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Lecture 6:
Math Review II
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Administrative

• HW0 due tomorrow, 1/29 11:59pm
• HW1 due 1 week from tomorrow, 2/5 11:59pm
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Last Time: Floating Point Math
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S Exponent Fraction

8 bits
2127 ≈ 1038

23 bits
≈ 7 decimal digits

S Exponent Fraction

11 bits
21023 ≈ 10308

52 bits
≈ 15 decimal digits

IEEE 754 Single Precision / Single / float32

IEEE 754 Double Precision / Double / float64
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Last Time: Vectors
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• Scale (vector, scalar → vector)
• Add (vector, vector → vector)
• Magnitude (vector → scalar)
• Dot product (vector, vector → scalar)

• Dot products are projection / angles 

• Cross product (vector, vector → vector)
• Vectors facing same direction have cross product 0

• You can never mix vectors of different sizes
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Matrices
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Matrices
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Horizontally concatenate n, m-dim column vectors and 
you get a mxn matrix A (here 2x3)

𝑨 = 𝒗$,⋯ , 𝒗' =
𝑣$) 𝑣*) 𝑣+)
𝑣$, 𝑣*, 𝑣+,

a (scalar)
lowercase
undecorated

a (vector)
lowercase
bold or arrow

A (matrix)
uppercase
bold
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Matrices
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Horizontally concatenate n, m-dim column vectors and 
you get a mxn matrix A (here 2x3)

𝑨 = 𝒗$,⋯ , 𝒗' =
𝑣$) 𝑣*) 𝑣+)
𝑣$, 𝑣*, 𝑣+,

Watch out: In math, it’s common to treat D-dim 
vector as a Dx1 matrix (column vector);
In numpy these are different things
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Matrices
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Vertically concatenate m, n-dim row vectors 
and you get a mxn matrix A (here 2x3)

𝐴 =
𝒖$/
⋮
𝒖'/

=
𝑢$) 𝑢$, 𝑢$2
𝑢*) 𝑢*, 𝑢*2

Transpose: flip 
rows / columns 

𝑎
𝑏
𝑐

/

= 𝑎 𝑏 𝑐 (3x1)T = 1x3
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Matrix-vector Product
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𝒚*7$ = 𝑨*7+𝒙+7$

𝒚 = 𝑥$𝒗𝟏 + 𝑥*𝒗𝟐 + 𝑥+𝒗𝟑
Linear combination of columns of A

𝑦$
𝑦* = 𝒗𝟏 𝒗𝟐 𝒗𝟑

𝑥$
𝑥*
𝑥+
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Matrix-vector Product
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𝒚*7$ = 𝑨*7+𝒙+7$

𝑦$ = 𝒖𝟏𝑻𝒙

Dot product between rows of A and x

𝑦* = 𝒖𝟐𝑻𝒙

𝒖𝟏𝑻

𝒖𝟐𝑻
𝑦$
𝑦* = 𝒙

3

3
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Matrix Multiplication
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− 𝒂𝟏𝑻 −
⋮

− 𝒂𝒎𝑻 −

| |
𝒃𝟏 ⋯ 𝒃𝒑
| |

𝑨𝑩 =

Generally: Amn and Bnp yield product (AB)mp

Yes – in A, I’m referring to the rows, and in B, I’m 
referring to the columns
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Matrix Multiplication
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− 𝒂𝟏𝑻 −
⋮

− 𝒂𝒎𝑻 −

| |
𝒃𝟏 ⋯ 𝒃𝒑
| |

𝑨𝑩 =
𝒂𝟏𝑻𝒃𝟏 ⋯ 𝒂𝟏𝑻𝒃𝒑
⋮ ⋱ ⋮

𝒂𝒎𝑻 𝒃𝟏 ⋯ 𝒂𝒎𝑻 𝒃𝒑

𝑨𝑩HI = 𝒂𝒊𝑻𝒃𝒋

Generally: Amn and Bnp yield product (AB)mp
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Matrix Multiplication
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• Dimensions must match
• Dimensions must match
• Dimensions must match
• (Associative): ABx = (A)(Bx) = (AB)x
• (Not Commutative): ABx ≠ (BA)x ≠ (BxA)
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Two uses for Matrices
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1. Storing things in a rectangular array (e.g. images)
• Typical operations: element-wise operations, 

convolution (which we’ll cover later)
• Atypical operations: almost anything you learned in a 

math linear algebra class

2. A linear operator that maps vectors to another 
space (Ax)
• Typical/Atypical: reverse of above
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Images as Matrices

15

Suppose someone hands you this matrix.
What’s wrong with it?

No 
contrast!



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Contrast: Gamma Curve

16

Typical way to change 
the contrast is to 
apply a nonlinear 
correction

pixelvalueT

The quantity 𝛾
controls how much 
contrast gets added 
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Contrast: Gamma Curve
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10%

50%

90%
Now the darkest 
regions (10th pctile) are 
much darker than the 
moderately dark 
regions (50th pctile).

new 10%
new 
50%

new 
90%
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Contrast: Gamma Correction



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 - 19

Phew! Much Better. 

Contrast: Gamma Correction
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Implementation
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imNew = im**4

Python+Numpy (right way):

Python+Numpy (slow way – why? ):

imNew = np.zeros(im.shape)
for y in range(im.shape[0]):
for x in range(im.shape[1]):
imNew[y,x] = im[y,x]**expFactor
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Elementwise Operations
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𝑨⊙𝑩 HI = 𝑨HI ∗ 𝑩HI

“Hadamard Product” / Element-wise multiplication

𝑨/𝑩 HI =
𝐴HI
𝐵HI

Element-wise division

𝑨Z HI = 𝐴HI
Z

Element-wise power – beware notation
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Sums Across Axes

𝑨 =
𝑥$ 𝑦$
⋮ ⋮
𝑥' 𝑦'

Suppose have 
Nx2 matrix A

Σ(𝑨, 1) =
𝑥$ + 𝑦$

⋮
𝑥' + 𝑦'

ND col. vec.

Σ(𝑨, 0) = `
Ha$

'

𝑥H ,`
Ha$

'

𝑦H2D row vec

Note – libraries distinguish between N-D column vector and Nx1 matrix.
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Operations they don’t teach
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𝑎 + 𝑒 𝑏 + 𝑒
𝑐 + 𝑒 𝑑 + 𝑒

𝑎 𝑏
𝑐 𝑑 + 𝑒 𝑓

𝑔 ℎ = 𝑎 + 𝑒 𝑏 + 𝑓
𝑐 + 𝑔 𝑑 + ℎ

You Probably Saw Matrix Addition 

𝑎 𝑏
𝑐 𝑑 + 𝑒 =

What is this? FYI: e is a scalar
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Broadcasting

24

𝑎 𝑏
𝑐 𝑑 + 𝑒

= 𝑎 𝑏
𝑐 𝑑 + 𝑒 𝑒

𝑒 𝑒

= 𝑎 𝑏
𝑐 𝑑 + 𝟏*7*𝑒

If you want to be pedantic and proper, you expand e by 
multiplying a matrix of 1s (denoted 1)

Many smart matrix libraries do this automatically. This 
is the source of many bugs.



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Broadcasting Example
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𝑷 =
𝑥$ 𝑦$
⋮ ⋮
𝑥' 𝑦'

𝒗 = 𝑎
𝑏

Given: a nx2 matrix P and a 2D column vector v, Want: 
nx2 difference matrix D

𝑫 =
𝑥$ − 𝑎 𝑦$ − 𝑏
⋮ ⋮

𝑥' − 𝑎 𝑦' − 𝑏

𝑷 − 𝒗/ =
𝑥$ 𝑦$
⋮ ⋮
𝑥' 𝑦'

−
𝑎 𝑏

𝑎 𝑏
⋮

Blue stuff is 
assumed / 
broadcast
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Broadcasting Rules
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Suppose we have numpy arrays x and y.
How will they broadcast?

1. Write down the shape of each array as a tuple of integers:
For example: x: (10,)    y: (20, 10)
2. If they have different numbers of dimensions, prepend 
with ones until they have the same number of dimensions
For example: x: (10,)   y: (20, 10)    à x: (1, 10)   y: (20, 10)
3. Compare each dimension. There are 3 cases:

(a) Dimension match. Everything is good
(b) Dimensions don’t match, but one is =1. 

”Duplicate” the smaller array along that axis to match
(c) Dimensions don’t match, neither are =1. Error!
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Broadcasting Examples
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x = np.ones(10, 20)
y = np.ones(20)
z = x + y
print(z.shape)

x = np.ones(10, 20)
y = np.ones(10, 1)
z = x + y
print(z.shape)

x = np.ones(10, 20)
y = np.ones(10)
z = x + y
print(z.shape)

x = np.ones(1, 20)
y = np.ones(10, 1)
z = x + y
print(z.shape)

(10,20) ERROR

(10,20) (10,20)
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Tensors
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Scalar: Just one number

Vector: 1D list of numbers

Matrix: 2D grid of numbers

Tensor: N-dimensional grid of numbers
(Lots of other meanings in math, physics)
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Broadcasting with Tensors
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x = np.ones(30)
y = np.ones(20, 1)
z = np.ones(10, 1, 1) 
w = x + y + z
print(w.shape)

(10, 20, 30)

The same broadcasting rules apply to 
tensors with any number of dimensions!
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Vectorization
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Writing code without explicit loops: 
use broadcasting, matrix multiply, 
and other (optimized) numpy
primitives instead
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Vectorization Example
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• Suppose I represent each image as a 128-
dimensional vector

• I want to compute all the pairwise distances 
between {x1, …, xN} and {y1, …, yM} so I can find, for 
every xi the nearest yj

• Identity: 𝒙 − 𝒚 * = 𝒙 * + 𝒚 * − 2𝒙/𝒚
• Or: 𝒙 − 𝒚 = 𝒙 * + 𝒚 * − 2𝒙/𝒚 $/*
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Vectorization Example
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𝑿 =
− 𝒙$ −

⋮
− 𝒙k −

𝒀 =
− 𝒚$ −

⋮
− 𝒚m −

𝑿𝒀𝑻 HI = 𝒙𝒊𝑻𝒚𝒋

𝒀𝑻 =
| |
𝒚$ ⋯ 𝒚m
| |

𝚺 𝑿𝟐, 𝟏 =
𝒙𝟏 𝟐

⋮
𝒙𝑵 𝟐

Compute a Nx1 vector 
of norms
(can also do Mx1)

Compute a NxM matrix 
of dot products
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Vectorization Example
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𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

𝒙𝟏 𝟐

⋮
𝒙𝑵 𝟐

+ 𝒚$ 𝟐 ⋯ 𝒚m 𝟐

Σ 𝑿*, 1 + Σ 𝒀*, 1 /
HI = 𝒙H * + 𝒚I

*

𝒙𝟏 * + 𝒚𝟏 * ⋯ 𝒙𝟏 * + 𝒚𝑴 *

⋮ ⋱ ⋮
𝒙𝑵 * + 𝒚𝟏 * ⋯ 𝒙𝑵 * + 𝒚𝑴 *

Why?



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Vectorization Example
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𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):
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Vectorization Example
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𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(N, 1)
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Vectorization Example
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𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1)
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Vectorization Example
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𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M)
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Vectorization Example

38

𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M) (N, M)
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Vectorization Example
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𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M) (N, M)
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Vectorization Example
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𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M) (N, M)
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Vectorization Example
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𝐃HI = 𝒙𝒊 * + 𝒚𝒋
* + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

$/*

*May have to make sure this is at least 0 (sometimes 
roundoff issues happen)
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Does Vectorization Matter?
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Computing pairwise distances between 300 and 400 
128-dimensional vectors
1. for x in X, for y in Y, using native python: 9s
2. for x in X, for y in Y, using numpy to compute 

distance: 0.8s
3. vectorized: 0.0045s (~2000x faster than 1, 175x 

faster than 2)
Expressing things in primitives that are optimized is 
usually faster
Even more important with special hardware like 
GPUs or TPUs!
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Linear Algebra
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Linear Independence
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𝒚 =
0
−2
1

=
1
2
𝒂 −

1
3
𝒃𝒙 =

0
0
4
=

• Is the set {a,b,c} linearly independent?
• Is the set {a,b,x} linearly independent?

• Max # of independent 3D vectors?

𝒂 =
0
0
2
𝒃 =

0
6
0
𝒄 =

5
0
0

Suppose:

A set of vectors is linearly independent if you can’t 
write one as a linear combination of the others.



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Span
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Span: all linear 
combinations of a set 
of vectors

Span({    }) =
Span({[0,2]}) = ?
All vertical lines 
through origin =
𝜆 0,1 : 𝜆 ∈ 𝑅
Is blue in {red}’s span? 
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Span
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Span: all linear 
combinations of a set 
of vectors

Span({    ,      }) = ? 
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Span
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Span: all linear 
combinations of a set 
of vectors

Span({    ,      }) = ? 
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Matrix-Vector Product
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𝑨𝒙 =
| |
𝒄𝟏 ⋯ 𝒄𝒏
| |

𝒙
Right-multiplying A by x
mixes columns of A
according to entries of x

• The output space of f(x) = Ax is constrained to be 
the span of the columns of A.

• Can’t output things you can’t construct out of your 
columns
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An Intuition
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x
Ax

y1

y2

y3

x1 x2 x3

y

𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝒄𝟐 𝒄𝒏
| | |

𝑥$
𝑥*
𝑥+

x – knobs on machine (e.g., fuel, brakes)
y – state of the world (e.g., where you are)
A – machine (e.g., your car)



Justin Johnson January 28, 2020EECS 442 WI 2020: Lecture 6 -

Linear Independence
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𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝛼𝒄𝟏 𝒄𝟐
| | |

𝑥$
𝑥*
𝑥+

Suppose the columns of 3x3 matrix A are not linearly 
independent (c1, αc1, c2 for instance)

𝒚 = 𝑥$𝒄𝟏 + 𝛼𝑥*𝒄𝟏 + 𝑥+𝒄𝟐
𝒚 = 𝑥$ + 𝛼𝑥* 𝒄𝟏 + 𝑥+𝒄𝟐
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Linear Independence Intuition
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Knobs of x are redundant. Even if y has 3 outputs, 
you can only control it in two directions

𝒚 = 𝑥$ + 𝛼𝑥* 𝒄𝟏 + 𝑥+𝒄𝟐

x
Ax

y1

y2

y3

x1 x2 x3

y
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Linear Independence
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𝑨𝒙 = 𝑥$ + 𝛼𝑥* 𝒄𝟏 + 𝑥+𝒄𝟐

• Or, given a vector y there’s not a unique vector x 
s.t. y =Ax

• Not all y have a corresponding x s.t. y=Ax
(assuming 𝒄𝟏 and 𝒄𝟏have dimension >= 3)

𝒚 = 𝑨
𝑥$ + 𝛽
𝑥* − 𝛽/𝛼

𝑥+
• Can write y an infinite number of ways by adding 

𝛽 to x1 and subtracting ~
�

from x2

Recall:

= 𝑥$ + 𝛽 + 𝛼𝑥* − 𝛼
𝛽
𝛼
𝑐$ + 𝑥+𝑐*
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Linear Independence
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𝑨𝒙 = 𝑥$ + 𝛼𝑥* 𝒄𝟏 + 𝑥+𝒄𝟐

• An infinite number of non-zero vectors x can map 
to a zero-vector y

• Called the right null-space of A.

𝒚 = 𝑨
𝛽

−𝛽/𝛼
0

= 𝛽 − 𝛼
𝛽
𝛼
𝒄𝟏 + 0𝒄𝟐

• What else can we cancel out?
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• Rank of a nxn matrix A – number of linearly 
independent columns (or rows) of A / the 
dimension of the span of the columns

• Matrices with full rank (n x n, rank n) behave nicely: 
can be inverted, span the full output space, are 
one-to-one. 

• Matrices with full rank are machines where every 
knob is useful and every output state can be made 
by the machine
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• Given 𝒚 = 𝑨𝒙, y is a linear combination of columns 
of A proportional to x. If A is full-rank, we should be 
able to invert this mapping.

• Given some y (output) and A, what x (inputs) 
produced it?

• x = A-1y
• Note: if you don’t need to compute it, never ever 

compute it. Solving for x is much faster and stable 
than obtaining A-1.

Bad: y = np.linalg.inv(A).dot(y)
Good: y = np.linalg.solve(A, y)
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• Symmetric: 𝑨𝑻 = 𝑨 or 
𝑨HI = 𝑨IH

• Have lots of special 
properties

𝑎$$ 𝑎$* 𝑎$+
𝑎*$ 𝑎** 𝑎*+
𝑎+$ 𝑎+* 𝑎++

Any matrix of the form 𝑨 = 𝑿𝑻𝑿 is symmetric.

Quick check: 𝑨𝑻 = 𝑿𝑻𝑿 𝑻

𝑨𝑻 = 𝑿𝑻 𝑿𝑻 𝑻

𝑨𝑻 = 𝑿𝑻𝑿
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𝑟$$ 𝑟$* 𝑟$+
𝑟*$ 𝑟** 𝑟*+
𝑟+$ 𝑟+* 𝑟++

• Rotation matrices 𝑹 rotate vectors and do not 
change vector L2 norms ( 𝑹𝒙 * = 𝒙 *)

• Every row/column is unit norm
• Every row is linearly independent
• Transpose is inverse 𝑹𝑹𝑻 = 𝑹𝑻𝑹 = 𝑰
• Determinant is 1 (otherwise it’s also a coordinate 

flip/reflection), eigenvalues are 1
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Next Time:
More Linear Algebra

+ Image Filtering
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