Lecture 7: More Math + Image Filtering

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 1

Administrative

HWO was due yesterday!

HW1 due a week from yesterday

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 2

Cool Talk Today:

AI Seminar

NumPy: A look at the past, present, and future of array computation

Ross Barnowski

Postdoctoral Scholar

WHERE: 3725 Beyster Building

 ♥ MAP

 WHEN: January 30, 2020 @ 1:30 pm - 3:00 pm

 This event is free and open to the public
 ➡ ADD TO GOOGLE CALENDAR

https://cse.engin.umich.edu/event/numpy-a-look-at-the-past-present-and-future-of-array-computation

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 3

Last Time: Matrices, Vectorization, Linear Algebra

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 4

Eigensystems

- An eigenvector v_i and eigenvalue λ_i of a matrix A satisfy $Av_i = \lambda_i v_i$ (Av_i is scaled by λ_i)
- Vectors and values are always paired and typically you assume $\|v_i\|^2 = 1$
- Biggest eigenvalue of A gives bounds on how much f(x) = Ax stretches a vector **x**.
- Hints of what people really mean:
 - "Largest eigenvector" = vector w/ largest value
 - "Spectral" just means there's eigenvectors somewhere

EECS 442 WI 2020: Lecture 7 - 7

What are the yellow lines and why?

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 9

EECS 442 WI 2020: Lecture 7 - 10

EECS 442 WI 2020: Lecture 7 - 11

Eigenvectors of Symmetric Matrices

- Always n mutually orthogonal eigenvectors with n (not necessarily) distinct eigenvalues
- For symmetric *A*, the eigenvector with the largest eigenvalue maximizes $\frac{x^T A x}{x^T x}$ (smallest/min)
- So for unit vectors (where $x^T x = 1$), that eigenvector maximizes $x^T A x$
- A surprisingly large number of optimization problems rely on (max/min)imizing this

Can always write a mxn matrix **A** as: $A = U\Sigma V^T$

Justin Johnson

Can **always** write a mxn matrix **A** as: $A = U\Sigma V^T$

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 14

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to **A** with a lower rank

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to **A** with a lower rank

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to **A** with a lower rank
- Secretly behind basically many things you do with matrices

Start with two points (x_i, y_i) y = Av $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$ $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} mx_1 + b \\ mx_2 + b \end{bmatrix}$

We know how to solve this – invert A and find v (i.e., (m,b) that fits points)

Justin Johnson

Start with two points (x_i, y_i) $(\mathbf{x}_2,\mathbf{y}_2)$ y = Av $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$ (x₁,y₁) $\|\mathbf{y} - \mathbf{A}\mathbf{v}\|^{2} = \left\| \begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} - \begin{bmatrix} mx_{1} + b \\ mx_{2} + b \end{bmatrix} \right\|^{2}$ $= (y_1 - (mx_1 + b))^2 + (y_2 - (mx_2 + b))^2$ The sum of squared differences between the actual value of y and what the model says y should be.

Justin Johnson

Justin Johnson

Given y, A, and v with y = Av overdetermined (A tall / more equations than unknowns) We want to minimize $||y - Av||^2$, or find:

$$\arg \min_{\boldsymbol{v}} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{v} \|^2$$

(The value of x that makes

the expression smallest)

Solution satisfies $(A^T A)v^* = A^T y$

$$\frac{\text{or}}{\boldsymbol{v}^*} = \left(\boldsymbol{A}^T \boldsymbol{A}\right)^{-1} \boldsymbol{A}^T \boldsymbol{y}$$
(Don't actually compute the inverse!)

When is Least-Squares Possible?

Given y, A, and v. Want y = Av

Want n outputs, have n knobs to fiddle with, every knob is useful if A is full rank.

A: rows (outputs) > columns (knobs). Thus can't get precise output you want (not enough knobs). So settle for "closest" knob setting.

When is Least-Squares Possible?

Given y, A, and v. Want y = Av

Want n outputs, have n knobs to
 fiddle with, every knob is useful if
 A is full rank.

A: columns (knobs) > rows (outputs). Thus, any output can be expressed in infinite ways.

Justin Johnson

Homogeneous Least-Squares

Given a set of unit vectors (aka directions) $x_1, ..., x_n$ and I want vector v that is as orthogonal to all the x_i as possible (for some definition of orthogonal)

Justin Johnson EECS

Homogenous Least-Squares

- A lot of times, given a matrix **A** we want to find the **v** that minimizes $||Av||^2$.
- I.e., want $\mathbf{v}^* = \arg\min_{\mathbf{v}} \|A\mathbf{v}\|_2^2$
- What's a trivial solution?
- Set $\mathbf{v} = \mathbf{0} \rightarrow \mathbf{A}\mathbf{v} = \mathbf{0}$
- Exclude this by forcing v to have unit norm

Homogenous Least-Squares

Let's look at $||Av||_2^2$

 $\|Av\|_{2}^{2} = \text{Rewrite as dot product}$ $\|Av\|_{2}^{2} = (Av)^{T}(Av) \text{Distribute transpose}$ $\|Av\|_{2}^{2} = v^{T}A^{T}Av = v^{T}(A^{T}A)v$

We want the vector minimizing this quadratic form Where have we seen this?

Justin Johnson

Homogenous Least-Squares

Ubiquitious tool in vision:

$$\arg\min_{\|\boldsymbol{v}\|^2=1}\|\boldsymbol{A}\boldsymbol{v}\|^2$$

For min \rightarrow max, switch smallest \rightarrow largest

*Note: $A^T A$ is positive semi-definite so it has all non-negative eigenvalues

Justin Johnson

Derivatives

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 28

Derivatives

Remember derivatives?

Derivative: rate at which a function f(x) changes at a point as well as the direction that increases the function

EECS 442 WI 2020: Lecture 7 - 30

Given quadratic function f(x) $f(x,y) = (x-2)^2 + 5$

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 31

Rates of change $f(x, y) = (x - 2)^2 + 5$

Suppose I want to increase f(x) by changing x:

Blue area: move left Red area: move right

Derivative tells you direction of ascent and rate

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 32

Calculus to Know

- Really need intuition
- Need chain rule
- Rest you should look up / use a computer algebra system / use a cookbook
- Partial derivatives (and that's it from multivariable calculus)

Partial Derivatives

- Pretend other variables are constant, take a derivative. That's it.
- Make our function a function of two variables

$$f(x) = (x - 2)^{2} + 5$$

$$\frac{\partial}{\partial x}f(x) = 2(x - 2) * 1 = 2(x - 2)$$
Pretend it's
$$f_{2}(x, y) = (x - 2)^{2} + 5 + (y + 1)^{2}$$
Pretend it's
constant \rightarrow
derivative = 0
$$\frac{\partial}{\partial x}f_{2}(x) = 2(x - 2)$$

EECS 442 WI 2020: Lecture 7 - 35

EECS 442 WI 2020: Lecture 7 - 36

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 37

Zooming Out

$$f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2$$

Gradient/Jacobian:
Making a vector of
 $\nabla_f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
gives rate and direction
of change.
Arrows point OUT of
minimum / basin.
 d_1
 d_2
 d_3
 d_4
 d

EECS 442 WI 2020: Lecture 7 - 38

-2

-1

Ó

1

January 30, 2020

4

2

3

Justin Johnson

What Should I Know?

- Gradients are simply partial derivatives perdimension: if x in f(x) has n dimensions, $\nabla_f(x)$ has n dimensions
- Gradients point in direction of ascent and tell the rate of ascent
- If a is minimum of $f(\mathbf{x}) \rightarrow \nabla_{f}(a) = \mathbf{0}$
- Reverse is not true, especially in high-dimensional spaces

Image Filtering

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 40

A Noisy Image

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 41

Cleaning it up

- We have noise in our image
- Let's replace each pixel with a *weighted* average of its neighborhood
- Weights are *filter kernel*

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Slide Credit: D. Lowe

EECS 442 WI 2020: Lecture 7 - 43

12

Signal	10	12	9	11	10	11	
Filter	1/3	1/3	1/3				
Output		10.33					

1D Case

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 44

12

1D Case

Justin Johnson

1D Case

Justin Johnson

Justin Johnson

Input

Output

111	112	113	114	l15	116
121	122	123	124	125	126
131	132	133	134	135	136
141	142	143	144	145	146
151	152	153	154	155	156

F11	F12	F13
F21	F22	F23
F31	F32	F33

011	012	013	014
021	022	023	024
031	032	033	034

Input & Filter

F11	F12	F13	114	l15	116
F21	F22	F23	124	125	126
F31	F32	F33	134	135	136
141	142	143	144	145	146
151	152	153	154	155	156

Output

011

O11 = I11*F11 + I12*F12 + ... + I33*F33

Input & Filter

I11	F11	F12	F13	115	116
121	F21	F22	F23	125	126
131	F31	F32	F33	135	136
141	142	143	144	145	146
151	152	153	154	155	156

Output

O12 = I12*F11 + I13*F12 + ... + I34*F33

Input

111	l12	113	114	l15	116
121	122	123	124	125	126
131	132	133	134	135	136
141	142	143	144	145	146
151	152	153	154	155	156

F11	F12	F13
F21	F22	F23
F31	F32	F33

How many times can we apply a 3x3 filter to a 5x6 image?

Input

111	l12	113	114	115	116
121	122	123	124	125	126
131	132	133	134	135	136
141	142	143	144	145	146
151	152	153	154	155	156

F11	F12	F13
F21	F22	F23
F31	F32	F33

011	012	013	014
021	022	023	024
031	032	033	034

 $Oij = Iij^{F11} + Ii(j+1)^{F12} + ... + I(i+2)(j+2)^{F33}$

Edge Cases

Convolution doesn't keep the whole image. Suppose **f** is the image and **g** the filter.

Full: Any part of g touches f.

Same: Output is same size as f

Valid: Filter doesn't fall off edge

f/g Diagram Credit: D. Lowe

Justin Johnson

What to about the "?" region?

Symm: fold sides over

Circular/Wrap: wrap around

pad/fill: add value, often 0

f/g Diagram Credit: D. Lowe

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 54

Edge Cases: Does It Matter?

(I've applied the filter per-color channel) Which padding did I use and <u>why</u>?

Note – this is a zoom of the filtered, not a filter of the zoomed

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 55

Edge Cases: Does It Matter?

(I've applied the filter per-color channel)

Note – this is a zoom of the filtered, not a filter of the zoomed

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 56

?

Original

Slide Credit: D. Lowe

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 57

Original

0	0	0
0	1	0
0	0	0

The Same!

Slide Credit: D. Lowe

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 58

?

Original

Slide Credit: D. Lowe

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 59

Original

0	0	0
0	0	1
0	0	0

Shifted <u>LEFT</u> 1 pixel

Slide Credit: D. Lowe

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 60

?

Original

Slide Credit: D. Lowe

Justin Johnson

Original

0	1	0
0	0	0
0	0	0

Shifted <u>DOWN</u> 1 pixel

Slide Credit: D. Lowe

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 62

1/91/91/91/91/91/9

?

Original

Slide Credit: D. Lowe

Justin Johnson

Original

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Blur (Box Filter)

Slide Credit: D. Lowe

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 64

Original

0	0	0
0	2	0
0	0	0

1/91/91/91/91/91/91/91/9

?

Slide Credit: D. Lowe

Justin Johnson

Original

0	0	0
0	2	0
0	0	0

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Sharpened (Acccentuates difference from local average)

Slide Credit: D. Lowe

Justin Johnson

Sharpening

before

after

Slide Credit: D. Lowe

Justin Johnson

Properties: Linear

Assume: I image f1, f2 filters **Linear:** apply(I,f1+f2) = apply(I,f1) + apply(I,f2) I is a white box on black, and f1, f2 are rectangles

Note: I am showing filters un-normalized and blown up. They're a smaller box filter (i.e., each entry is 1/(size^2))

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 68

Properties: Shift-Invariant

Assume: I image, f filter **Shift-invariant:** shift(apply(I,f)) = apply(shift(I,f)) Intuitively: only depends on filter neighborhood

Note: "Shift-Invariant" is standard terminology, but I think "Shift-Equivariant" is more correct

Justin Johnson

Annoying Terminology

Often called "convolution". Actually cross-correlation.

Cross-Correlation (Slide filter over image)

Convolution (Flip filter, then slide it)

Justin Johnson

Properties of Convolution

- Any shift-invariant, linear operation is a convolution (*)
- Commutative: f * g = g * f
- Associative: (f * g) * h = f * (g * h)
- Distributes over +: f * (g + h) = f * g + f * h
- Scalars factor out: kf * g = f * kg = k (f * g)
- Identity (a single one with all zeros):

Property List: K. Grauman

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 71

Next Time: More Image Filtering, Edge Detection

Justin Johnson

EECS 442 WI 2020: Lecture 7 - 72