
Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Lecture 6:
Math Review II

1



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Administrative

• HW0 due tomorrow, 1/29 11:59pm
• HW1 due 1 week from tomorrow, 2/5 11:59pm

2



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Last Time: Floating Point Math

3

S Exponent Fraction

8 bits
2127 ≈ 1038

23 bits
≈ 7 decimal digits

S Exponent Fraction

11 bits
21023 ≈ 10308

52 bits
≈ 15 decimal digits

IEEE 754 Single Precision / Single / float32

IEEE 754 Double Precision / Double / float64



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Last Time: Vectors

4

• Scale (vector, scalar → vector)
• Add (vector, vector → vector)
• Magnitude (vector → scalar)
• Dot product (vector, vector → scalar)

• Dot products are projection / angles 

• Cross product (vector, vector → vector)
• Vectors facing same direction have cross product 0

• You can never mix vectors of different sizes



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrices

5



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrices

6

Horizontally concatenate n, m-dim column vectors and 
you get a mxn matrix A (here 2x3)

𝑨 = 𝒗$,⋯ , 𝒗' =
𝑣$) 𝑣*) 𝑣+)
𝑣$, 𝑣*, 𝑣+,

a (scalar)
lowercase
undecorated

a (vector)
lowercase
bold or arrow

A (matrix)
uppercase
bold



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrices

7

Horizontally concatenate n, m-dim column vectors and 
you get a mxn matrix A (here 2x3)

𝑨 = 𝒗$,⋯ , 𝒗' =
𝑣$) 𝑣*) 𝑣+)
𝑣$, 𝑣*, 𝑣+,

Watch out: In math, it’s common to treat D-dim 
vector as a Dx1 matrix (column vector);
In numpy these are different things



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrices

8

Vertically concatenate m, n-dim row vectors 
and you get a mxn matrix A (here 2x3)

𝐴 =
𝒖$/
⋮
𝒖'/

=
𝑢$) 𝑢$, 𝑢$2
𝑢*) 𝑢*, 𝑢*2

Transpose: flip 
rows / columns 

𝑎
𝑏
𝑐

/

= 𝑎 𝑏 𝑐 (3x1)T = 1x3



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrix-vector Product

9

𝒚*7$ = 𝑨*7+𝒙+7$

𝒚 = 𝑥$𝒗𝟏 + 𝑥*𝒗𝟐 + 𝑥+𝒗𝟑
Linear combination of columns of A

𝑦$
𝑦* = 𝒗𝟏 𝒗𝟐 𝒗𝟑

𝑥$
𝑥*
𝑥+



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrix-vector Product

10

𝒚*7$ = 𝑨*7+𝒙+7$

𝑦$ = 𝒖𝟏𝑻𝒙

Dot product between rows of A and x

𝑦* = 𝒖𝟐𝑻𝒙

𝒖𝟏𝑻

𝒖𝟐𝑻
𝑦$
𝑦* = 𝒙

3

3



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrix Multiplication

11

− 𝒂𝟏𝑻 −
⋮

− 𝒂𝒎𝑻 −

| |
𝒃𝟏 ⋯ 𝒃𝒑
| |

𝑨𝑩 =

Generally: Amn and Bnp yield product (AB)mp

Yes – in A, I’m referring to the rows, and in B, I’m 
referring to the columns



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrix Multiplication

12

− 𝒂𝟏𝑻 −
⋮

− 𝒂𝒎𝑻 −

| |
𝒃𝟏 ⋯ 𝒃𝒑
| |

𝑨𝑩 =
𝒂𝟏𝑻𝒃𝟏 ⋯ 𝒂𝟏𝑻𝒃𝒑
⋮ ⋱ ⋮

𝒂𝒎𝑻 𝒃𝟏 ⋯ 𝒂𝒎𝑻 𝒃𝒑

𝑨𝑩HI = 𝒂𝒊𝑻𝒃𝒋

Generally: Amn and Bnp yield product (AB)mp



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrix Multiplication

13

• Dimensions must match
• Dimensions must match
• Dimensions must match
• (Associative): ABx = (A)(Bx) = (AB)x
• (Not Commutative): ABx ≠ (BA)x ≠ (BxA)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Two uses for Matrices

14

1. Storing things in a rectangular array (e.g. images)
• Typical operations: element-wise operations, 

convolution (which we’ll cover later)
• Atypical operations: almost anything you learned in a 

math linear algebra class

2. A linear operator that maps vectors to another 
space (Ax)
• Typical/Atypical: reverse of above



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Images as Matrices

15

Suppose someone hands you this matrix.
What’s wrong with it?

No 
contrast!



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Contrast: Gamma Curve

16

Typical way to change 
the contrast is to 
apply a nonlinear 
correction

pixelvalueT

The quantity 𝛾
controls how much 
contrast gets added 



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Contrast: Gamma Curve

17

10%

50%

90%
Now the darkest 
regions (10th pctile) are 
much darker than the 
moderately dark 
regions (50th pctile).

new 10%
new 
50%

new 
90%



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 - 18

Contrast: Gamma Correction



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 - 19

Phew! Much Better. 

Contrast: Gamma Correction



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Implementation

20

imNew = im**4

Python+Numpy (right way):

Python+Numpy (slow way – why? ):

imNew = np.zeros(im.shape)
for y in range(im.shape[0]):
for x in range(im.shape[1]):
imNew[y,x] = im[y,x]**expFactor



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Elementwise Operations

21

𝑨⊙𝑩 HI = 𝑨HI ∗ 𝑩HI

“Hadamard Product” / Element-wise multiplication

𝑨/𝑩 HI =
𝐴HI
𝐵HI

Element-wise division

𝑨Z HI = 𝐴HI
Z

Element-wise power – beware notation



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 - 22

Sums Across Axes

𝑨 =
𝑥$ 𝑦$
⋮ ⋮
𝑥' 𝑦'

Suppose have 
Nx2 matrix A

Σ(𝑨, 1) =
𝑥$ + 𝑦$

⋮
𝑥' + 𝑦'

ND col. vec.

Σ(𝑨, 0) = `
Ha$

'

𝑥H ,`
Ha$

'

𝑦H2D row vec

Note – libraries distinguish between N-D column vector and Nx1 matrix.



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Operations they don’t teach

23

𝑎 + 𝑒 𝑏 + 𝑒
𝑐 + 𝑒 𝑑 + 𝑒

𝑎 𝑏
𝑐 𝑑 + 𝑒 𝑓

𝑔 ℎ = 𝑎 + 𝑒 𝑏 + 𝑓
𝑐 + 𝑔 𝑑 + ℎ

You Probably Saw Matrix Addition 

𝑎 𝑏
𝑐 𝑑 + 𝑒 =

What is this? FYI: e is a scalar



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Broadcasting

24

𝑎 𝑏
𝑐 𝑑 + 𝑒

= 𝑎 𝑏
𝑐 𝑑 + 𝑒 𝑒

𝑒 𝑒

= 𝑎 𝑏
𝑐 𝑑 + 𝟏*7*𝑒

If you want to be pedantic and proper, you expand e by 
multiplying a matrix of 1s (denoted 1)

Many smart matrix libraries do this automatically. This 
is the source of many bugs.



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Broadcasting Example

25

𝑷 =
𝑥$ 𝑦$
⋮ ⋮
𝑥' 𝑦'

𝒗 = 𝑎
𝑏

Given: a nx2 matrix P and a 2D column vector v, Want: 
nx2 difference matrix D

𝑫 =
𝑥$ − 𝑎 𝑦$ − 𝑏
⋮ ⋮

𝑥' − 𝑎 𝑦' − 𝑏

𝑷 − 𝒗/ =
𝑥$ 𝑦$
⋮ ⋮
𝑥' 𝑦'

−
𝑎 𝑏

𝑎 𝑏
⋮

Blue stuff is 
assumed / 
broadcast



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Broadcasting Rules

26

Suppose we have numpy arrays x and y.
How will they broadcast?

1. Write down the shape of each array as a tuple of integers:
For example: x: (10,)    y: (20, 10)
2. If they have different numbers of dimensions, prepend 
with ones until they have the same number of dimensions
For example: x: (10,)   y: (20, 10)    à x: (1, 10)   y: (20, 10)
3. Compare each dimension. There are 3 cases:

(a) Dimension match. Everything is good
(b) Dimensions don’t match, but one is =1. 

”Duplicate” the smaller array along that axis to match
(c) Dimensions don’t match, neither are =1. Error!



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Broadcasting Examples

27

x = np.ones(10, 20)
y = np.ones(20)
z = x + y
print(z.shape)

x = np.ones(10, 20)
y = np.ones(10, 1)
z = x + y
print(z.shape)

x = np.ones(10, 20)
y = np.ones(10)
z = x + y
print(z.shape)

x = np.ones(1, 20)
y = np.ones(10, 1)
z = x + y
print(z.shape)

(10,20) ERROR

(10,20) (10,20)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Tensors

28

Scalar: Just one number

Vector: 1D list of numbers

Matrix: 2D grid of numbers

Tensor: N-dimensional grid of numbers
(Lots of other meanings in math, physics)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Broadcasting with Tensors

29

x = np.ones(30)
y = np.ones(20, 1)
z = np.ones(10, 1, 1) 
w = x + y + z
print(w.shape)

(10, 20, 30)

The same broadcasting rules apply to 
tensors with any number of dimensions!



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization

30

Writing code without explicit loops: 
use broadcasting, matrix multiply, 
and other (optimized) numpy
primitives instead



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

31

• Suppose I represent each image as a 128-
dimensional vector

• I want to compute all the pairwise distances 
between {x1, …, xN} and {y1, …, yM} so I can find, for 
every xi the nearest yj

• Identity: 𝒙 − 𝒚 * = 𝒙 * + 𝒚 * − 2𝒙/𝒚
• Or: 𝒙 − 𝒚 = 𝒙 * + 𝒚 * − 2𝒙/𝒚 $/*



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

32

𝑿 =
− 𝒙$ −

⋮
− 𝒙k −

𝒀 =
− 𝒚$ −

⋮
− 𝒚m −

𝑿𝒀𝑻 HI = 𝒙𝒊𝑻𝒚𝒋

𝒀𝑻 =
| |
𝒚$ ⋯ 𝒚m
| |

𝚺 𝑿𝟐, 𝟏 =
𝒙𝟏 𝟐

⋮
𝒙𝑵 𝟐

Compute a Nx1 vector 
of norms
(can also do Mx1)

Compute a NxM matrix 
of dot products



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

33

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

𝒙𝟏 𝟐

⋮
𝒙𝑵 𝟐

+ 𝒚$ 𝟐 ⋯ 𝒚m 𝟐

Σ 𝑿*, 1 + Σ 𝒀*, 1 /
HI = 𝒙H * + 𝒚I

*

𝒙𝟏 * + 𝒚𝟏 * ⋯ 𝒙𝟏 * + 𝒚𝑴 *

⋮ ⋱ ⋮
𝒙𝑵 * + 𝒚𝟏 * ⋯ 𝒙𝑵 * + 𝒚𝑴 *

Why?



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

34

𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

35

𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(N, 1)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

36

𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

37

𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

38

𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M) (N, M)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

39

𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M) (N, M)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

40

𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M) (N, M)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example

41

𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

*May have to make sure this is at least 0 (sometimes 
roundoff issues happen)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Does Vectorization Matter?

42

Computing pairwise distances between 300 and 400 
128-dimensional vectors
1. for x in X, for y in Y, using native python: 9s
2. for x in X, for y in Y, using numpy to compute 

distance: 0.8s
3. vectorized: 0.0045s (~2000x faster than 1, 175x 

faster than 2)
Expressing things in primitives that are optimized is 
usually faster
Even more important with special hardware like 
GPUs or TPUs!



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Linear Algebra

43



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Linear Independence

44

𝒚 =
0
−2
1

=
1
2
𝒂 −

1
3
𝒃𝒙 =

0
0
4
=

• Is the set {a,b,c} linearly independent?
• Is the set {a,b,x} linearly independent?

• Max # of independent 3D vectors?

𝒂 =
0
0
2
𝒃 =

0
6
0
𝒄 =

5
0
0

Suppose:

A set of vectors is linearly independent if you can’t 
write one as a linear combination of the others.



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Span

45

Span: all linear 
combinations of a set 
of vectors

Span({    }) =
Span({[0,2]}) = ?
All vertical lines 
through origin =
𝜆 0,1 : 𝜆 ∈ 𝑅
Is blue in {red}’s span? 



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Span

46

Span: all linear 
combinations of a set 
of vectors

Span({    ,      }) = ? 



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Span

47

Span: all linear 
combinations of a set 
of vectors

Span({    ,      }) = ? 



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrix-Vector Product

48

𝑨𝒙 =
| |
𝒄𝟏 ⋯ 𝒄𝒏
| |

𝒙
Right-multiplying A by x
mixes columns of A
according to entries of x

• The output space of f(x) = Ax is constrained to be 
the span of the columns of A.

• Can’t output things you can’t construct out of your 
columns



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

An Intuition

49

x
Ax

y1

y2

y3

x1 x2 x3

y

𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝒄𝟐 𝒄𝒏
| | |

𝑥$
𝑥*
𝑥+

x – knobs on machine (e.g., fuel, brakes)
y – state of the world (e.g., where you are)
A – machine (e.g., your car)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Linear Independence

50

𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝛼𝒄𝟏 𝒄𝟐
| | |

𝑥$
𝑥*
𝑥+

Suppose the columns of 3x3 matrix A are not linearly 
independent (c1, αc1, c2 for instance)

𝒚 = 𝑥$𝒄𝟏 + 𝛼𝑥*𝒄𝟏 + 𝑥+𝒄𝟐
𝒚 = 𝑥$ + 𝛼𝑥* 𝒄𝟏 + 𝑥+𝒄𝟐



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Linear Independence Intuition

51

Knobs of x are redundant. Even if y has 3 outputs, 
you can only control it in two directions

𝒚 = 𝑥$ + 𝛼𝑥* 𝒄𝟏 + 𝑥+𝒄𝟐

x
Ax

y1

y2

y3

x1 x2 x3

y



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Linear Independence

52

𝑨𝒙 = 𝑥$ + 𝛼𝑥* 𝒄𝟏 + 𝑥+𝒄𝟐

• Or, given a vector y there’s not a unique vector x 
s.t. y =Ax

• Not all y have a corresponding x s.t. y=Ax
(assuming 𝒄𝟏 and 𝒄𝟏have dimension >= 3)

𝒚 = 𝑨
𝑥$ + 𝛽
𝑥* − 𝛽/𝛼

𝑥+
• Can write y an infinite number of ways by adding 

𝛽 to x1 and subtracting ~
�

from x2

Recall:

= 𝑥$ + 𝛽 + 𝛼𝑥* − 𝛼
𝛽
𝛼
𝑐$ + 𝑥+𝑐*



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Linear Independence

53

𝑨𝒙 = 𝑥$ + 𝛼𝑥* 𝒄𝟏 + 𝑥+𝒄𝟐

• An infinite number of non-zero vectors x can map 
to a zero-vector y

• Called the right null-space of A.

𝒚 = 𝑨
𝛽

−𝛽/𝛼
0

= 𝛽 − 𝛼
𝛽
𝛼
𝒄𝟏 + 0𝒄𝟐

• What else can we cancel out?



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Rank

54

• Rank of a nxn matrix A – number of linearly 
independent columns (or rows) of A / the 
dimension of the span of the columns

• Matrices with full rank (n x n, rank n) behave nicely: 
can be inverted, span the full output space, are 
one-to-one. 

• Matrices with full rank are machines where every 
knob is useful and every output state can be made 
by the machine



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Matrix Inverses

55

• Given 𝒚 = 𝑨𝒙, y is a linear combination of columns 
of A proportional to x. If A is full-rank, we should be 
able to invert this mapping.

• Given some y (output) and A, what x (inputs) 
produced it?

• x = A-1y
• Note: if you don’t need to compute it, never ever 

compute it. Solving for x is much faster and stable 
than obtaining A-1.

Bad: y = np.linalg.inv(A).dot(y)
Good: y = np.linalg.solve(A, y)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Symmetric Matrices

56

• Symmetric: 𝑨𝑻 = 𝑨 or 
𝑨HI = 𝑨IH

• Have lots of special 
properties

𝑎$$ 𝑎$* 𝑎$+
𝑎*$ 𝑎** 𝑎*+
𝑎+$ 𝑎+* 𝑎++

Any matrix of the form 𝑨 = 𝑿𝑻𝑿 is symmetric.

Quick check: 𝑨𝑻 = 𝑿𝑻𝑿 𝑻

𝑨𝑻 = 𝑿𝑻 𝑿𝑻 𝑻

𝑨𝑻 = 𝑿𝑻𝑿



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Special Matrices: Rotations

57

𝑟$$ 𝑟$* 𝑟$+
𝑟*$ 𝑟** 𝑟*+
𝑟+$ 𝑟+* 𝑟++

• Rotation matrices 𝑹 rotate vectors and do not 
change vector L2 norms ( 𝑹𝒙 * = 𝒙 *)

• Every row/column is unit norm
• Every row is linearly independent
• Transpose is inverse 𝑹𝑹𝑻 = 𝑹𝑻𝑹 = 𝑰
• Determinant is 1 (otherwise it’s also a coordinate 

flip/reflection), eigenvalues are 1



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Next Time:
More Linear Algebra

+ Image Filtering

58


