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Lecture 7:
More Math +

Image Filtering
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Administrative

2

HW0 was due yesterday!

HW1 due a week from yesterday
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Cool Talk Today: 

3

https://cse.engin.umich.edu/event/numpy-a-look-at-the-past-present-and-future-of-array-computation

https://cse.engin.umich.edu/event/numpy-a-look-at-the-past-present-and-future-of-array-computation
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Last Time:
Matrices, Vectorization,

Linear Algebra
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Eigensystems
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• An eigenvector 𝒗𝒊 and eigenvalue 𝜆$ of a matrix 𝑨
satisfy 𝑨𝒗𝒊 = 𝜆$𝒗𝒊 (𝑨𝒗𝒊 is scaled by 𝜆$)

• Vectors and values are always paired and typically 
you assume 𝒗𝒊 ' = 1

• Biggest eigenvalue of A gives bounds on how much 
𝑓 𝒙 = 𝑨𝒙 stretches a vector x. 

• Hints of what people really mean:
• “Largest eigenvector” = vector w/ largest value
• “Spectral” just means there’s eigenvectors somewhere
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Suppose I have points in a grid
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Now I apply f(x) = Ax to these points
Pointy-end: Ax . Non-Pointy-End: x
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Red box – unit square, Blue box – after f(x) = Ax. 
What are the yellow lines and why?

𝑨 =
1.1 0
0 1.1
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𝑨 =
0.8 0
0 1.25

Now I apply f(x) = Ax to these points
Pointy-end: Ax . Non-Pointy-End: x
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Red box – unit square, Blue box – after f(x) = Ax. 
What are the yellow lines and why?

𝑨 =
0.8 0
0 1.25
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Red box – unit square, Blue box – after f(x) = Ax. 
Can we draw any yellow lines?

𝑨 =
cos(𝑡) −sin(𝑡)
sin(𝑡) cos(𝑡)
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Eigenvectors of Symmetric Matrices
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• Always n mutually orthogonal eigenvectors with n 
(not necessarily) distinct eigenvalues

• For symmetric 𝑨, the eigenvector with the largest 
eigenvalue maximizes 𝒙

𝑻𝑨𝒙
𝒙𝑻𝒙

(smallest/min)

• So for unit vectors (where 𝒙𝑻𝒙 = 1), that 
eigenvector maximizes 𝒙𝑻𝑨𝒙

• A surprisingly large number of optimization 
problems rely on (max/min)imizing this
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Singular Value Decomposition
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UA =

Rotation

Can always write a mxn matrix A as: 𝑨 = 𝑼𝚺𝑽𝑻

Eigenvectors 
of AAT

∑

Scale

Sqrt of 
Eigenvalues 

of ATA

σ1

σ2

σ3

0
0
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Singular Value Decomposition

14

UA =

Rotation

Can always write a mxn matrix A as: 𝑨 = 𝑼𝚺𝑽𝑻

Eigenvectors 
of AAT

∑

Scale

Sqrt of 
Eigenvalues 

of ATA

VT

Rotation

Eigenvectors 
of ATA
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Singular Value Decomposition

15

• Every matrix is a rotation, scaling, and rotation
• Number of non-zero singular values = rank / 

number of linearly independent vectors
• “Closest” matrix to A with a lower rank

UA =
σ1

σ2
σ3

0

0
VT
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Singular Value Decomposition

16

• Every matrix is a rotation, scaling, and rotation
• Number of non-zero singular values = rank / 

number of linearly independent vectors
• “Closest” matrix to A with a lower rank

UÂ =
σ1

σ2

0

0
VT

0
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Singular Value Decomposition
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• Every matrix is a rotation, scaling, and rotation
• Number of non-zero singular values = rank / 

number of linearly independent vectors
• “Closest” matrix to A with a lower rank
• Secretly behind basically many things you do with 

matrices
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Solving Least-Squares
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Start with two points (xi,yi)

𝑦@
𝑦' = 𝑥@ 1

𝑥' 1
𝑚
𝑏

𝒚 = 𝑨𝒗

𝑦@
𝑦' = 𝑚𝑥@ + 𝑏

𝑚𝑥' + 𝑏

We know how to solve this –
invert A and find v (i.e., (m,b) that 

fits points) 

(x1,y1)

(x2,y2)
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Solving Least-Squares

19

Start with two points (xi,yi)

𝑦@
𝑦' = 𝑥@ 1

𝑥' 1
𝑚
𝑏

𝒚 = 𝑨𝒗

𝑦@
𝑦' − 𝑚𝑥@ + 𝑏

𝑚𝑥' + 𝑏

'

𝒚 − 𝑨𝒗 ' =

= 𝑦@ − 𝑚𝑥@ + 𝑏
'
+ 𝑦' − 𝑚𝑥' + 𝑏

'

(x1,y1)

(x2,y2)

The sum of squared differences between 
the actual value of y and 
what the model says y should be.
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Solving Least-Squares

20

Suppose there are n > 2 points

𝑦@
⋮
𝑦G

=
𝑥@ 1
⋮ ⋮
𝑥G 1

𝑚
𝑏

𝒚 = 𝑨𝒗

Compute 𝑦 − 𝐴𝑥 ' again  

𝒚 − 𝑨𝒗 ' =I
$J@

K

𝑦$ − (𝑚𝑥$ + 𝑏) '
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Solving Least-Squares

21

Given y, A, and v with y = Av overdetermined 
(A tall / more equations than unknowns) 
We want to minimize 𝒚 − 𝑨𝒗 𝟐, or find:

arg min𝒗 𝒚 − 𝑨𝒗 '

(The value of x that makes 
the expression smallest)

Solution satisfies 𝑨𝑻𝑨 𝒗∗ = 𝑨𝑻𝒚
or

𝒗∗ = 𝑨𝑻𝑨
R@
𝑨𝑻𝒚

(Don’t actually compute the inverse!)
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When is Least-Squares Possible?
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Given y, A, and v. Want y = Av

Ay = v
Want n outputs, have n knobs to 
fiddle with, every knob is useful if 
A is full rank.

Ay

=
v

A: rows (outputs) > columns 
(knobs). Thus can’t get precise 
output you want (not enough 
knobs). So settle for “closest” 
knob setting.
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When is Least-Squares Possible?

23

Given y, A, and v. Want y = Av

Ay = v
Want n outputs, have n knobs to 
fiddle with, every knob is useful if 
A is full rank.

Ay =
v

A: columns (knobs) > rows 
(outputs). Thus, any output can be 
expressed in infinite ways.
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Homogeneous Least-Squares
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Given a set of unit vectors (aka directions) 𝒙𝟏, … , 𝒙𝒏 and I 
want vector 𝒗 that is as orthogonal to all the 𝒙𝒊 as 
possible (for some definition of orthogonal)

𝑨𝒗 =
− 𝒙𝟏𝑻 −

⋮
− 𝒙𝒏𝑻 −

𝒗

Stack 𝒙𝒊 into A, compute Av

=
𝒙𝟏𝑻𝒗
⋮

𝒙𝒏𝑻𝒗

𝒙𝟏
𝒙𝟐

𝒙𝒏…

𝒗
𝑨𝒗 𝟐 =I

𝒊

𝒏

𝒙𝒊𝑻𝒗
𝟐Compute

0 if 
orthog

Sum of how orthog. v is to each x
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Homogenous Least-Squares

25

• A lot of times, given a matrix A we want to find the 
v that minimizes 𝑨𝒗 ' .

• I.e., want 𝐯∗ = argmin
𝒗

𝑨𝒗 '
'

• What’s a trivial solution? 
• Set v = 0 → Av = 0
• Exclude this by forcing v to have unit norm
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Homogenous Least-Squares

26

Let’s look at 𝑨𝒗 '
'

𝑨𝒗 '
' = Rewrite as dot product

𝑨𝒗 '
' = 𝒗𝑻𝑨𝑻𝐀𝐯 = 𝐯𝐓 𝐀𝐓𝐀 𝐯

𝑨𝒗 '
' = 𝐀𝐯 Z(𝐀𝐯) Distribute transpose

We want the vector minimizing this quadratic form
Where have we seen this?
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Homogenous Least-Squares
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arg min
𝒗 [J@

𝑨𝒗 '

*Note: 𝑨𝑻𝑨 is positive semi-definite so it has all non-negative eigenvalues

(1) “Smallest”* eigenvector of 𝑨𝑻𝑨
(2) “Smallest” right singular vector of 𝑨

Ubiquitious tool in vision:

For min → max, switch smallest → largest
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Derivatives

28
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Derivatives
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Remember derivatives? 

Derivative: rate at which a function f(x) changes at a 
point as well as the direction that increases the 
function



Justin Johnson January 30, 2020EECS 442 WI 2020: Lecture 7 - 30

Given quadratic function f(x)

𝑓 𝑥 is function

𝑔 𝑥 = 𝑓] 𝑥

aka

𝑔 𝑥 =
𝑑
𝑑𝑥
𝑓(𝑥)

𝑓 𝑥, 𝑦 = 𝑥 − 2 ' + 5
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Given quadratic function f(x)

What’s special about 
x=2?

𝑓 𝑥 minim. at 2
𝑔 𝑥 = 0 at 2

a = minimum of f →
𝑔 𝑎 = 0

Reverse is not true

𝑓 𝑥, 𝑦 = 𝑥 − 2 ' + 5
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Rates of change

Suppose I want to 
increase f(x) by 

changing x:

Blue area: move left
Red area: move right

Derivative tells you 
direction of ascent and 

rate

𝑓 𝑥, 𝑦 = 𝑥 − 2 ' + 5
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Calculus to Know

33

• Really need intuition
• Need chain rule
• Rest you should look up / use a computer algebra 

system / use a cookbook 
• Partial derivatives (and that’s it from multivariable 

calculus)
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Partial Derivatives

34

• Pretend other variables are constant, take a 
derivative. That’s it.

• Make our function a function of two variables

𝑓' 𝑥, 𝑦 = 𝑥 − 2 ' + 5 + 𝑦 + 1 '

𝑓 𝑥 = 𝑥 − 2 ' + 5
𝜕
𝜕𝑥
𝑓 𝑥 = 2 𝑥 − 2 ∗ 1 = 2(𝑥 − 2)

𝜕
𝜕𝑥
𝑓' 𝑥 = 2(𝑥 − 2)

Pretend it’s 
constant → 
derivative = 0
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Zooming Out
𝑓' 𝑥, 𝑦 = 𝑥 − 2 ' + 5 + 𝑦 + 1 '

Dark = f(x,y) low
Bright = f(x,y) high
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Taking a slice of
𝑓' 𝑥, 𝑦 = 𝑥 − 2 ' + 5 + 𝑦 + 1 '

Slice of y=0 is the 
function from before:
𝑓 𝑥 = 𝑥 − 2 ' + 5
𝑓] 𝑥 = 2(𝑥 − 2)
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Taking a slice of
𝑓' 𝑥, 𝑦 = 𝑥 − 2 ' + 5 + 𝑦 + 1 '

a
ab
𝑓' 𝑥, 𝑦 is rate of 

change & direction in x 
dimension
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Zooming Out
𝑓' 𝑥, 𝑦 = 𝑥 − 2 ' + 5 + 𝑦 + 1 '

Gradient/Jacobian:
Making a vector of 

∇d=
𝜕𝑓
𝜕𝑥

,
𝜕𝑓
𝜕𝑦

gives rate and direction 
of change.

Arrows point OUT of 
minimum / basin.
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What Should I Know?

39

• Gradients are simply partial derivatives per-
dimension: if 𝒙 in 𝑓(𝒙) has n dimensions, ∇d(𝑥)
has n dimensions

• Gradients point in direction of ascent and tell the 
rate of ascent

• If a is minimum of 𝑓(𝒙)→ ∇e a = 𝟎
• Reverse is not true, especially in high-dimensional 

spaces
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Image Filtering

40
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A Noisy Image

41
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Cleaning it up

42

Slide Credit: D. Lowe

• We have noise in our image
• Let’s replace each pixel with a weighted

average of its neighborhood
• Weights are filter kernel

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Out
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1D Case

43

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33
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1D Case

44

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33 10.66
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1D Case

45

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33 10.66 10
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1D Case

46

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33 10.66 10 10.66
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1D Case

47

1/3 1/3 1/3Filter

Signal 10 12 9 11 10 11 12

Output 10.33 10.66 10 10.66 11



Justin Johnson January 30, 2020EECS 442 WI 2020: Lecture 7 -

Applying a 2D Filter

48

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input

F11 F12 F13

F21 F22 F23

F31 F32 F33

Filter

O11 O12 O13

O21 O22 O23

O31 O32 O33

O14

O24

O34

Output
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Applying a 2D Filter

49

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input & Filter
F11 F12 F13

F21 F22 F23

F31 F32 F33

Output

O11

O11 = I11*F11 + I12*F12 + … + I33*F33
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Applying a 2D Filter

50

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input & Filter
F11 F12 F13

F21 F22 F23

F31 F32 F33

Output

O11

O12 = I12*F11 + I13*F12 + … + I34*F33

O12
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Applying a 2D Filter

51

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input

F11 F12 F13

F21 F22 F23

F31 F32 F33

Filter Output

How many times can we apply a 
3x3 filter to a 5x6 image?
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Applying a 2D Filter

52

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input Output

Oij = Iij*F11 + Ii(j+1)*F12 + … + I(i+2)(j+2)*F33

O11 O12 O13

O21 O22 O23

O31 O32 O33

O14

O24

O34

F11 F12 F13

F21 F22 F23

F31 F32 F33

Filter



Justin Johnson January 30, 2020EECS 442 WI 2020: Lecture 7 -

Edge Cases

53

f

gg

gg

f

gg

gg

f

gg

gg

Convolution doesn’t keep the whole image. 
Suppose f is the image and g the filter.

f/g Diagram Credit: D. Lowe

Full: Any part 
of g touches f. 

Same: Output 
is same size as f

Valid: Filter doesn’t 
fall off edge
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Edge Cases

54

What to about the “?” region?

Symm: fold sides over 

pad/fill: add value, often 0 

f

gg

gg

? ? ? ?

Circular/Wrap: wrap around

f/g Diagram Credit: D. Lowe
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Edge Cases: Does It Matter?

55

Input
Image

Box Filtered
???

Box Filtered
???

(I’ve applied the filter per-color channel)
Which padding did I use and why?

Note – this is a zoom of the filtered, not a filter of the zoomed
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Edge Cases: Does It Matter?

56

Input
Image

Box Filtered
Symm Pad

Box Filtered
Zero Pad

(I’ve applied the filter per-color channel)

Note – this is a zoom of the filtered, not a filter of the zoomed
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Practice with Linear Filters

57

Slide Credit: D. Lowe

Original

?
0 0 0

0 1 0

0 0 0
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Practice with Linear Filters

58

Slide Credit: D. Lowe

Original

0 0 0

0 1 0

0 0 0

The Same!
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Practice with Linear Filters

59

Slide Credit: D. Lowe

Original

?
0 0 0

0 0 1

0 0 0
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Practice with Linear Filters

60

Slide Credit: D. Lowe

Original

0 0 0

0 0 1

0 0 0

Shifted 
LEFT

1 pixel
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Practice with Linear Filters

61

Slide Credit: D. Lowe

Original

?
0 1 0

0 0 0

0 0 0
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Practice with Linear Filters

62

Slide Credit: D. Lowe

Original

0 1 0

0 0 0

0 0 0

Shifted 
DOWN
1 pixel
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Practice with Linear Filters

63

?

Slide Credit: D. Lowe

Original

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9
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Practice with Linear Filters

64

Slide Credit: D. Lowe

Original

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Blur
(Box Filter)
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Practice with Linear Filters
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?

Slide Credit: D. Lowe

Original 1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

0 0 0

0 2 0

0 0 0

-
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Practice with Linear Filters
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Slide Credit: D. Lowe

Original 1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

0 0 0

0 2 0

0 0 0

-

Sharpened
(Acccentuates

difference from 
local average)
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Sharpening

67

Slide Credit: D. Lowe
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Properties: Linear

68

Assume: I image f1, f2 filters 
Linear: apply(I,f1+f2) = apply(I,f1) + apply(I,f2)
I is a white box on black, and f1, f2 are rectangles

Note: I am showing filters un-normalized and blown up. They’re a smaller 
box filter (i.e., each entry is 1/(size^2))

== +

=A( , )+A( , ) =
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Properties: Shift-Invariant
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Assume: I image, f filter
Shift-invariant: shift(apply(I,f)) = apply(shift(I,f))
Intuitively: only depends on filter neighborhood

A( , ) =

A( , ) =

Note: “Shift-Invariant” 
is standard terminology, 
but I think “Shift-
Equivariant” is more 
correct
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Annoying Terminology
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Often called “convolution”. Actually cross-correlation. 

Cross-Correlation
(Slide filter over image)

Convolution
(Flip filter, then slide it)
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Properties of Convolution
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• Any shift-invariant, linear operation is a convolution (⁎)
• Commutative: f ⁎ g = g ⁎ f
• Associative: (f ⁎ g) ⁎ h = f ⁎ (g ⁎ h)
• Distributes over +: f ⁎ (g + h) = f ⁎ g + f ⁎ h
• Scalars factor out: kf ⁎ g = f ⁎ kg = k (f ⁎ g)
• Identity (a single one with all zeros):

Property List: K. Grauman

=*
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Next Time:
More Image Filtering, 

Edge Detection

72


