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ast Class

1. How do we find distinctive / easy to locate
features? (Harris/Laplacian of Gaussian)

2. How do we describe the regions around
them? (Normalize window, use histogram of
gradient orientations)



Earlier | promised

Solving for a Transformation

3: Solve for transformation T (e.g. such that
p1 =T p2) that fits the matches well




Before Anything Else, Remember

You, with your The computer
gigantic brain, see: sees:

| ™

You should expect noise (not at quite the right
pixel) and outliers (random matches)



Today

* How do we fit models (i.e., a parameteric
representation of data that's smaller than the
data) to data?

 How do we handle:
* Noise — least squares / total least squares
* Outliers — RANSAC (random sample consensus)

« Multiple models — Hough Transform (can also
make RANSAC handle this with some effort)



Working Example: Lines

« We'll handle lines as our models today since
you are more familiar with them than others

* Next class will cover more complex models. |
promise we'll eventually stitch images together

* You can apply today’s techniques on next
class’s models



Model Fitting

Need three ingredients

Data: what data are we trying to explain with a
model?

Model: what's the compressed, parametric
form of the data?

Obijective function: given a prediction, how do
we evaluate how correct it is?




Example: Least-Squares

Fitting a line to data

Data: (x4,y4), (X2,Y>), 4
o (X Y)

Model: (m,b) y=mx+b
Or (w) y;, = w'x

Obijective function:

(y; - Wix;)?




k
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Solving Least-Squares

|V — Xwl|3

Where can | find derivatives + matrix
expressions and matrix identies?

& Wolfram The Matrix Cookbook

Kaare Brandt Petersen

I WA Michael Syskind Pedersen
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Yow o VERSION: NOVEMBER 15, 2012
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WIKIPEDIA
The Free Encyclopedia




Solving Least-Squares
IV — xwl|3

0
P |V — Xw||5 = 2X"Xw — 2X"Y

— T T
Recall: derivative is 0=2X"Xw-—-2X"Y

0 at a maximum / T  uT
minimum. Same is X' Xw=XY

true about gradients.

w=(XTX) XxTy

Aside: 0 is a vector of 0s. 1 is a vector of 1s.



Two Solutions to Getting W

In One Go lteratively
Implicit form Recall: gradient is also
(normal equations) direction that makes
xTxw = xTy function go up the most.
What could we do?
Explicit form e — 0
(don’t do this) °

0
w = (XTx)_IXTy Wit1 = Wi — Y(ﬁ Y — XW||%>



What's The Problem?

* Vertical lines impossible! N

* Not rotationally invariant:
the line will change
depending on orientation
of points O




Alternate Formulation

Recall: ax+by+c=0
I"'p=0
l=|ab,c] p=|xy1]

Can always rescale .
Pick another a,b,d so

In||5 = ll[a,b]ll5 =1
d =—c




Alternate Formulation

Important part: Any line can be framed in terms of

normal n and offset d

Now: ax+by—d=0
n'[x,y] —d =0
Point to line distance:

n'[x,y] —d
[x, V] —Tlxy] —d

Inll3

A

I[a, b]llZ = 1




Total Least-Squares

Fitting a line to data

Data: (x4,y1), (X2,¥>),
o (X0 Yi)

Model: (n,d), ||n]|¢ = 1
n'[x;y]-d=0

Obijective function:
(n"[x;yi]-d)?

A

I[a, b]llZ = 1




Total Least Squares Setup

Figure out objective first, then figure out ||n||=1

k
> (07lx,y] - d)” — [IXn - 1d]3
1=1

X1 Y1

Xk Vi

1

= [ wmp

t

The mean / center of mass of the points:
np.sum(X,axis=0). We'll use it later



Total Least Squares Setup

Want to make sure that the following is minimized:

| Xn — 1d]|3

Won't derive, but can show that whenever you find
the n, and d that minize the objective, d = un .
(at back of slides if you're curious.)

X1 Y1

Xk Vi

°

1

= [f] we o

t

The mean / center of mass of the points:
np.sum(X,axis=0). We'll use it later



Solving Total Least-Squares

IXn—1dll7 = lIXn — 1un||3 d = pun

= ||(X — 1) nl|3

Objective is then:

arg mln H(X 1) nl‘

|In||=

The thing that makes the expression smallest



Homogeneous Least Squares
arg minIIAvII% — Eigenvector corresponding to
lvll5=1 smallest eigenvalue of ATA

Why do we need ||v||?=1 or
some other constraint?

Applying it in our case:

n = smallest_eigenvec((X — 1) (X — 1))

Note: technically homogeneous only refers to [|Av||=0 but it's common
shorthand in computer vision to refer to the specific problem of ||v||=1



Detalls For ML-People

Matrix we take the eigenvector of looks like:

_ Z(xi — [y )? Z(Xi — ) (¥ — Hy)_
Z(Xi — ) (i — uy) Z(Yi - Hy)z

L

X-1w' (X -1p) =

This is a scatter matrix or scalar multiple of the
covariance matrix. We're doing PCA, but taking the
least principal component to get the normal.

Note: If you don’t know PCA, just ignore this slide; it's to help build connections
to people with a background in data science/ML.



Running Least-Squares
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Running Least-Squares

20.0
17.5
15.0
12.5
10.0

7.5

5.0

2.5

0.0
0.0 2.5 5.0 75 100 125 150 175 20.0



Ruining Least Squares
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Ruining Least Squares
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Ruining Least Squares

Way to think of it #1:
Y — Xw||3

10072 >> 1072: least-squares prefers having no large
errors, even if the model is useless overall

Way to think of it #2:
-1
w=(X"X) XTY

Weights are a linear transformation of the output
variable: can manipulate W by manipulating Y.



Outliers in Computer Vision

Single outlier: Many outliers:
rare common
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Ruining Least Squares Continued
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Ruining Least Squares Continued
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A Simple, Yet Clever ldea

* What we really want. model explains many
points “well”

» Least Squares: model makes as few big
mistakes as possible over the entire dataset

* New objective: find model for which error is
“small” for as many data points as possible

* Method: RANSAC (RAndom SAmple
Consensus)

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp
381-395, 1981.



http://www.ai.sri.com/pubs/files/836.pdf

RANSAC For Lines

bestLine, bestCount = None, -1
for trial in range(numTrials):
subset = pickPairOfPoints(data)
line = totalLeastSquares(subset)
E = linePointDistance(data,line)
inliers = E < threshold
iIf #inliers > bestCount:
bestLine, bestCount = line, #inliers
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Running RANSAC
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Running RANSAC

7.8 Point/line diétance Best
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Running RANSAC
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Running RANSAC
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Running RANSAC
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Running RANSAC
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Trial
43
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Running RANSAC
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Model:
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Running RANSAC
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Running RANSAC
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Running RANSAC
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Running RANSAC
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RANSAC In General

best, bestCount = None, -1
for trial in range(NUM_TRIALS):

subset = pickSubset(data,SUBSET_SIZE)

model = fitModel(subset)

E = computeError(data,line)

inliers = E < THRESHOLD

iIf #(inliers) > bestCount:

best, bestCount = model, #(inliers)

(often refit on the inliers for best model)



Parameters — Num Trials

ris the fraction of outliers (e.g., 80%)
Suppose we pick s points (e.g., 2)
we run RANSAC N times (e.g., 500)

What's the probability of picking a sample set with no outliers?
~(1-1)° (4%)
What's the probability of picking a sample set with any outliers?

1—(1—1)° (96%)



Parameters — Num Trials

ris the fraction of outliers (e.g., 80%)
Suppose we pick s points (e.g., 2)
we run RANSAC N times (e.g., 500)

What's the probability of picking a sample set with any outliers?
1—-(1—-17)° (96%)

What's the probability of picking only sample sets with outliers?

(1—(1—=7r)5N (107% N=500)

(13% N=50)
What's the probability of picking any set with inliers?
1-(1—(1=r))V



Parameters — Num Trials

1‘;?‘MEGA P($157M Jackpot):

MILLION  1/302,575,350
Death by P(Death):
fne:fr:?nge ~1 / 112.000.000
E*n‘;Nvﬁf‘h%Bi}!?J&.‘}‘éZ P(Failure):
ter tying only 500 1/731.784.961

Odds/Jackpot amount from 2/7/2019 megamillions.com, unfortunate demise odds from livescience.com
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ris the fraction of outliers (e.g., 80%)
Suppose we pick s points (e.g., 2)
we run RANSAC N times (e.g., 500)
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Parameters — Subset Size

» Always the smallest possible set for fitting the
model.

* Minimum number for lines: 2 data points
* Minimum number for 3D planes: how many?

 Why the minimum intuitively?
* You'll find out more precisely in homework 3.



Parameters — Threshold

* No magical threshold



RANSAC Pros and Cons

Pros

1. Ridiculously simple
2. Ridiculously effective
3. Works in general

List credit: S. Lazebnik

1.

2.

Cons

Have to tune
parameters

No theory (so can't
derive parameters via
theory)

Not magic, especially
with lots of outliers



Transform

T x| Hough Transfomm

Hough

Image credit: S. Lazebnik



Hough Transform

1. Discretize space of parametric models

2. Each pixel votes for all compatible models
3. Find models compatible with many pixels

Intercept
1 1 0|10
e AR
® o
® nl|O 1 210
¢ o 1 [o] 1
Image Space Parameter Space Image Space

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc.
Int. Conf. High Energy Accelerators and Instrumentation, 1959
Slide design credit: S. Lazebnik



Hough Transform

Line in image = point in parameter space

m
(mO' bO)

0

Image Space Parameter Space

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real



Hough Transform

Point in image = line in parameter space
All lines through the point: b = xom + y,

b=X0m+y0

L

Image Space

L

Parameter Space

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real



Hough Transform

Point in image = line in parameter space
All lines through the point: b = xym + y;

® (x1,¥1)

L

Image Space

Parameter Space

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real



Hough Transform

Point in image = line in parameter space
All lines through the point: b = xym + y;

|

If a point is compatible with a line of
model parameters, what do two points
correspond to?

X[ [——Tbh

Image Space Parameter Space

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real




Hough Transform

Line through two points in image = intersection
of two lines in parameter space (i.e., solutions to
both equations)

L

Image Space

Parameter Space

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real



Hough Transform

Line through two points in image = intersection
of two lines in parameter space (i.e., solutions to
both equations)

L

Image Space

Parameter Space

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real



Hough Transform

* Recall: m, b space is awful
» ax+by+c=0 is better, but unbounded

* Trick: write lines using angle + offset (normally
a mediocre way, but makes things bounded)

xcos(0) + ysin(f) =p

Diagram is remake of S. Seitz Slides; these are illustrative and values may not be real



Hough Transform Algorithm
Remember: x cos(6) + ysin(8) = p

Accumulator H = zeros(?,?) 1T 11111
For X,y in detected_points:
For 6 in range(0,180,?): o =======
p = x cos(B) +y sin(9)
I, o] 4= 1 111111

#any local maxima (0, p) of His a line
#of the form p = x cos(0) + y sin(6)

Diagram is remake of S. Seitz slides



Example

Points (Xx,y) -> sinusoids

" . to the line

‘. Peak corresponding

Image Space

Slide Credit: S. Lazebnik

Few votes

Parameter Space



Hough Transform Pros / Cons

Pros Cons
1. Handles multiple models 1. Have to bin ALL
2. Some robustness to noise parameters: exponential
3. In principle, general In #params

2. Have to parameterize
your space nicely

3. Details really, really
important (a working
version requires a lot
more than what | showed

you)

Slide Credit: S. Lazebnik



Next Time

* What happens with fitting more complex
transformations?






Details for the Curious



Least Squares



Derivation for the Curious

Y — Xw|5 = (¥ —Xw)" (Y — Xw)
=Yy —2wiXTY + Xw)TXw

d T _ T
— (Xw) (Xw)_z( Xw )Xw_zx Xw

0
g Y — Xw|?2 =0 — 2XTY + 2XTXw

=2XTxw — 2X'y



Total Least Squares

* In the interest of less material better, I'm giving
thatd = un .

 This can be derived by solving for d at the
optimum in terms of the other variables.



Solving Total Least-Squares
|IXn — 1d||5 = Xn — 1d)"(Xn — 1d)
= (Xn)'(Xn) — 2d1"Xn + d*171
First solve for d at optimum (set to 0)

0 2 T
~—lIXn—1d|13 = 0 — 21" Xn + 2dk

0=-21"Xn+2dk =—» 0 = —1TXn + dk

1 g
—>d=E1 Xn = un




Common Fixes

Replace Least-Squares objective
Let E=Y—-XW

2 40 —— L2/MSE/Least-Squares
LS/L2/MSE: Ei 35 \— L1
30 —— Huber
L1: |E,|
2.5
Huber: 52
Lo 1.5
E;| <6o: 7Ei 1.0
E|>68  S(E]|-2 Zi
| -2 -1 0 1 2



Issues with Common Fixes

» Usually complicated to optimize:
« Often no closed form solution
 Typically not something you could write yourself

« Sometimes not convex (local optimum is not
necessarily a global optimum)

* Not simple to extend more complex objectives
to things like total-least squares

» Typically don’t handle a ton of outliers (e.g.,
80% outliers)



