Why sum to 1 or 0, intuitively? 
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Problems
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Image human segmentation gradient magnitude

Still an active area of research
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Part II: Corners
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Corners
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9300 Harris Corners Pkwy, Charlotte, NC

Slide Credit: S. Lazebnik
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Corners: Desired Properties
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• Repeatable: should find same things even with 
distortion
• Saliency: each feature should be distinctive
• Compactness: shouldn’t just be all the pixels
• Locality: should only depend on local image data

Property list: S. Lazebnik
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Corners: Hard Example
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Slide credit: N. Snavely

Can you find the correspondences?
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Corners: Hard Example
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Slide credit: N. Snavely

Look for the colored squares
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Corners: Intuition
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“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Slide Credit: S. Lazebnik

Should see where we are based on small window, 
or any shift → big intensity change.
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Formalizing Corner Detection
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Sum of squared differences between image and 
image shifted u,v pixels over.

Plot of E(u,v)

E(3,2)

Image I(x,y)

Slide Credit: S. Lazebnik

𝐸 𝑢, 𝑣 = A
B,C ∈E

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 3
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Formalizing Corner Detection
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𝐸 𝑢, 𝑣 = A
B,C ∈E

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 3

Sum of squared differences between image and 
image shifted u,v pixels over.

Plot of E(u,v)

E(0,0)

Image I(x,y)

Slide Credit: S. Lazebnik

What’s the value 
of E(0,0)?
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Formalizing Corner Detection
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Can compute E[u,v] for any window and u,v. 
But we’d like a simpler function of u,v.

Slide Credit: S. Lazebnik
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Aside: Taylor Series for Images
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Recall Taylor Series: 

𝑓 𝑥 + 𝑑 ≈ 𝑓 𝑥 +
𝜕𝑓
𝜕𝑥
𝑑

𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝐼 𝑥, 𝑦 + 𝐼B𝑢 + 𝐼C𝑣

Do the same with images, treating them 
as function of x, y
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Formalizing Corner Detection
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𝐸 𝑢, 𝑣 = A
B,C ∈E

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 3

≈ A
B,C ∈E

𝐼 𝑥, 𝑦 + 𝐼B[𝑥, 𝑦]𝑢 + 𝐼C[𝑥, 𝑦]𝑣 − 𝐼[𝑥, 𝑦]
3

Taylor series 
expansion for I at 
every single 
point in window

= A
B,C ∈E

𝐼B[𝑥, 𝑦]𝑢 + 𝐼C[𝑥, 𝑦]𝑣
3

Cancel

= A
B,C ∈E

𝐼B3𝑢3 + 2𝐼B𝐼C𝑢𝑣 + 𝐼C3𝑣3Expand

For brevity: Ix = Ix[x, y], Iy = Iy[x, y]
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Formalizing Corner Detection
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𝐸 𝑢, 𝑣 ≈ A
B,C ∈E

𝐼B3𝑢3 + 2𝐼B𝐼C𝑢𝑣 + 𝐼C3𝑣3

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 L

By linearizing image, we can approximate E(u,v) with 
quadratic function of u and v

𝑴 =

A
B,C∈E

𝐼B3 A
B,C∈E

𝐼B𝐼C

A
B,C∈E

𝐼B𝐼C A
B,C∈E

𝐼C3

M is called the second moment matrix
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Second Moment Matrix: Intuition
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𝑴 =

A
B,C∈E

𝐼B3 A
B,C∈E

𝐼B𝐼C

A
B,C∈E

𝐼B𝐼C A
B,C∈E

𝐼C3
= 𝑎 0

0 𝑏

Pretend for now gradients are either vertical or 
horizontal at a pixel (so Ix Iy = 0)Obviously 

Wrong!

If a,b are both small: flat

If one is big, one is small: edge

If a,b both big: corner
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Review: Quadratic Forms
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Diagram credit: S. Lazebnik

𝐸 [𝑢, 𝑣] = 𝑢, 𝑣 𝑴 𝑢, 𝑣 L

Suppose have symmetric matrix M, scalar a, 
vector [u,v]: 

𝐸 [𝑢, 𝑣] = 𝑎

Then the isocontour / slice-through of F, i.e. 

is an ellipse.
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Review: Quadratic Forms
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direction of the 
slowest change

direction of the 
fastest change

(l1)-1/2

(l2)-1/2

Slide credit: S. Lazebnik

𝑴 = 𝑹.𝟏 𝜆) 0
0 𝜆3

𝑹

We can look at the shape of this ellipse by 
decomposing M into a rotation + scaling

What are λ1
and λ2? 
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Second Moment Matrix

58

The second moment matrix tells us how quickly the 
image changes and in which directions. 

𝑴 =

A
B,C∈E

𝐼B3 A
B,C∈E

𝐼B𝐼C

A
B,C∈E

𝐼B𝐼C A
B,C∈E

𝐼C3
= 𝑹.) 𝜆) 0

0 𝜆3
𝑹

Can compute at each 
pixel

Directions

Amounts 
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Visualizing Second Moment Matrix

59

Slide credit: S. Lazebnik
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Visualizing Second Moment Matrix

60

Slide credit: S. Lazebnik

Technical note: M is often best
visualized by first taking 
inverse, so long edge of ellipse 
goes along edge
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Eigenvalues of M

61

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary

l1

l2

“Corner”
l1 and l2 are large,
l1 ~ l2;
E increases in all 
directions

l1 and l2 are small;
E is almost constant 
in all directions

“Edge” 
l1 >> l2

“Edge” 
l2 >> l1

“Flat” 
region
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Eigenvalues of M
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𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 3

= 𝜆)𝜆3 − 𝛼 𝜆) + 𝜆3 3 “Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

α: constant (0.04 to 0.06)

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary
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Harris Corner Detector
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1. Compute partial derivatives Ix, Iy per pixel
2. Compute M at each pixel, using Gaussian 

weighting w

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑴 =

A
B,C∈E

𝑤(𝑥, 𝑦)𝐼B3 A
B,C∈E

𝑤(𝑥, 𝑦)𝐼B𝐼C

A
B,C∈E

𝑤(𝑥, 𝑦)𝐼B𝐼C A
B,C∈E

𝑤(𝑥, 𝑦)𝐼C3

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Harris Corner Detector
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1. Compute partial derivatives Ix, Iy per pixel
2. Compute M at each pixel, using Gaussian 

weighting w
3. Compute response function R

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 3

= 𝜆)𝜆3 − 𝛼 𝜆) + 𝜆3 3

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Computing R
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Slide credit: S. Lazebnik
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Computing R
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Slide credit: S. Lazebnik



Justin Johnson February 6, 2020EECS 442 WI 2020: Lecture 9 -

Harris Corner Detector
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1. Compute partial derivatives Ix, Iy per pixel
2. Compute M at each pixel, using Gaussian 

weighting w
3. Compute response function R
4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Harris Corner Detector
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Slide credit: S. Lazebnik
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Harris Corner Detector
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1. Compute partial derivatives Ix, Iy per pixel
2. Compute M at each pixel, using Gaussian 

weighting w
3. Compute response function R
4. Threshold R
5. Take only local maxima

(Non-Maxima Suppression, NMS)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” Proceedings 
of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Harris Corner Detector
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Slide credit: S. Lazebnik
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Harris Corner Detector: Result
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Slide credit: S. Lazebnik



Justin Johnson February 6, 2020EECS 442 WI 2020: Lecture 9 -

Desirable Properties

72

If our detectors are repeatable, they should be:
• Invariant to some things: image is transformed and 

corners remain the same
• Covariant/equivariant with some things: image is 

transformed and corners transform with it.

Slide credit: S. Lazebnik
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Recall Motivating Problem
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Images may be different in lighting and geometry
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Affine Intensity Change
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R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity changes
Slide credit: S. Lazebnik

𝐼\]^ = 𝑎𝐼_5` + 𝑏
M only depends on derivatives, so b is irrelevant

But a scales derivatives and there’s a threshold
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Image Translation
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All done with convolution. Convolution is translation 
invariant. 

Equivariant with translation

Slide credit: S. Lazebnik
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Image Rotation
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Rotations just cause the corner rotation to change. 
Eigenvalues remain the same.

Equivariant with rotation
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Image Scaling
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Corner

One pixel can become many pixels and vice-versa.

Not equivariant with scaling
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An Alternative Approach
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Problem #1 (today): How do we detect points in images?
Problem #2 (next time): How do we describe points in images?

Our points must be robust to viewpoint and illumination change!
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Next Time:
Image Descriptors

79


