Lecture 6: Math Review II

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 1

January 28, 2020

Administrative

- HW0 due **tomorrow**, 1/29 11:59pm
- HW1 due 1 week from tomorrow, 2/5 11:59pm

Last Time: Floating Point Math IEEE 754 Single Precision / Single / float32 8 bits 23 bits $2^{127} \approx 10^{38} \approx 7$ decimal digits 8 Exponent

IEEE 754 Double Precision / Double / float64 11 bits 52 bits $2^{1023} \approx 10^{308} \approx 15$ decimal digits s Exponent Fraction

EECS 442 WI 2020: Lecture 6 - 3

Last Time: Vectors

- Scale (vector, scalar \rightarrow vector)
- Add (vector, vector \rightarrow vector)
- Magnitude (vector → scalar)
- Dot product (vector, vector → scalar)
 - Dot products are projection / angles
- Cross product (vector, vector \rightarrow vector)
 - Vectors facing same direction have cross product **0**
- You can **never** mix vectors of different sizes

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 5

January 28, 2020

Horizontally concatenate n, m-dim column vectors and you get a mxn matrix A (here 2x3)

$$\boldsymbol{A} = [\boldsymbol{v}_{1}, \cdots, \boldsymbol{v}_{n}] = \begin{bmatrix} v_{1_{1}} & v_{2_{1}} & v_{3_{1}} \\ v_{1_{2}} & v_{2_{2}} & v_{3_{2}} \end{bmatrix}$$

a (scalar) lowercase undecorated a (vector)lowercasebold or arrow

(matrix) uppercase bold

Horizontally concatenate n, m-dim column vectors and you get a mxn matrix A (here 2x3)

$$\boldsymbol{A} = [\boldsymbol{v}_1, \cdots, \boldsymbol{v}_n] = \begin{bmatrix} v_{1_1} & v_{2_1} & v_{3_1} \\ v_{1_2} & v_{2_2} & v_{3_2} \end{bmatrix}$$

Watch out: In math, it's common to treat D-dim vector as a Dx1 matrix (column vector); In numpy these are different things

Transpose: flip rows / columns

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}^{T} = \begin{bmatrix} a & b & c \end{bmatrix} \quad (3x1)^{T} = 1x3$$

Vertically concatenate m, n-dim row vectors and you get a mxn matrix A (here 2x3)

$$A = \begin{bmatrix} \boldsymbol{u}_{1}^{T} \\ \vdots \\ \boldsymbol{u}_{21}^{T} \end{bmatrix} = \begin{bmatrix} u_{1_{1}} & u_{1_{2}} & u_{1_{3}} \\ u_{2_{1}} & u_{2_{2}} & u_{2_{3}} \end{bmatrix}$$

Matrix-vector Product

$y = x_1 v_1 + x_2 v_2 + x_3 v_3$

Linear combination of columns of **A**

EECS 442 WI 2020: Lecture 6 - 9

Matrix-vector Product

 $y_1 = \boldsymbol{u}_1^T \boldsymbol{x} \qquad y_2 = \boldsymbol{u}_2^T \boldsymbol{x}$

Dot product between rows of **A** and **x**

EECS 442 WI 2020: Lecture 6 - 10

Matrix Multiplication

Generally: A_{mn} and B_{np} yield product $(AB)_{mp}$

Yes – in **A**, I'm referring to the rows, and in **B**, I'm referring to the columns

Matrix Multiplication

Generally: A_{mn} and B_{np} yield product $(AB)_{mp}$

EECS 442 WI 2020: Lecture 6 - 12

Matrix Multiplication

- Dimensions must match
- Dimensions must match
- Dimensions must match
- (Associative): ABx = (A)(Bx) = (AB)x
- (Not Commutative): $ABx \neq (BA)x \neq (BxA)$

Two uses for Matrices

1. Storing things in a rectangular array (e.g. images)

- *Typical operations*: element-wise operations, convolution (which we'll cover later)
- Atypical operations: almost anything you learned in a math linear algebra class
- 2. A linear operator that maps vectors to another space (Ax)
 - *Typical/Atypical:* reverse of above

Images as Matrices

Suppose someone hands you this matrix. What's wrong with it?

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 15

January 28, 2020

Contrast: Gamma Curve

Typical way to change the contrast is to apply a nonlinear correction

pixelvalue^{γ}

The quantity γ controls how much contrast gets added

Contrast: Gamma Curve

Now the darkest regions (10th pctile) are **much** darker than the moderately dark regions (50th pctile).

Contrast: Gamma Correction

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 18

January 28, 2020

Contrast: Gamma Correction

Phew! Much Better.

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 19

January 28, 2020

Implementation

Python+Numpy (right way):

imNew = im**4

Python+Numpy (slow way – **why?**):

Elementwise Operations

Element-wise power – beware notation

$$(\boldsymbol{A}^p)_{ij} = \boldsymbol{A}^p_{ij}$$

"Hadamard Product" / Element-wise multiplication

$$(\boldsymbol{A} \odot \boldsymbol{B})_{ij} = \boldsymbol{A}_{ij} * \boldsymbol{B}_{ij}$$

Element-wise division

$$(\boldsymbol{A}/\boldsymbol{B})_{ij} = \frac{A_{ij}}{B_{ij}}$$

Sums Across Axes

Note – libraries distinguish between N-D column vector and Nx1 matrix.

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 22

January 28, 2020

Operations they don't teach

You Probably Saw Matrix Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

What is this? FYI: e is a scalar

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + e = \begin{bmatrix} a+e & b+e \\ c+e & d+e \end{bmatrix}$$

Broadcasting

If you want to be pedantic and proper, you expand e by multiplying a matrix of 1s (denoted **1**)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + e = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \mathbf{1}_{2x2}e$$
$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & e \\ e & e \end{bmatrix}$$

Many smart matrix libraries do this automatically. This is the source of many bugs.

Broadcasting Example

FV

Given: a nx2 matrix **P** and a 2D column vector **v**, Want: nx2 difference matrix **D**

$$\boldsymbol{P} = \begin{bmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} \quad \boldsymbol{v} = \begin{bmatrix} a \\ b \end{bmatrix} \quad \boldsymbol{D} = \begin{bmatrix} x_1 - a & y_1 - b \\ \vdots & \vdots \\ x_n - a & y_n - b \end{bmatrix}$$

$$\boldsymbol{P} - \boldsymbol{v}^T = \begin{bmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} - \begin{bmatrix} a & b \end{bmatrix} \quad \begin{array}{c} \text{Blue stuff is} \\ assumed / \\ [a & b] \\ broadcast \end{bmatrix}$$

17

Broadcasting Rules

Suppose we have numpy arrays x and y. How will they broadcast?

1. Write down the **shape** of each array as a tuple of integers: For example: x: (10,) y: (20, 10)

2. If they have different numbers of dimensions, **prepend** with ones until they have the same number of dimensions For example: x: (10,) y: (20, 10) \rightarrow x: (1, 10) y: (20, 10)

- 3. Compare each dimension. There are 3 cases:
 - (a) Dimension match. Everything is good
 - (b) Dimensions don't match, but one is =1.

"Duplicate" the smaller array along that axis to match

(c) Dimensions don't match, neither are =1. Error!

Broadcasting Examples

```
x = np.ones(10, 20)
y = np.ones(20)
z = x + y
print(z.shape)
(10,20)
```

```
x = np.ones(10, 20)
y = np.ones(10, 1)
z = x + y
print(z.shape)
(10,20)
```

- x = np.ones(10, 20) y = np.ones(10) z = x + y print(z.shape) ERROR
- x = np.ones(1, 20) y = np.ones(10, 1) z = x + y print(z.shape) (10,20)

Scalar: Just one number

Vector: 1D list of numbers

Matrix: 2D grid of numbers

Tensor: N-dimensional grid of numbers (Lots of other meanings in math, physics)

Broadcasting with Tensors

The same broadcasting rules apply to tensors with any number of dimensions!

$$x = np.ones(30)$$

y = np.ones(20, 1)
z = np.ones(10, 1, 1)
w = x + y + z
print(w.shape)
(10, 20, 30)

Vectorization

Writing code without explicit loops: use broadcasting, matrix multiply, and other (optimized) numpy primitives instead

- Suppose I represent each image as a 128dimensional vector
- I want to compute all the pairwise distances between {x₁, ..., x_N} and {y₁, ..., y_M} so I can find, for every x_i the nearest y_j
- Identity: $||x y||^2 = ||x||^2 + ||y||^2 2x^T y$
- Or: $||x y|| = (||x||^2 + ||y||^2 2x^T y)^{1/2}$

$$\boldsymbol{X} = \begin{bmatrix} - & \boldsymbol{x}_1 & - \\ & \vdots & \\ - & \boldsymbol{x}_N & - \end{bmatrix} \boldsymbol{Y} = \begin{bmatrix} - & \boldsymbol{y}_1 & - \\ & \vdots & \\ - & \boldsymbol{y}_M & - \end{bmatrix} \boldsymbol{Y}^T = \begin{bmatrix} | & & | \\ \boldsymbol{y}_1 & \cdots & \boldsymbol{y}_M \\ | & & | \end{bmatrix}$$

Compute a Nx1 vector of norms (can also do Mx1)

$$\Sigma(X^2, \mathbf{1}) = \begin{bmatrix} \|x_1\|^2 \\ \vdots \\ \|x_N\|^2 \end{bmatrix}$$

Compute a NxM matrix of dot products

$$\left(\boldsymbol{X}\boldsymbol{Y}^{T}\right)_{ij} = \boldsymbol{x}_{i}^{T}\boldsymbol{y}_{j}$$

$$\mathbf{D} = \left(\Sigma(X^{2}, 1) + \Sigma(Y^{2}, 1)^{T} - 2XY^{T}\right)^{1/2}$$

$$\begin{bmatrix} \|x_{1}\|^{2} \\ \vdots \\ \|x_{N}\|^{2} \end{bmatrix} + \begin{bmatrix} \|y_{1}\|^{2} & \cdots & \|y_{M}\|^{2} \end{bmatrix}$$

$$\begin{bmatrix} \|x_{1}\|^{2} + \|y_{1}\|^{2} & \cdots & \|x_{1}\|^{2} + \|y_{M}\|^{2} \\ \vdots & \ddots & \vdots \\ \|x_{N}\|^{2} + \|y_{1}\|^{2} & \cdots & \|x_{N}\|^{2} + \|y_{M}\|^{2} \end{bmatrix} \quad \text{Why?}$$

$$(\Sigma(X^{2}, 1) + \Sigma(Y^{2}, 1)^{T})_{ij} = \|x_{i}\|^{2} + \|y_{j}\|^{2}$$

$$\mathbf{D} = \left(\Sigma(X^{2}, 1) + \Sigma(Y^{2}, 1)^{T} - 2XY^{T}\right)^{1/2}$$
$$\mathbf{D}_{ij} = ||x_{i}||^{2} + ||y_{j}||^{2} + 2x^{T}y$$

Numpy code:

XNorm = np.sum(X**2,axis=1,keepdims=True)
YNorm = np.sum(Y**2,axis=1,keepdims=True)

D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

Get in the habit of thinking about shapes as tuples. Suppose X is (N, D), Y is (M, D):

$$\mathbf{D} = \left(\Sigma(X^{2}, 1) + \Sigma(Y^{2}, 1)^{T} - 2XY^{T}\right)^{1/2}$$
$$\mathbf{D}_{ij} = ||x_{i}||^{2} + ||y_{j}||^{2} + 2x^{T}y$$

$$\mathbf{D} = \left(\Sigma(X^{2}, 1) + \Sigma(Y^{2}, 1)^{T} - 2XY^{T}\right)^{1/2}$$
$$\mathbf{D}_{ij} = ||x_{i}||^{2} + ||y_{j}||^{2} + 2x^{T}y$$

Numpy code: (N, 1) (M, 1)
XNorm = np.sum(X**2,axis=1,keepdims=True)
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

Get in the habit of thinking about shapes as tuples. Suppose X is (N, D), Y is (M, D):

$$\mathbf{D} = \left(\Sigma(X^2, 1) + \Sigma(Y^2, 1)^T - 2XY^T\right)^{1/2}$$
$$\mathbf{D}_{ij} = \|\mathbf{x}_i\|^2 + \|\mathbf{y}_j\|^2 + 2x^T \mathbf{y}$$

Numpy code: (N, 1) (M, 1) (N, M)
XNorm = np.sum(X**2,axis=1,keepdims=True)
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

Get in the habit of thinking about shapes as tuples. Suppose X is (N, D), Y is (M, D):

$$\mathbf{D} = \left(\Sigma(X^2, 1) + \Sigma(Y^2, 1)^T - 2XY^T\right)^{1/2}$$
$$\mathbf{D}_{ij} = ||\mathbf{x}_i||^2 + ||\mathbf{y}_j||^2 + 2x^T y$$

Numpy code: (N, 1) (M, 1) (N, M) (N, M)
XNorm = np.sum(X**2,axis=1,keepdims=True)
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = [XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5
Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

$$\mathbf{D} = \left(\Sigma(\mathbf{X}^2, 1) + \Sigma(\mathbf{Y}^2, 1)^T - 2\mathbf{X}\mathbf{Y}^T\right)^{1/2}$$
$$\mathbf{D}_{ij} = \|\mathbf{x}_i\|^2 + \|\mathbf{y}_j\|^2 + 2\mathbf{x}^T\mathbf{y}$$

Numpy code: (N, 1) (M, 1) (N, M) (N, M)
XNorm = np.sum(X**2,axis=1,keepdims=True)
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5
Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

$$\mathbf{D} = \left(\Sigma(X^2, 1) + \Sigma(Y^2, 1)^T - 2XY^T\right)^{1/2}$$
$$\mathbf{D}_{ij} = ||\mathbf{x}_i||^2 + ||\mathbf{y}_j||^2 + 2x^T y$$

Numpy code: (N, 1) (M, 1) (N, M) (N, M)
XNorm = np.sum(X**2,axis=1,keepdims=True)
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5
Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

$$\mathbf{D} = \left(\Sigma(X^2, 1) + \Sigma(Y^2, 1)^T - 2XY^T\right)^{1/2}$$
$$\mathbf{D}_{ij} = ||\mathbf{x}_i||^2 + ||\mathbf{y}_j||^2 + 2x^T y$$

Numpy code:

XNorm = np.sum(X**2,axis=1,keepdims=True)
YNorm = np.sum(Y**2,axis=1,keepdims=True)

D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

*May have to make sure this is at least 0 (sometimes roundoff issues happen)

Does Vectorization Matter?

Computing pairwise distances between 300 and 400 128-dimensional vectors

- 1. for x in X, for y in Y, using native python: 9s
- 2. for x in X, for y in Y, using numpy to compute distance: 0.8s
- 3. vectorized: 0.0045s (~2000x faster than 1, 175x faster than 2)

Expressing things in primitives that are optimized is usually faster

Even more important with special hardware like GPUs or TPUs!

Linear Algebra

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 43

January 28, 2020

Linear Independence

A set of vectors is **linearly independent** if you can't write one as a linear combination of the others.

Suppose:
$$a = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} b = \begin{bmatrix} 0 \\ 6 \\ 0 \end{bmatrix} c = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$$

 $x = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} = y = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} = \frac{1}{2}a - \frac{1}{3}b$

- Is the set {a,b,c} linearly independent?
- Is the set {a,b,x} linearly independent?
 - Max # of independent 3D vectors?

Span

Span

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 46

January 28, 2020

Span

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 47

January 28, 2020

Matrix-Vector Product

$$Ax = \begin{bmatrix} | & | \\ c_1 & \cdots & c_n \\ | & | \end{bmatrix} x \quad \begin{array}{c} \text{Right-multiplying } A \text{ by } x \\ \text{mixes columns of } A \\ \text{according to entries of } x \end{array}$$

- The output space of f(x) = Ax is constrained to be the span of the columns of A.
- Can't output things you can't construct out of your columns

An Intuition

x – knobs on machine (e.g., fuel, brakes)
y – state of the world (e.g., where you are)
A – machine (e.g., your car)

Linear Independence

Suppose the columns of 3x3 matrix **A** are *not* linearly independent (c_1 , αc_1 , c_2 for instance)

$$y = Ax = \begin{bmatrix} | & | & | \\ c_1 & \alpha c_1 & c_2 \\ | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$y = x_1c_1 + \alpha x_2c_1 + x_3c_2$$

$$y = (x_1 + \alpha x_2)c_1 + x_3c_2$$

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 50

Linear Independence Intuition

Knobs of **x** are redundant. Even if **y** has 3 outputs, you can only control it in two directions

$$y = (x_1 + \alpha x_2)c_1 + x_3c_2$$

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 51

January 28, 2020

Linear Independence

Recall: $Ax = (x_1 + \alpha x_2)c_1 + x_3c_2$

$$y = A \begin{bmatrix} x_1 + \beta \\ x_2 - \beta / \alpha \\ x_3 \end{bmatrix} = \left(x_1 + \beta + \alpha x_2 - \alpha \frac{\beta}{\alpha} \right) c_1 + x_3 c_2$$

- Can write **y** an infinite number of ways by adding β to **x**₁ and subtracting $\frac{\beta}{\alpha}$ from **x**₂
- Or, given a vector y there's not a unique vector x
 s.t. y = Ax
- Not all y have a corresponding x s.t. y=Ax (assuming c₁ and c₁ have dimension >= 3)

Linear Independence

$$A\mathbf{x} = (x_1 + \alpha x_2)\mathbf{c_1} + x_3\mathbf{c_2}$$

$$\mathbf{y} = \mathbf{A} \begin{bmatrix} \beta \\ -\beta/\alpha \\ 0 \end{bmatrix} = \left(\beta - \alpha \frac{\beta}{\alpha}\right) \mathbf{c}_1 + 0\mathbf{c}_2$$

- What else can we cancel out?
- An infinite number of non-zero vectors x can map to a zero-vector y
- Called the **right null-space** of A.

Rank

- Rank of a nxn matrix A number of linearly independent columns (or rows) of A / the dimension of the span of the columns
- Matrices with *full rank* (n x n, rank n) behave nicely: can be inverted, span the full output space, are one-to-one.
- Matrices with *full rank* are machines where every knob is useful and every output state can be made by the machine

Matrix Inverses

- Given y = Ax, y is a linear combination of columns of A proportional to x. If A is full-rank, we should be able to invert this mapping.
- Given some y (output) and A, what x (inputs) produced it?
- x = A⁻¹y
- Note: if you don't need to compute it, never ever compute it. Solving for x is much faster and stable than obtaining A⁻¹.

```
Bad: y = np.linalg.inv(A).dot(y)
Good: y = np.linalg.solve(A, y)
```

Symmetric Matrices

- Symmetric: $A^T = A$ or $A_{ij} = A_{ji}$
- Have **lots** of special properties

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Any matrix of the form $A = X^T X$ is symmetric.

Quick check:

$$A^{T} = \left(\mathbf{X}^{T} \mathbf{X} \right)^{T}$$
$$A^{T} = \mathbf{X}^{T} \left(\mathbf{X}^{T} \right)^{T}$$
$$A^{T} = \mathbf{X}^{T} \mathbf{X}$$

Special Matrices: Rotations

r_{11}	r_{12}	r_{13}
r_{21}	r_{22}	r_{23}
r_{31}	r_{32}	r_{33}

- Rotation matrices **R** rotate vectors and **do not** change vector L2 norms ($||Rx||_2 = ||x||_2$)
- Every row/column is unit norm
- Every row is linearly independent
- Transpose is inverse $RR^T = R^T R = I$
- Determinant is 1 (otherwise it's also a coordinate flip/reflection), eigenvalues are 1

Next Time: More Linear Algebra + Image Filtering

Justin Johnson

EECS 442 WI 2020: Lecture 6 - 58

January 28, 2020