Lecture 9: Edge + Corner Detection

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 1

Administrative

• HW1 due yesterday!

• HW2 out yesterday, due Wednesday 2/19 11:59pm

Justin Johnson

Motivating Problem

Are these pictures of the same object? If so, how are they related?

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 3

Applications to Have in Mind

Object Recognition by matching against templates

Labeled Images

Image to Recognize

February 6, 2020

Justin Johnson

Applications to Have in Mind

Building a 3D Reconstruction Out Of Images

Slide Credit: N. Seitz

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 5

Applications to Have in Mind

Stitching photos taken at different angles

Justin Johnson

One Familiar Example

Given two images: how do you align them?

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 7

One (Hopefully Familiar) Solution

for y in range(-ySearch,ySearch+1):
 for x in range(-xSearch,xSearch+1):
 #Touches all HxW pixels!
 check_alignment_with_images()

Justin Johnson

A Motivating Example

Given these images: how do you align them?

These aren't off by a small 2D translation but instead by a 3D rotation + translation of the camera.

Photo credit: M. Brown, D. Lowe

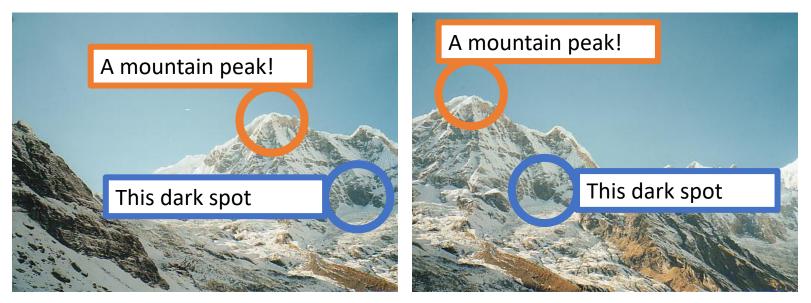
Justin Johnson

One (Hopefully Familiar) Solution

for y in yRange: for x in xRange: for z in zRange: for xRot in xRotVals: for yRot in yRotVals: for zRot in zRotVals: #touches all HxW pixels! check alignment with images() This code should make you really unhappy

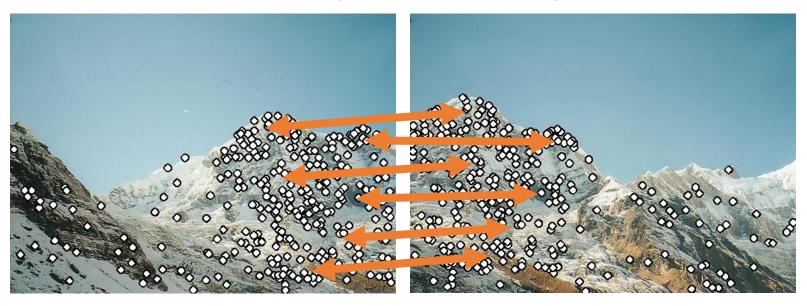
Note: this actually isn't even the full number of parameters; it's actually 8 for loops.

Given these images: how would **you** align them?



Justin Johnson

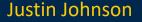
Finding and Matching



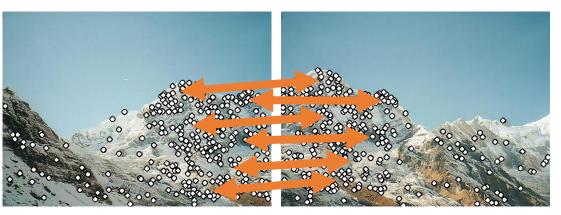
1: find corners+features

2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe



Given pairs p1,p2 of correspondence, how do I align?



Consider translationonly case from HW1.

Justin Johnson

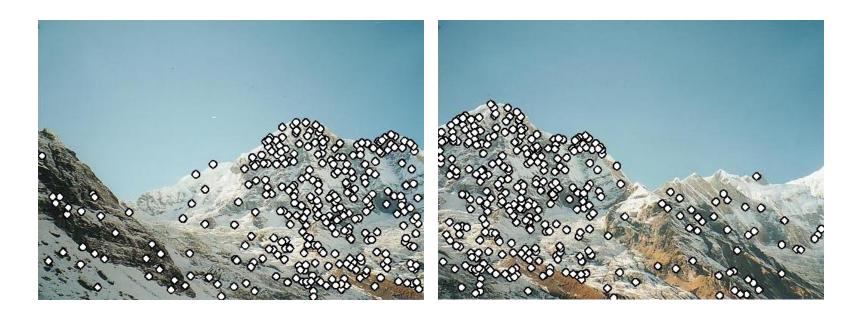


Blend Them Together

Key insight: we don't work with full image. We work with only parts of the image.

Photo Credit: M. Brown, D. Lowe

Justin Johnson

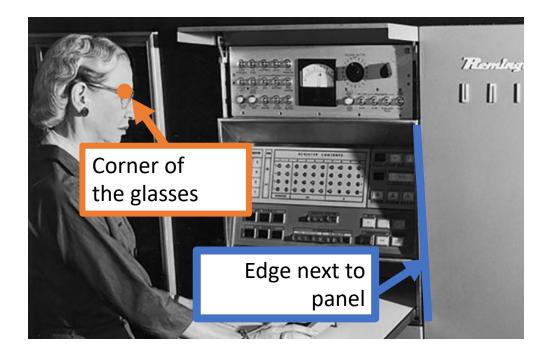


Problem #1 (today): How do we <u>detect</u> points in images?
Problem #2 (next time): How do we <u>describe</u> points in images?

Our points must be <u>robust</u> to viewpoint and illumination change!

Today

Part 1: Finding Edges Part 2: Finding Corners



Justin Johnson

EECS 442 WI 2020: Lecture 9 - 16

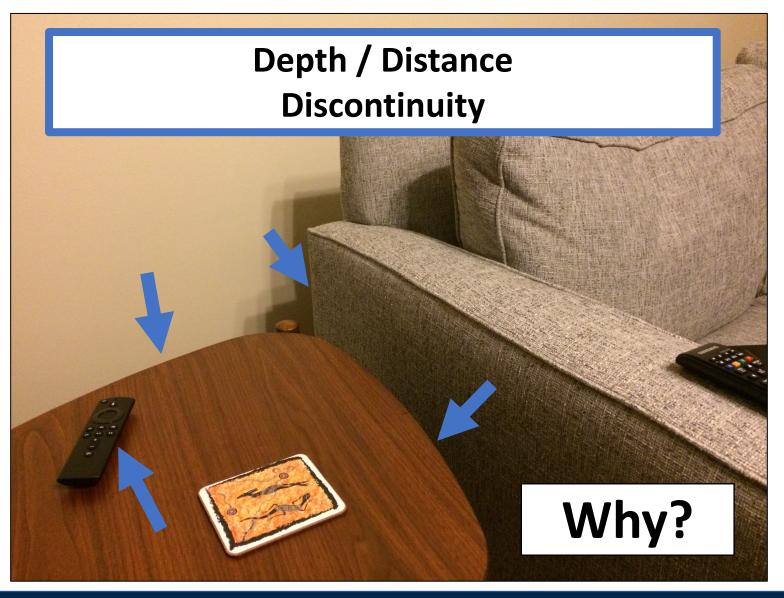
Part I: Edges

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 17

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 18



Justin Johnson

EECS 442 WI 2020: Lecture 9 - 19

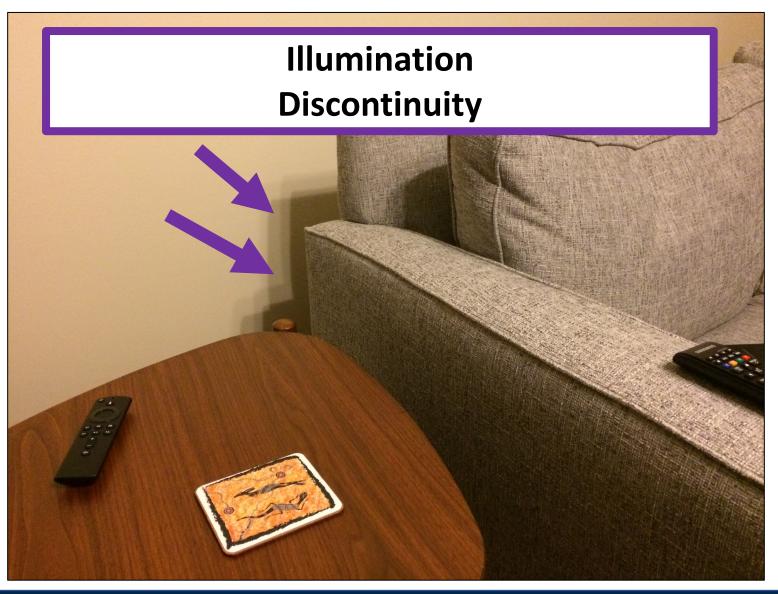
Surface Normal / Orientation Discontinuity

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 20

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 21



Justin Johnson

EECS 442 WI 2020: Lecture 9 - 22

Last Time: Image Gradient

Compute derivatives Ix and Iy with filters

Justin Johnson

EECS 442 WI 2020: Lecture 9 -23

Last Time: Image Gradient

Ix

Compute derivatives Ix and Iy with filters

ly

February 6, 2020

Justin Johnson

Last Time: Gradient Magnitude

Gradient Magnitude (Ix² + Iy²)^{1/2} Gives rate of change at each pixel

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 25

Last Time: Gradient Magnitude

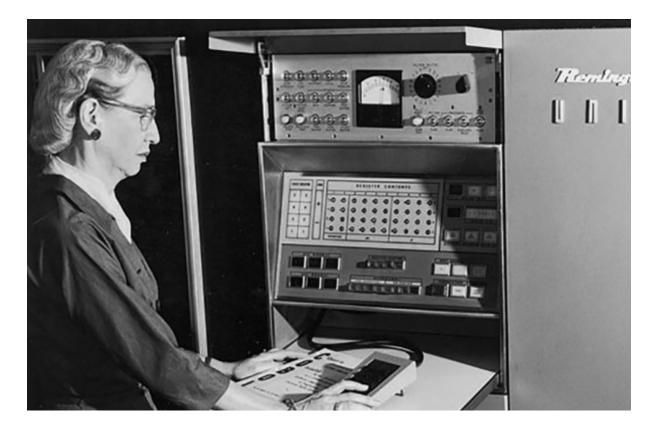
Gradient Magnitude (Ix² + Iy²)^{1/2} Gives rate of change at each pixel

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 26

Last Time: Gradient Direction

Gradient Direction atan2(Ix, Iy) Gives direction of change at each pixel



Justin Johnson

EECS 442 WI 2020: Lecture 9 - 27

Last Time: Gradient Direction

Gradient Direction atan2(Ix, Iy) Gives direction of change at each pixel

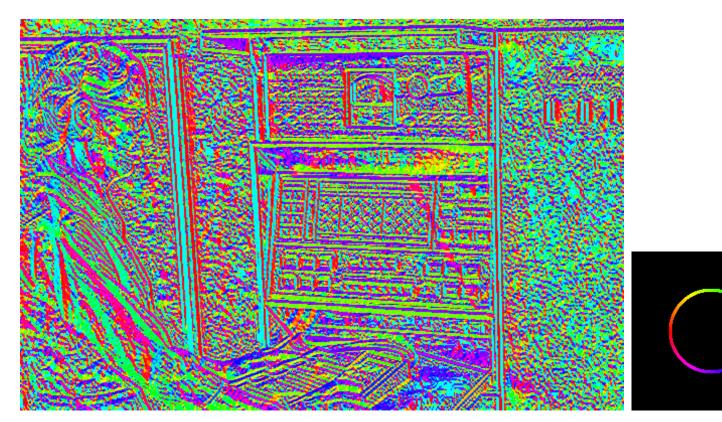
I'm making the lightness equal to gradient magnitude

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 28

Last Time: Gradient Direction

Gradient Direction atan2(lx, ly) Gives direction of change at each pixel



Showing the gradient direction at every pixel

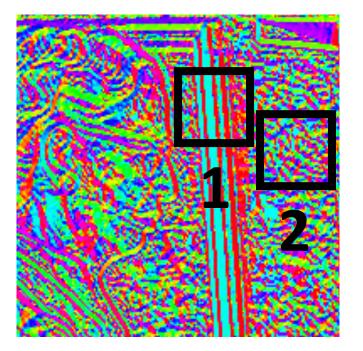
Justin Johnson

EECS 442 WI 2020: Lecture 9 - 29

Gradient Direction

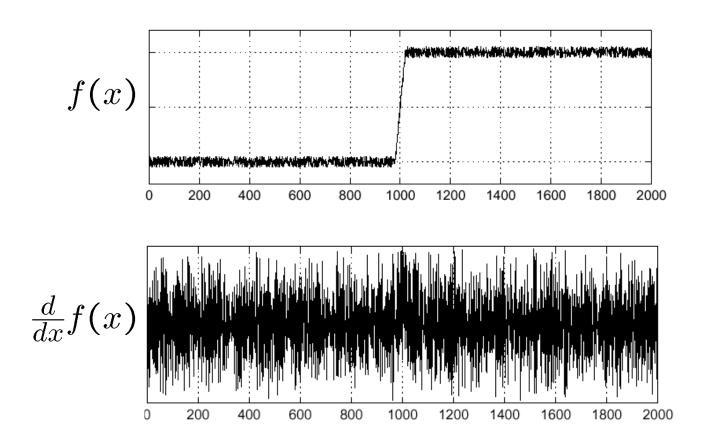
atan2(ly,lx): orientation

Why is there structure at 1 and not at 2?



Justin Johnson

Gradients of Noisy Images

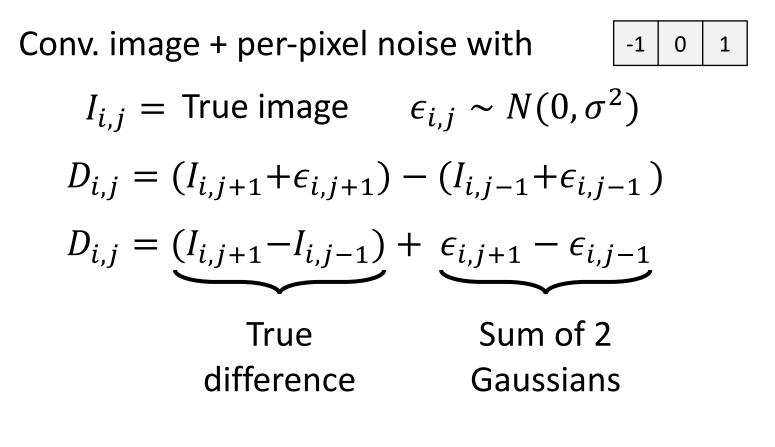


Slide Credit: S. Seitz

Justin Johnson

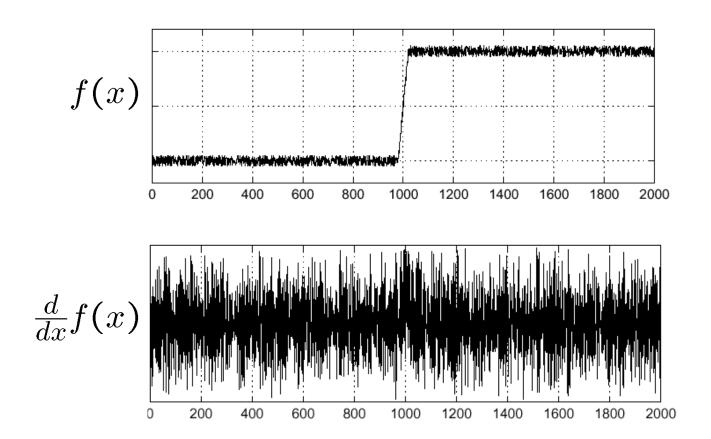
EECS 442 WI 2020: Lecture 9 - 31

Gradients of Noisy Images



 $\epsilon_{i,j} - \epsilon_{k,l} \sim N(0, 2\sigma^2) \rightarrow \text{Variance doubles!}$

Gradients of Noisy Images

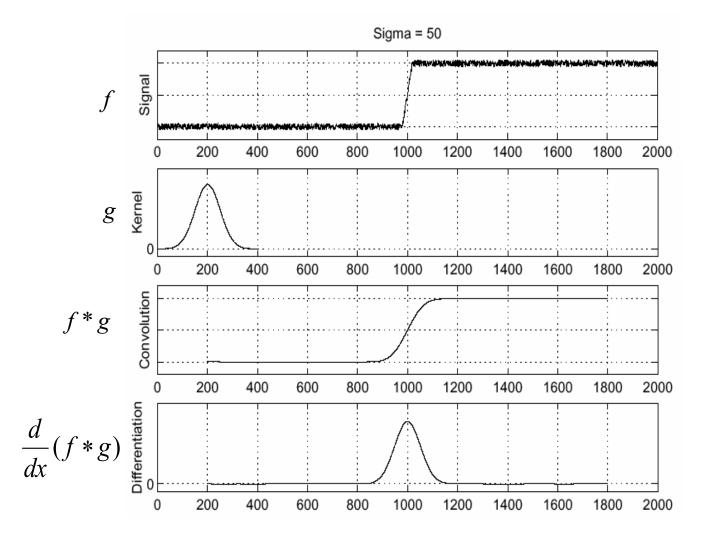


How can we use the last class to fix this?

Slide Credit: S. Seitz

Justin Johnson

Handling Noise



Slide Credit: S. Seitz

Justin Johnson

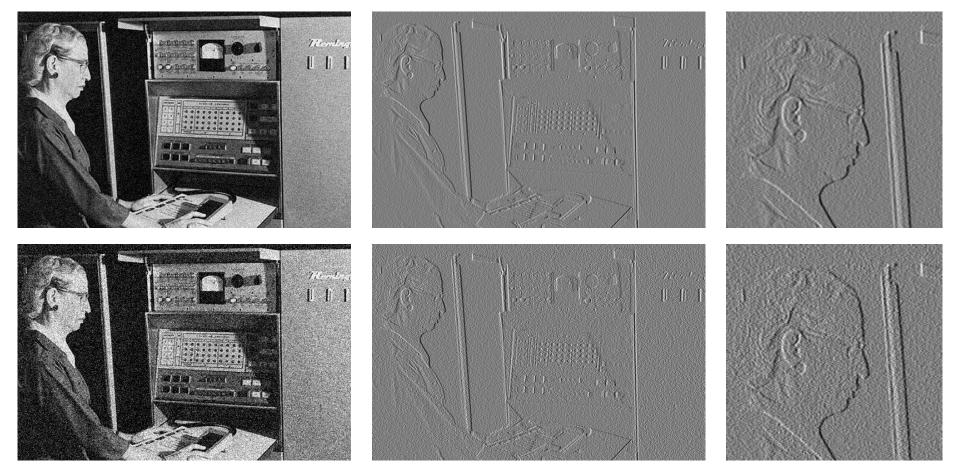
EECS 442 WI 2020: Lecture 9 - 34

Noise in 2D

Noisy Input

lx via [-1,01]

Zoom

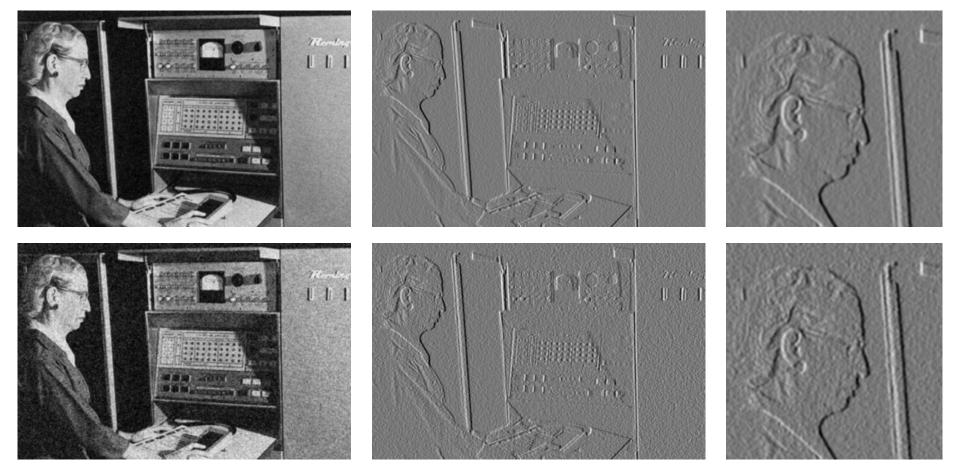


Noise + Smoothing

Smoothed Input

lx via [-1,01]

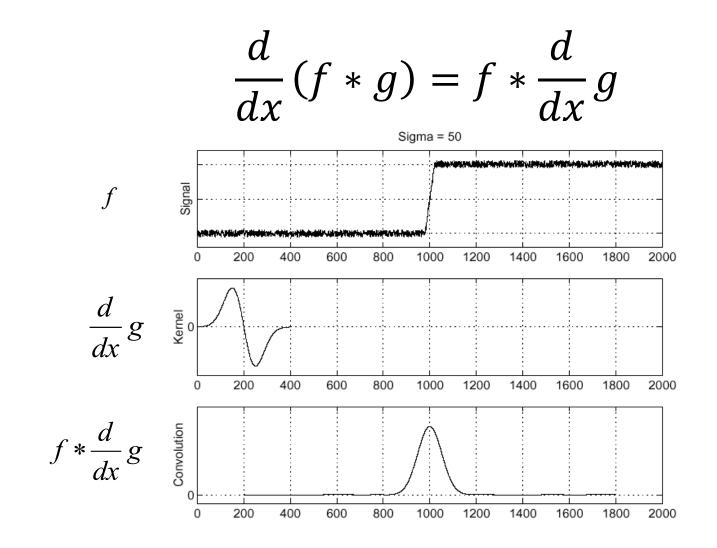
Zoom



Justin Johnson

EECS 442 WI 2020: Lecture 9 - 36

Smooth + Derivative in One Pass (1D)



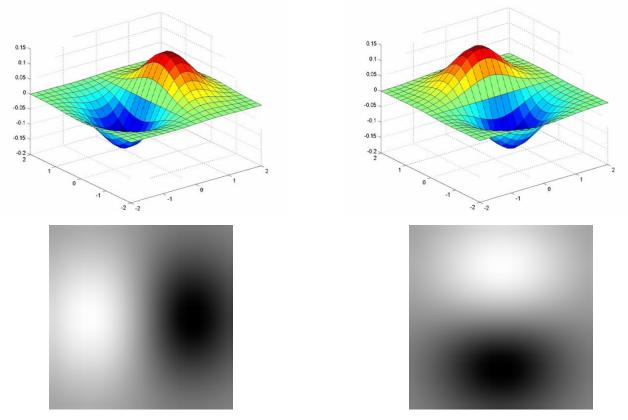
Slide Credit: S. Seitz

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 37

Smooth + Derivative in One Pass (2D)

Gaussian Derivative Filter



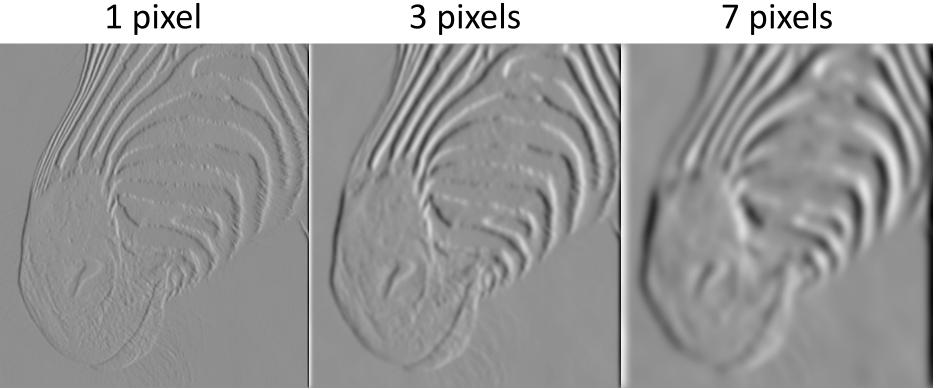
Which one finds the X direction?

Slide Credit: L. Lazebnik

Justin Johnson

Gaussian Derivative Filter

1 pixel



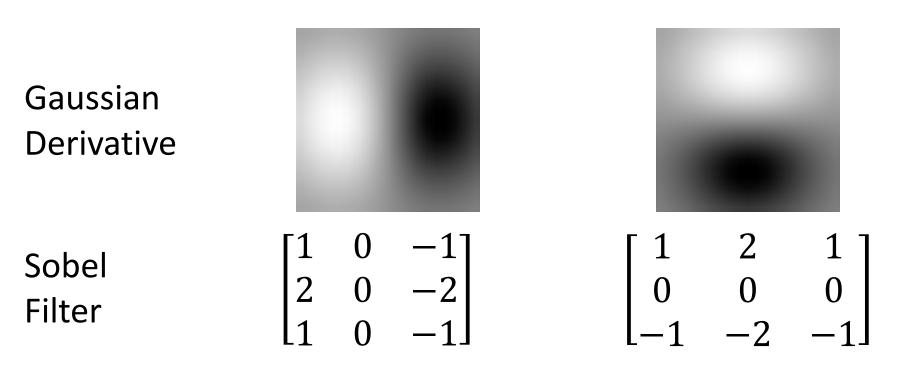
Removes noise, but blurs edge

Slide Credit: D. Forsyth

Justin Johnson

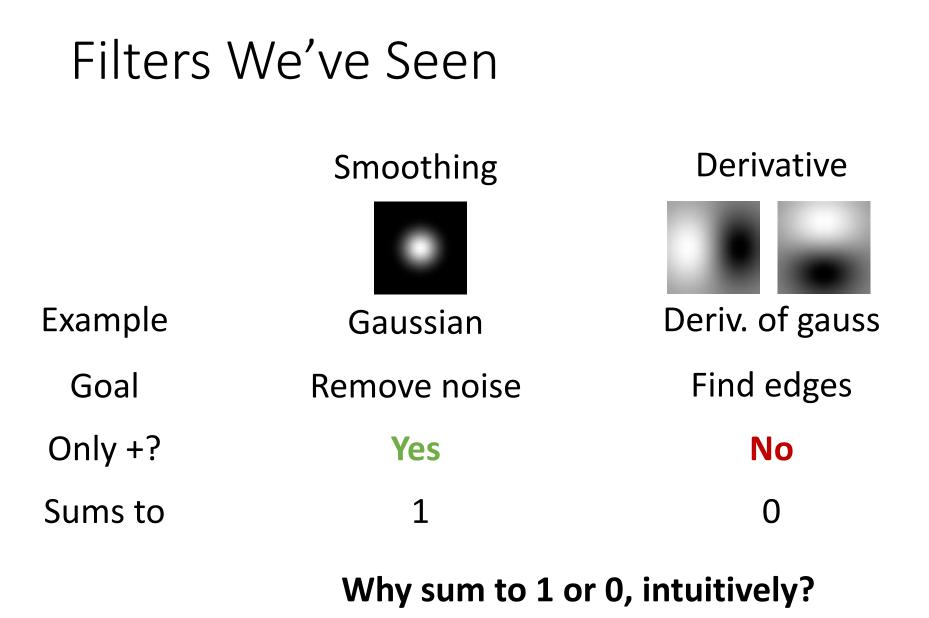
EECS 442 WI 2020: Lecture 9 -39

Filters We've Seen



Why would anybody use the bottom filter?

Justin Johnson



Slide Credit: J. Deng

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 41

Problems

gradient magnitude human segmentation Image

Still an active area of research

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 42

Part II: Corners

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 43

Corners

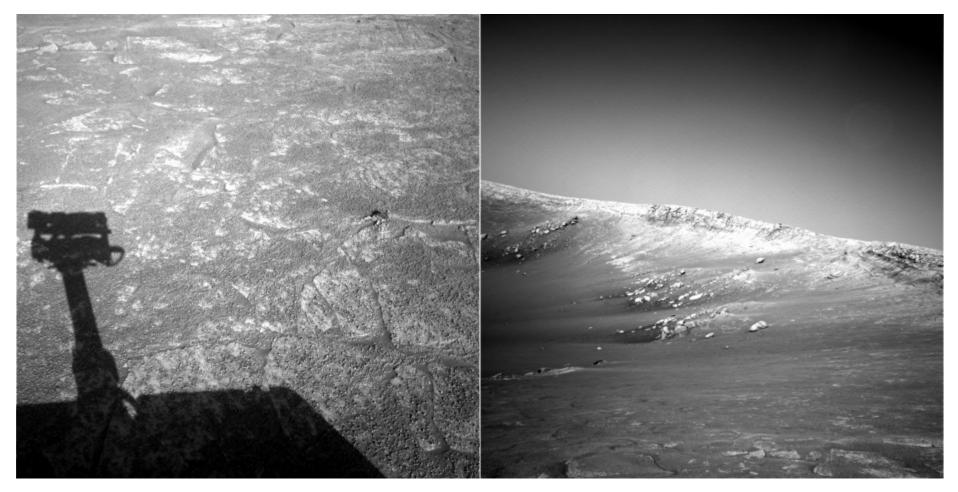
Slide Credit: S. Lazebnik

Justin Johnson

Corners: Desired Properties

- Repeatable: should find same things even with distortion
- Saliency: each feature should be distinctive
- **Compactness**: shouldn't just be all the pixels
- Locality: should only depend on local image data

Corners: Hard Example



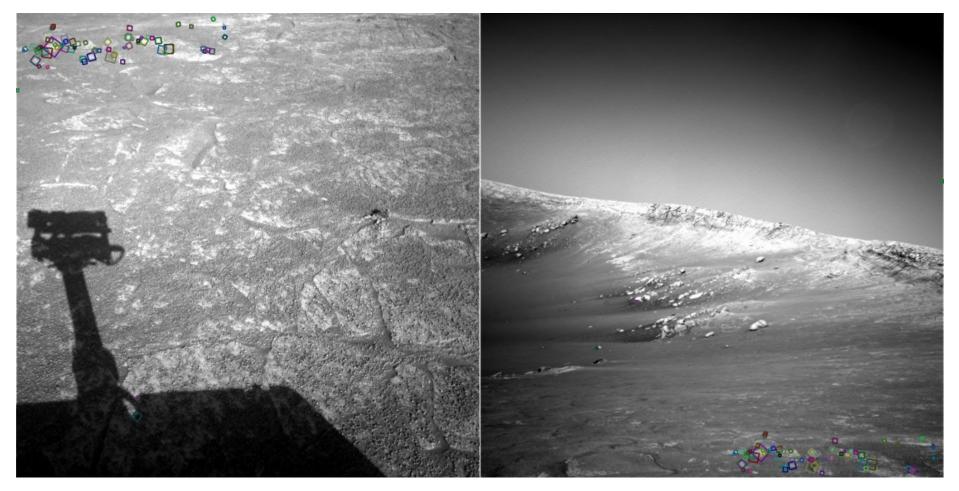
Can you find the correspondences?

Slide credit: N. Snavely

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 46

Corners: Hard Example



Look for the colored squares

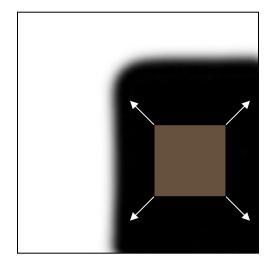
Slide credit: N. Snavely

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 47

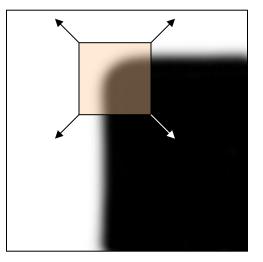
Corners: Intuition

Should see where we are based on small window, or any shift \rightarrow big intensity change.



"flat" region: no change in all directions

"edge": no change along the edge direction



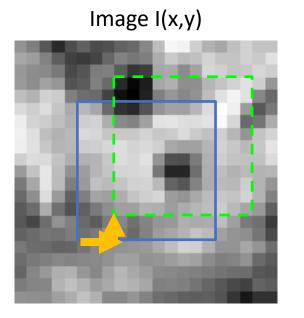
"corner": significant change in all directions

Slide Credit: S. Lazebnik

Justin Johnson

Sum of squared differences between image and image shifted u,v pixels over.

$$E(u,v) = \sum_{(x,y)\in W} (I[x+u,y+v] - I[x,y])^2$$



Slide Credit: S. Lazebnik

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 49

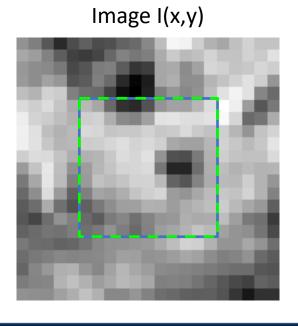
Plot of E(u,v)

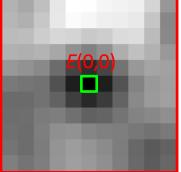
E(3,2)

Sum of squared differences between image and image shifted u,v pixels over.

$$E(u,v) = \sum_{(x,y)\in W} (I[x+u,y+v] - I[x,y])^2$$

What's the value of E(0,0)?

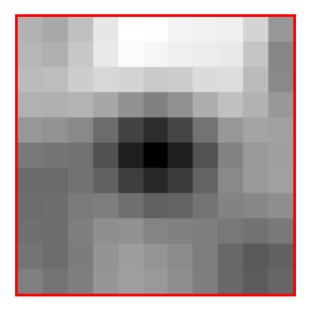




Slide Credit: S. Lazebnik

Justin Johnson

Can compute E[u,v] for any window and u,v. But we'd like a simpler function of u,v.



Slide Credit: S. Lazebnik

Justin Johnson

Aside: Taylor Series for Images

Recall Taylor Series:

$$f(x+d) \approx f(x) + \frac{\partial f}{\partial x}d$$

Do the same with images, treating them as function of x, y

$$I(x+u, y+v) \approx I(x, y) + I_x u + I_y v$$

Justin Johnson

Taylor series
expansion for I at
every single
point in window
$$E(u,v) = \sum_{(x,y)\in W} (I[x+u,y+v] - I[x,y])^2$$
$$\approx \sum_{(x,y)\in W} (I[x,y] + I_x[x,y]u + I_y[x,y]v - I[x,y])^2$$

Cancel

$$= \sum_{(x,y)\in W} \left(I_x[x,y]u + I_y[x,y]v \right)^2$$

Expand

$$= \sum_{(x,y)\in W} I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2$$

For brevity: $I_x = I_x[x, y]$, $I_y = I_y[x, y]$

Justin Johnson

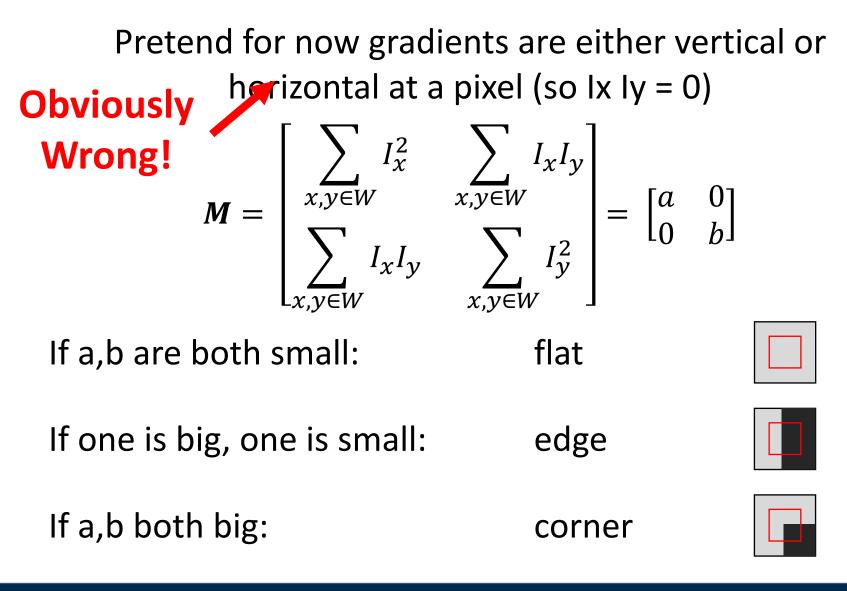
By linearizing image, we can approximate E(u,v) with quadratic function of u and v

$$E(u, v) \approx \sum_{(x,y)\in W} (I_x^2 u^2 + 2I_x I_y uv + I_y^2 v^2)$$

= $[u, v] \mathbf{M} [u, v]^T$
$$\mathbf{M} = \begin{bmatrix} \sum_{x,y\in W} I_x^2 & \sum_{x,y\in W} I_x I_y \\ \sum_{x,y\in W} I_x I_y & \sum_{x,y\in W} I_y^2 \end{bmatrix}$$

M is called the second moment matrix

Second Moment Matrix: Intuition



Justin Johnson

EECS 442 WI 2020: Lecture 9 - 55

Review: Quadratic Forms

Suppose have symmetric matrix **M**, scalar a, vector [u,v]:

$$E([u,v]) = [u,v]\boldsymbol{M}[u,v]^T$$

Then the isocontour / slice-through of F, i.e.

$$E([u,v]) = a$$

is an ellipse.

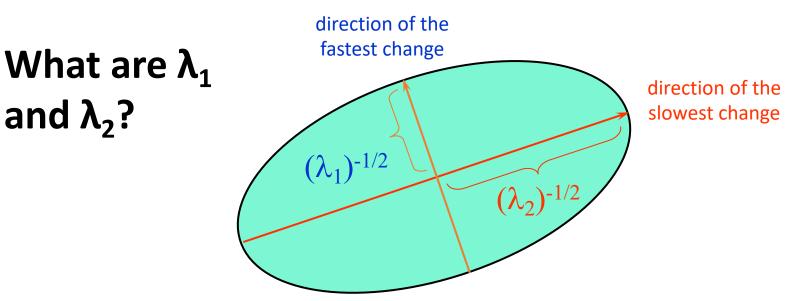
Diagram credit: S. Lazebnik

Justin Johnson

Review: Quadratic Forms

We can look at the shape of this ellipse by decomposing M into a rotation + scaling

$$\boldsymbol{M} = \boldsymbol{R}^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \boldsymbol{R}$$

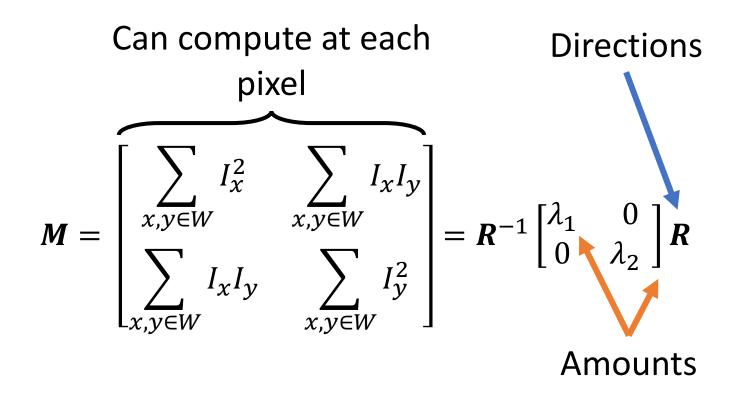


Slide credit: S. Lazebnik

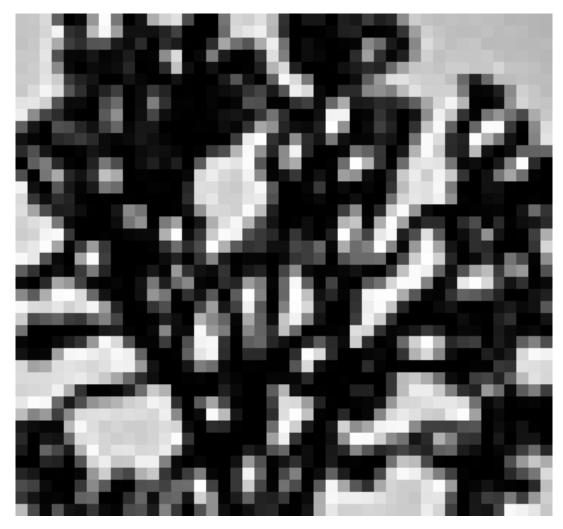
Justin Johnson

Second Moment Matrix

The second moment matrix tells us how quickly the image changes and in which directions.



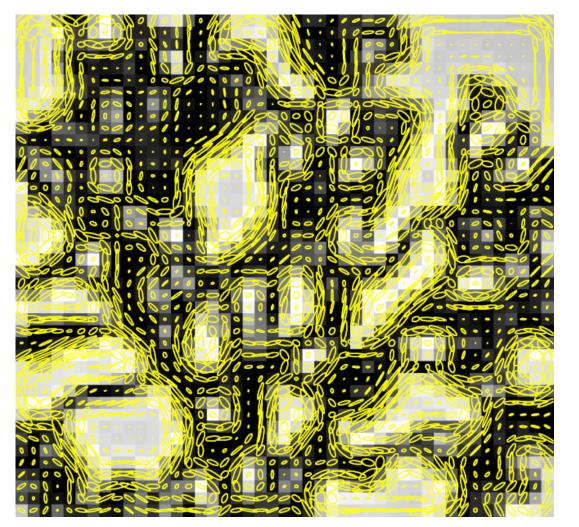
Visualizing Second Moment Matrix

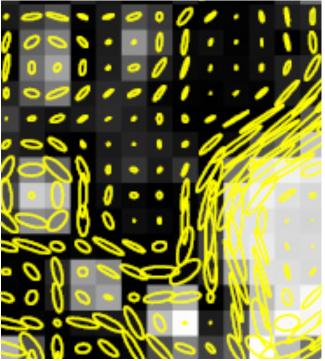


Slide credit: S. Lazebnik

Justin Johnson

Visualizing Second Moment Matrix





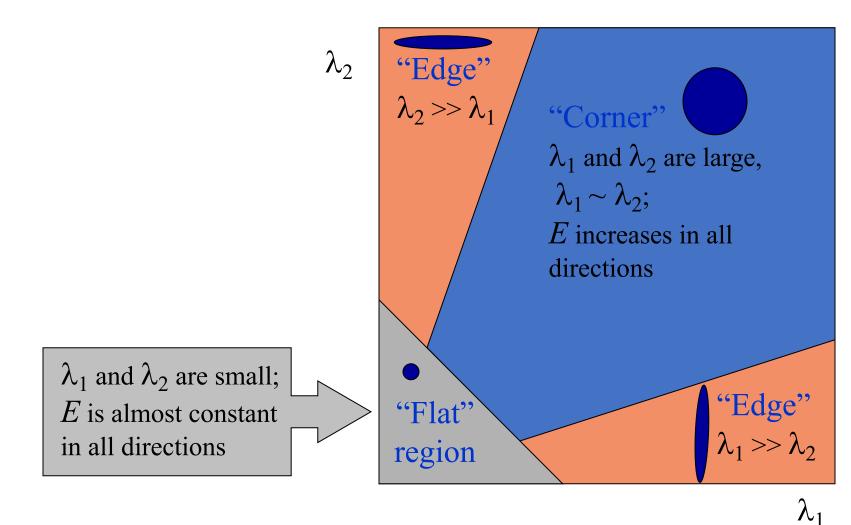
Technical note: M is often best visualized by first taking inverse, so long edge of ellipse goes along edge

Slide credit: S. Lazebnik

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 60

Eigenvalues of M



Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary

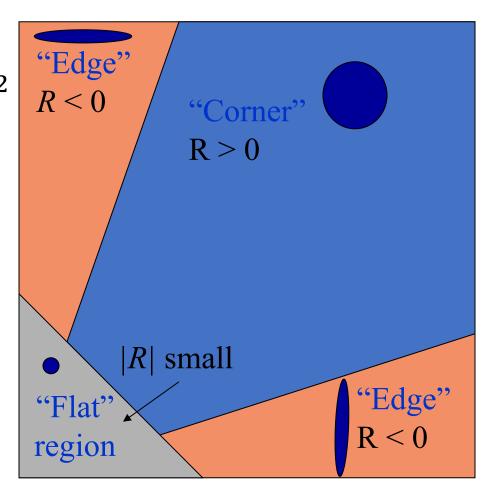
Justin Johnson

EECS 442 WI 2020: Lecture 9 - 61

Eigenvalues of M

$$R = \det(\mathbf{M}) - \alpha trace(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)



Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary

Justin Johnson

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w

$$\boldsymbol{M} = \begin{bmatrix} \sum_{x,y \in W} w(x,y) I_x^2 & \sum_{x,y \in W} w(x,y) I_x I_y \\ \sum_{x,y \in W} w(x,y) I_x I_y & \sum_{x,y \in W} w(x,y) I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

Justin Johnson

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R

$$R = \det(\mathbf{M}) - \alpha \ trace(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

Justin Johnson

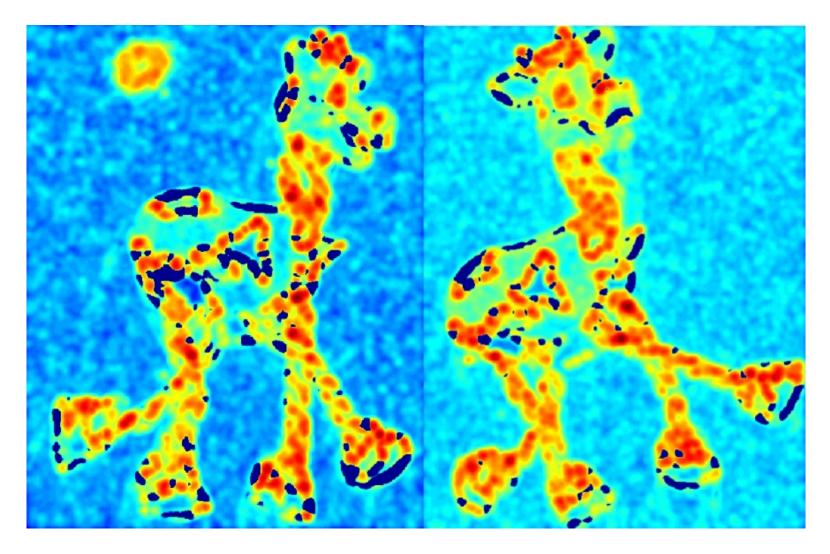
Computing R

Slide credit: S. Lazebnik

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 65

Computing R



Slide credit: S. Lazebnik

Justin Johnson

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

Slide credit: S. Lazebnik

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 68

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R
- Take only local maxima (Non-Maxima Suppression, NMS)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

Slide credit: S. Lazebnik

Justin Johnson

Harris Corner Detector: Result

Slide credit: S. Lazebnik

Justin Johnson

Desirable Properties

If our detectors are repeatable, they should be:

- Invariant to some things: image is transformed and corners remain the same
- Covariant/equivariant with some things: image is transformed and corners transform with it.

Recall Motivating Problem

Images may be different in lighting and geometry

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 73

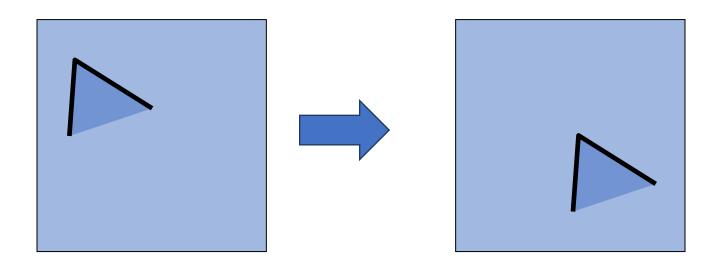
Affine Intensity Change $I_{new} = aI_{old} + b$ M only depends on derivatives, so b is irrelevant But a scales derivatives and there's a threshold R threshold X (image coordinate) X (image coordinate)

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik

Justin Johnson

Image Translation



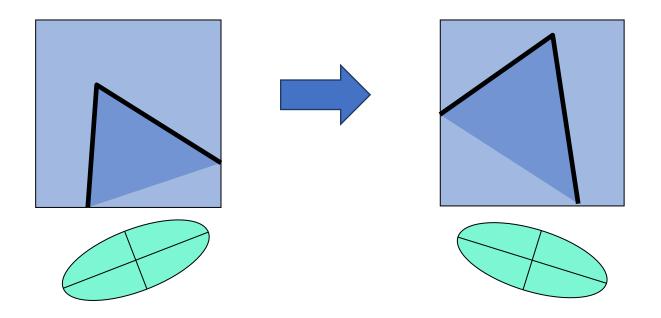
All done with convolution. Convolution is translation invariant.

Equivariant with translation

Slide credit: S. Lazebnik

Justin Johnson

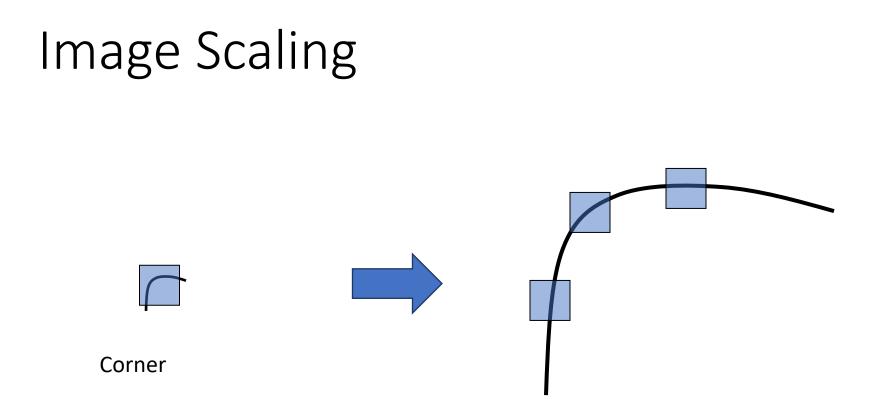
Image Rotation



Rotations just cause the corner rotation to change. Eigenvalues remain the same.

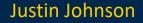
Equivariant with rotation

Justin Johnson

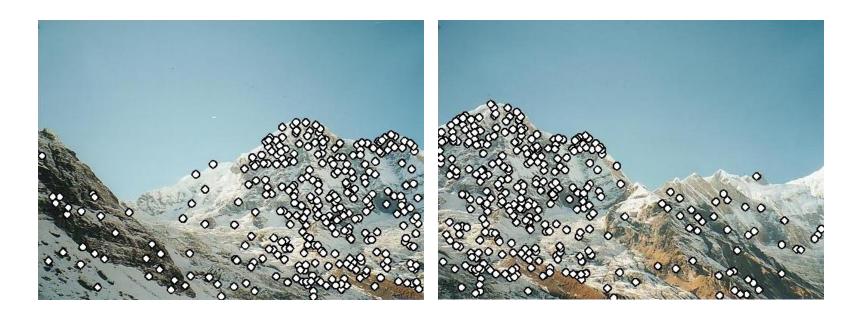


One pixel can become many pixels and vice-versa.

Not equivariant with scaling



An Alternative Approach



Problem #1 (today): How do we <u>detect</u> points in images?
Problem #2 (next time): How do we <u>describe</u> points in images?

Our points must be <u>robust</u> to viewpoint and illumination change!

Next Time: Image Descriptors

Justin Johnson

EECS 442 WI 2020: Lecture 9 - 79