Lecture 8: Image Filtering II

Administrative

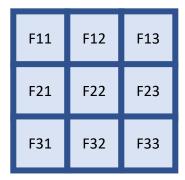
HW1 is due Tomorrow, Wednesday 2/5 11:59pm

HW2 should be released tomorrow, due Wednesday 2/19 11:59pm

Input

l11	l12	l13	114	l15	l16
121	122	123	124	125	126
l31	132	133	134	135	136
l41	142	143	144	145	146
l51	152	153	154	155	156

Filter



Output

011	012	013	014
021	022	023	024
O31	O32	O33	O34

Original

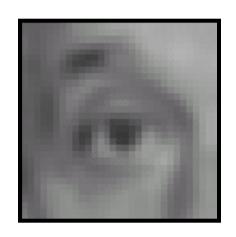
0	1	0
0	0	0
0	0	0

Shifted DOWN 1 pixel

Slide Credit: D. Lowe

Original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9



Blur (Box Filter)

Slide Credit: D. Lowe

Original

0	0	0
0	2	0
0	0	0

_

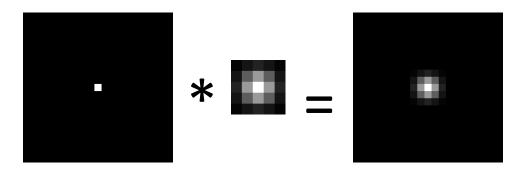
1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Sharpened (Acccentuates difference from local average)

Slide Credit: D. Lowe

Last Time: Convolution

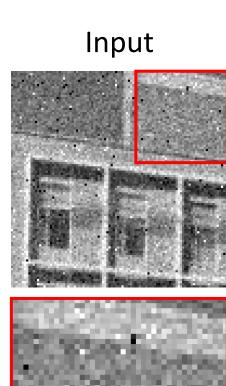
- Linear: f(al + bl') = af(l) + bf(l')
- Shift-Invariant: shift(f(I)) = f(shift(I))
- Any shift-invariant, linear operation is a convolution (*)
- Commutative: f * g = g * f
- Associative: (f * g) * h = f * (g * h)
- Distributes over +: f * (g + h) = f * g + f * h
- Scalars factor out: kf * g = f * kg = k (f * g)
- Identity (a single one with all zeros):



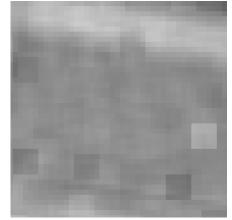
Today: Applications of Linear Filters

Box Smoothing

Intuition: if filter touches it, it gets a contribution.



Box Filter



Solution: Per-Pixel Weights

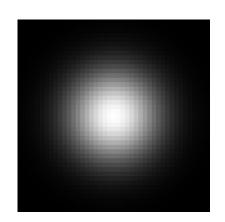
Intuition: weight contributions according to closeness to center.

Box Smoothing:

$$Filter_{ij} \propto 1$$

Better Approach:

$$Filter_{ij} \propto \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

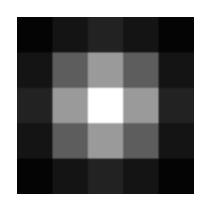


Recognize the Filter?

It's a Gaussian!

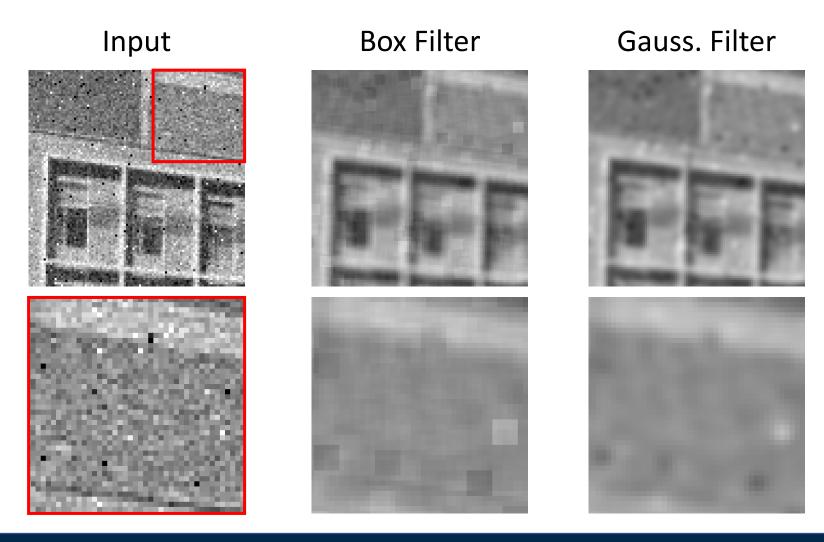
$$Filter_{ij} \propto \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

```
0.0030.0130.0220.0130.0030.0130.0600.0980.0600.0130.0220.0980.1620.0980.0220.0130.0600.0980.0600.0130.0030.0130.0220.0130.003
```



Box Blur vs Gaussian Blur

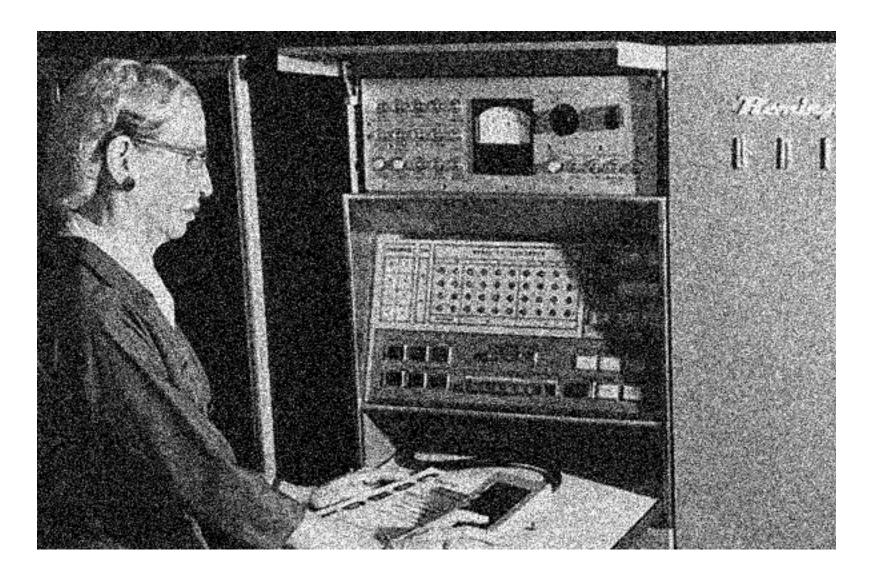
Still have some speckles, but it's not a big box



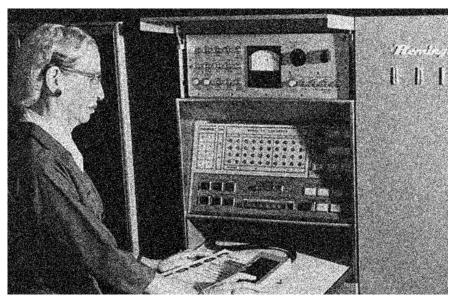
Gaussian Filters

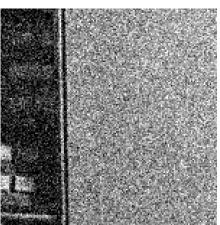
$$\sigma = 1$$
filter = 21x21
$$\sigma = 2$$
filter = 21x21
$$\sigma = 4$$
filter = 21x21
$$\sigma = 8$$
filter = 21x21

Note: filter visualizations are independently normalized throughout the slides so you can see them better

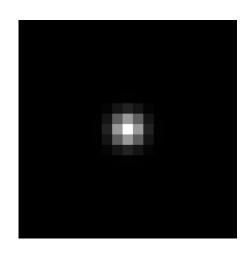


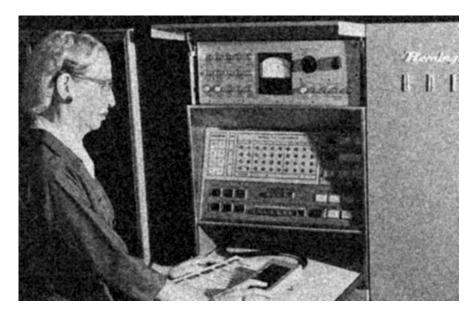
Input Image (no filter)

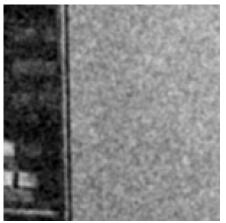




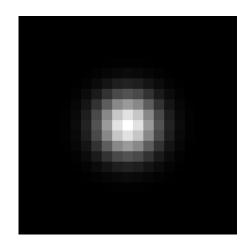
$$\sigma = 1$$

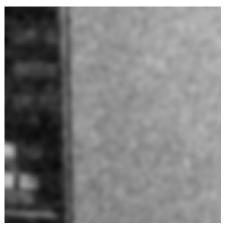




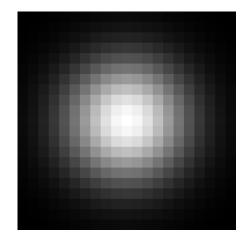


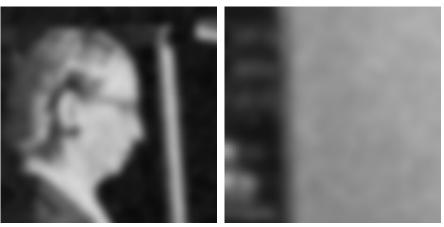
$$\sigma = 2$$



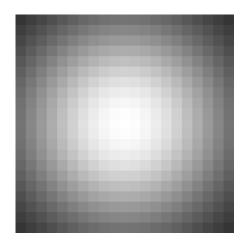


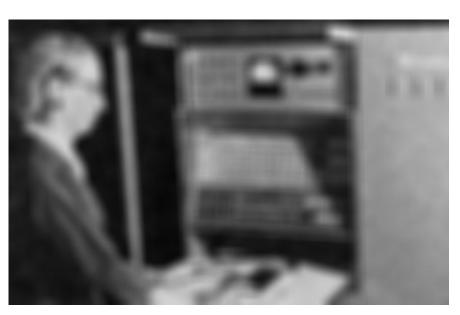
$$\sigma = 4$$





$$\sigma = 8$$



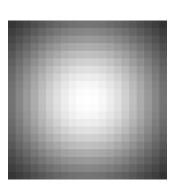


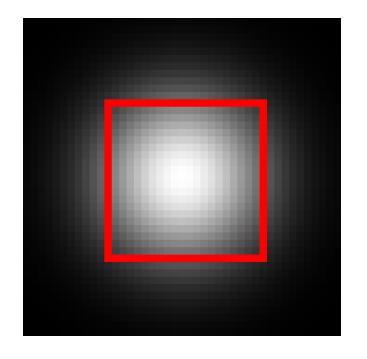
Gaussian Blur: Filter Size

Too small filter → bad approximation Want size ≈ 6σ (99.7% of energy) Left far too small; right slightly too small!

$$\sigma$$
 = 8, size = 21

$$\sigma$$
 = 8, size = 43





Runtime Complexity

Image size = NxN = 6x6Filter size = MxM = 3x3

l11	l12	l13	114	l15	l16
121	F11	F12	F13	125	126
I31	F21	F22	F23	135	136
I41	F31	F32	F33	145	146
I51	152	153	154	155	156
l61	162	163	164	165	166

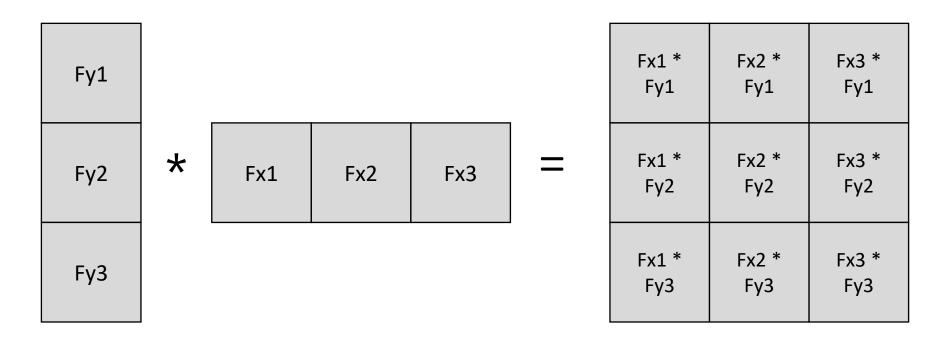
```
for ImageY in range(N):
    for ImageX in range(N):
        for FilterY in range(M):
        for FilterX in range(M):
```

• • •

Time: $O(N^2M^2)$

Separable Filters

Conv(vector, transposed vector) → outer product



(Using "full" convolution with zero padding)
(Also ignoring filter flips)

Separable Filters: Gaussian

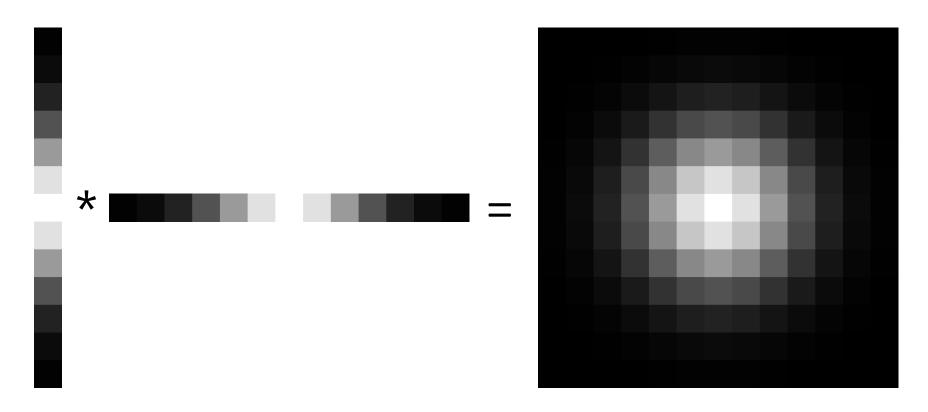
$$Filter_{ij} \propto \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

$$\longrightarrow$$

$$Filter_{ij} \propto \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{x^2}{2\sigma^2}\right) \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{y^2}{2\sigma^2}\right)$$

Separable Filters: Gaussian

1D Gaussian * 1D Gaussian = 2D Gaussian



Separable Filters: Runtime Complexity

Image size = NxN = 6x6Filter size = Mx1 = 3x1

l11	l12	l13	l14	l15	I16
121	F1	123	124	125	126
l31	F2	133	134	135	136
I41	F3	143	144	145	146
l51	152	153	154	155	156
161	162	163	164	165	166

What are my compute savings for a 13x13 filter?

```
for ImageY in range(N):
for ImageX in range(N):
for FilterY in range(M):
```

for ImageY in range(N):
 for ImageX in range(N):
 for FilterX in range(M):

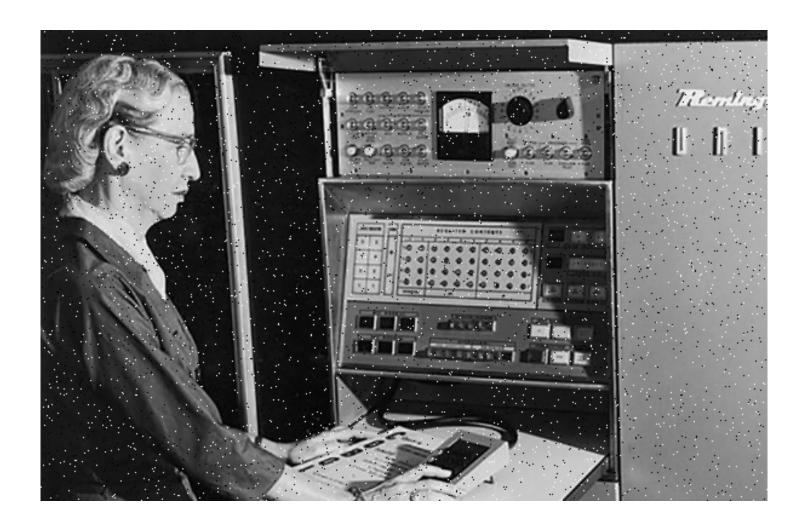
• • •

Time: $O(N^2M)$

Why Gaussian?

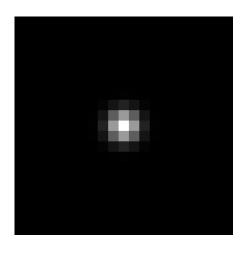
Gaussian filtering removes parts of the signal above a certain frequency. Often noise is high frequency and signal is low frequency.

Where Gaussian Fails



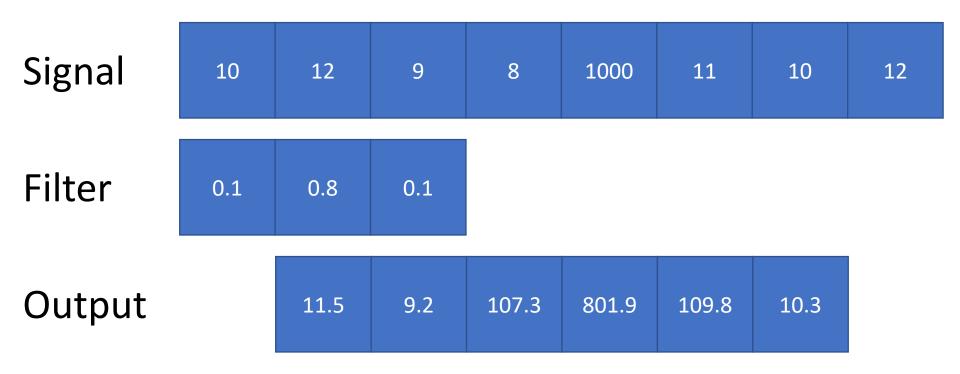
Where Gaussian Fails

$$\sigma = 1$$



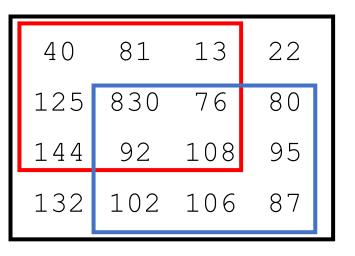
Where Gaussian Fails

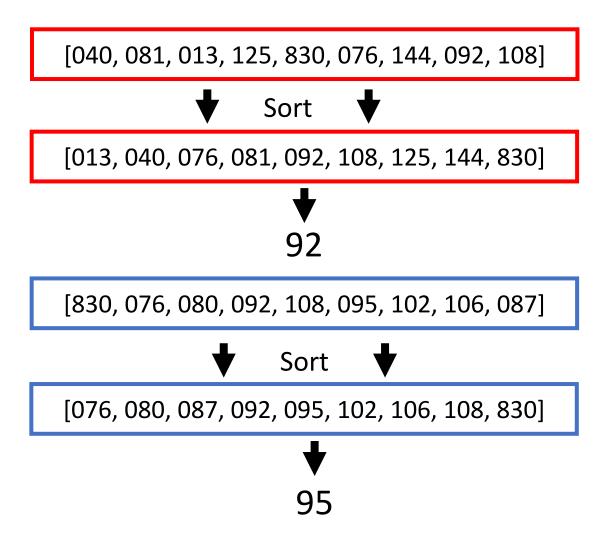
Means can be arbitrarily distorted by outliers



What else is an "average" other than a mean?

Median Filter



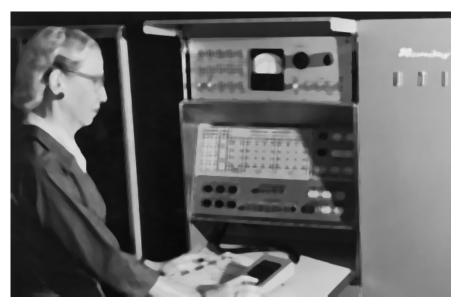


Median Filter

Median Filter (size=3)

Median Filter

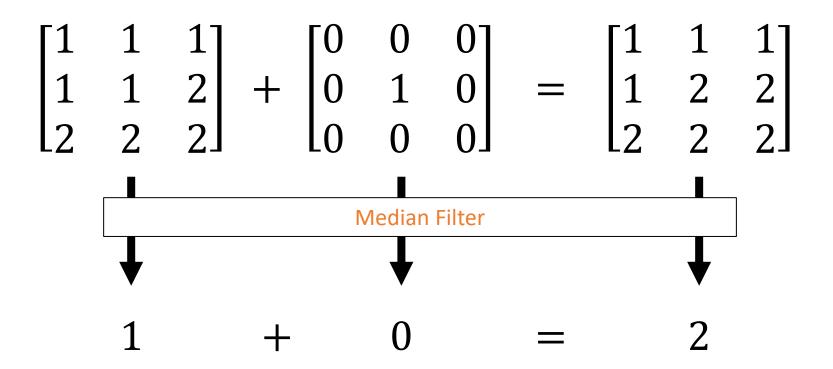
Median
Filter
(size = 7)



Is Median Filter Linear?

If F is a linear filter then it must satisfy:

$$F(x + y) = F(x) + F(y)$$



Sharpening Filter

Image

Smoothed

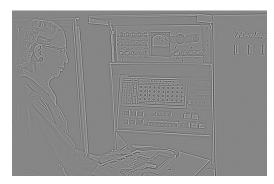
Details

Sharpening Filter

Image

 $+\alpha$

Details



"Sharpened" $\alpha=1$

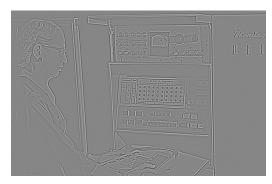
_

Sharpening Filter

Image

 $+\alpha$

Details



"Sharpened" α =0

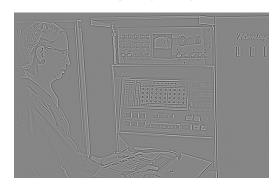
_

Sharpening Filter

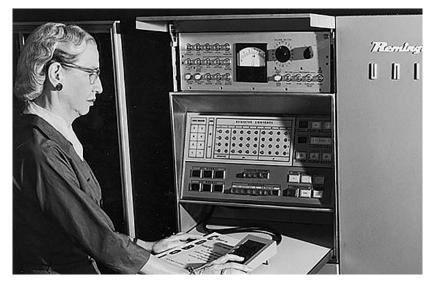
Image

 $+\alpha$

Details



"Sharpened" α =2



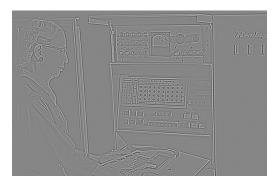
_

Sharpening Filter

Image

 $+\alpha$

Details



"Sharpened" α =0

_

Sharpening Filter

Image

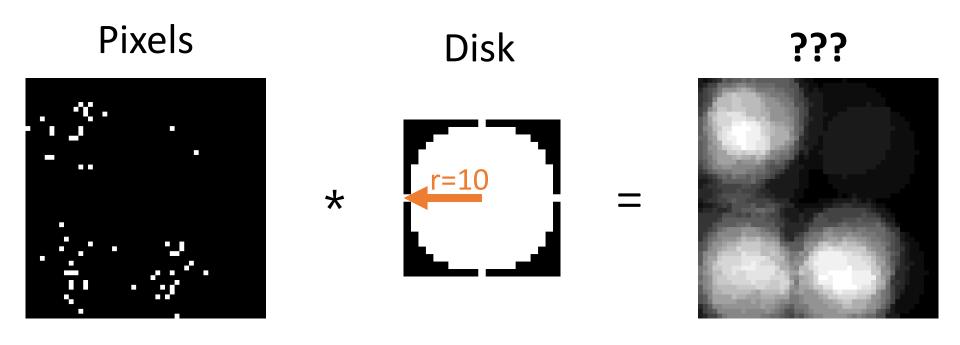
 $+\alpha$

Details

"Sharpened" α =10

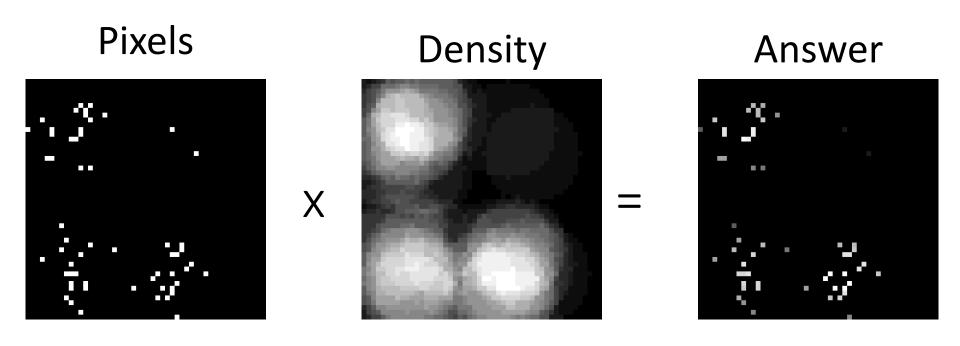
Filtering: Counting

How many "on" pixels have 10+ neighbors within 10 pixels?

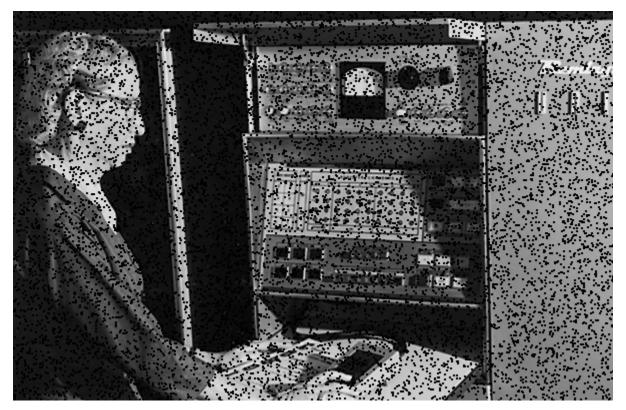


Filtering: Counting

How many "on" pixels have 10+ neighbors within 10 pixels?



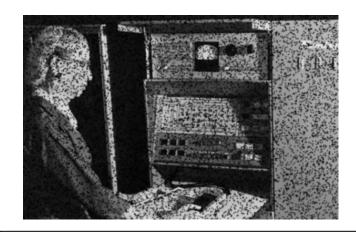
Oh no! Missing data! (and we know where)



Common with many non-normal cameras (e.g., depth cameras)

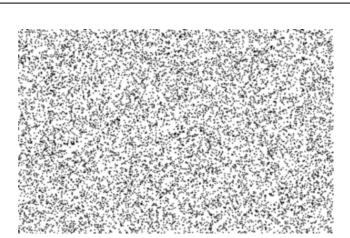
Image * Per-element Division Binary Mask

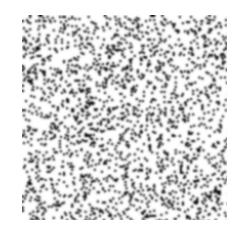
Image



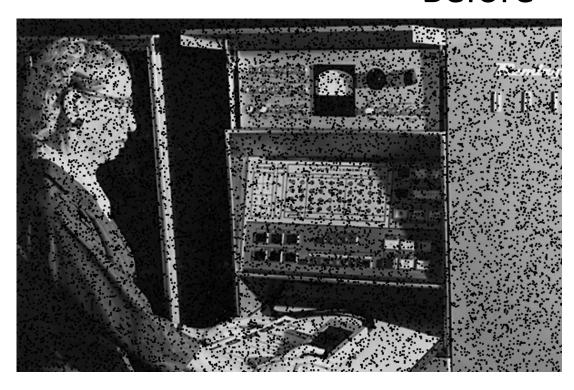
Per-element Division

Binary Mask





Before



After

Original Image (No missing data)

Filtering

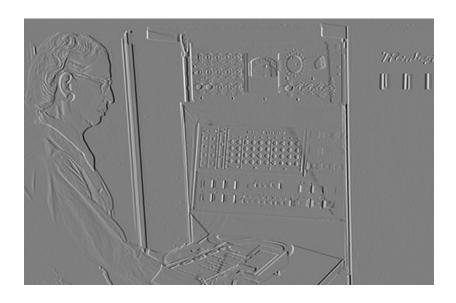
What's this Filter?

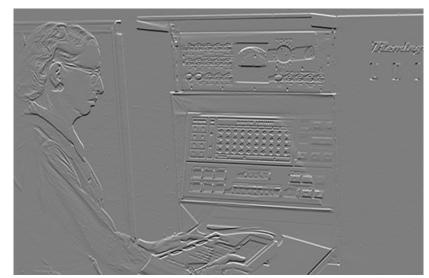
-1 0 1

-1 0 1

Derivative Dx

Derivative Dy





Images as Functions

Image is function f(x,y)

Remember:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x,y)}{\epsilon}$$

Approximate:

 $\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$

Another one:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x-1,y)}{2}$$

Other Differentiation Operators

	Horizontal	Vertical
Prewitt	$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$
Sobel	$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Why might people use these compared to [-1,0,1]?

Images as Functions or Points

Key idea: can treat image as a point in $R^{(HxW)}$ or as a function of x,y.

$$\nabla I(x,y) = \begin{bmatrix} \frac{\partial I}{\partial x}(x,y) \\ \frac{\partial I}{\partial y}(x,y) \end{bmatrix}$$
 How much the intensity of the image changes as you go horizontally at (x,y) (Often called Ix)

Image Gradient

Compute derivatives Ix and Iy with filters

lx ly

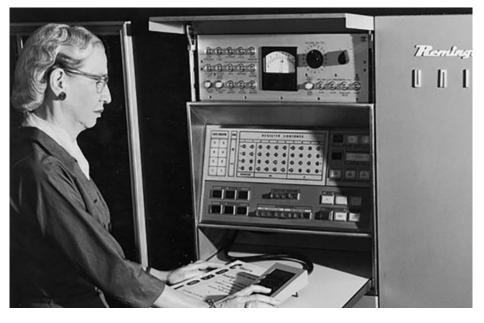


Image Gradient

Compute derivatives Ix and Iy with filters

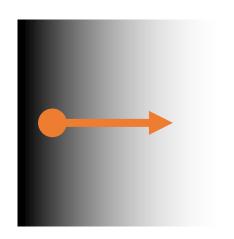
lx ly

Image Gradient Magnitude

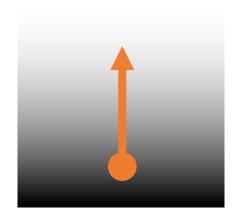
Gradient Magnitude $(Ix^2 + Iy^2)^{1/2}$ Gives rate of change at each pixel

Image Gradient Magnitude

Gradient Magnitude $(Ix^2 + Iy^2)^{1/2}$ Gives rate of change at each pixel



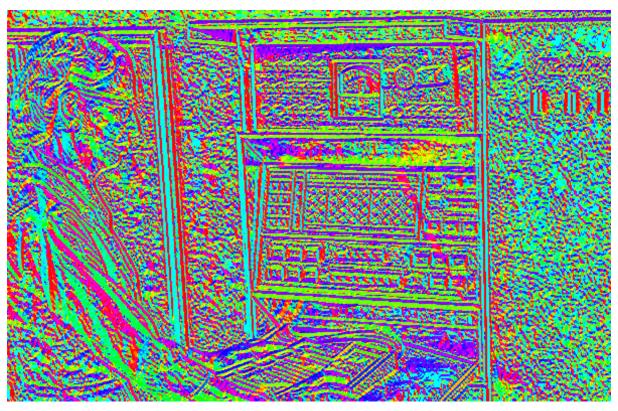
$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$

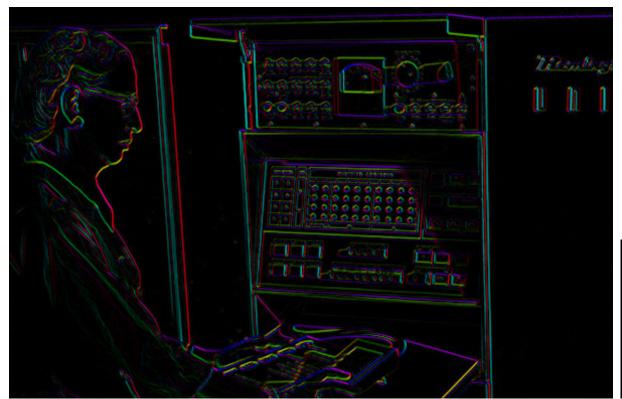


$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$







I'm making the lightness equal to gradient magnitude

Next Time: Edge + Corner Detection