Single-View Geometry

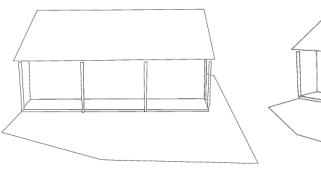
EECS 442 – David Fouhey and Justin Johnson Winter 2021, University of Michigan

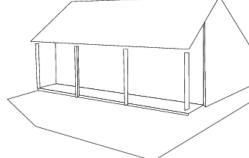
https://web.eecs.umich.edu/~justincj/teaching/eecs442/WI2021/

Updates

- HW6 is Optional. We'll still help you through it and think it's valuable but if you don't have time, no need to do it.
- Many project proposals turned in yesterday.
 We'll try to respond quickly

Application: Single-view modeling





A. Criminisi, I. Reid, and A. Zisserman, Single View Metrology, IJCV 2000

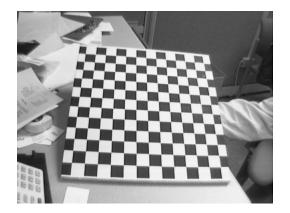
Application: Measuring Height

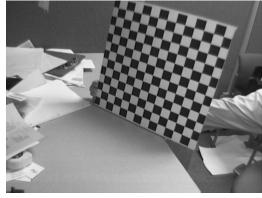
Application: Measuring Height

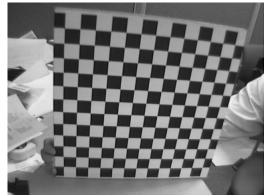
- CSI before CSI
- Covered criminal cases talking to random scientists (e.g., footwear experts)
- How do you tell how tall someone is if they're not kind enough to stand next to a ruler?

Application: Camera Calibration

Calibration a HUGE pain





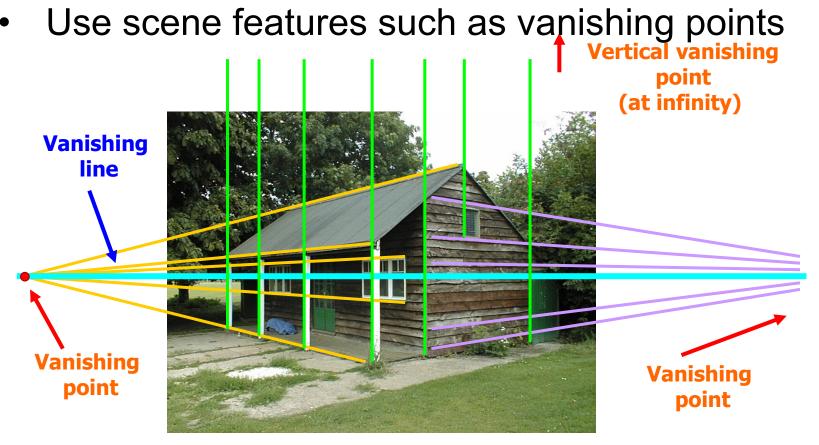


Application: Camera Calibration

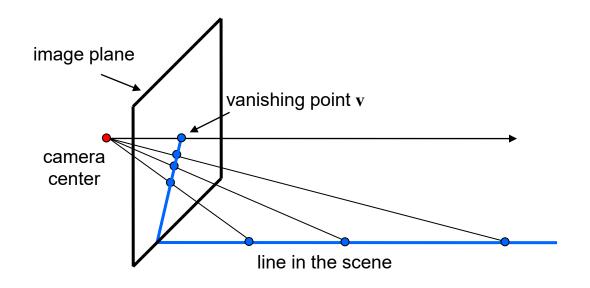
- What if 3D coordinates are unknown?
- Use scene features such as vanishing points

Camera calibration revisited

What if 3D coordinates are unknown?



Recall: Vanishing points



All lines having the same *direction* share the same vanishing point

Consider a scene with 3 orthogonal directions $\mathbf{v_1}$, $\mathbf{v_2}$ are *finite* vps, $\mathbf{v_3}$ *infinite* vp Want to align world coordinates with directions

■ V₂

v₁

$$P_{3x4} \equiv [p_1 \ p_2 \ p_3 \ p_4]$$

It turns out that

$$\mathbf{p_1} \equiv \mathbf{P} [1,0,0,0]^T$$
 VP in X direction $\mathbf{p_2} \equiv \mathbf{P} [0,1,0,0]^T$ VP in Y direction

$$p_3 \equiv P [0,0,1,0]^T$$
 VP in Z direction

$$p_4 \equiv P[0,0,0,1]^T$$
 Projection of origin

Note the usual \equiv (i.e., all of this is up to scale) as well as where the 0 is

Let's align the world coordinate system with the three orthogonal vanishing directions:

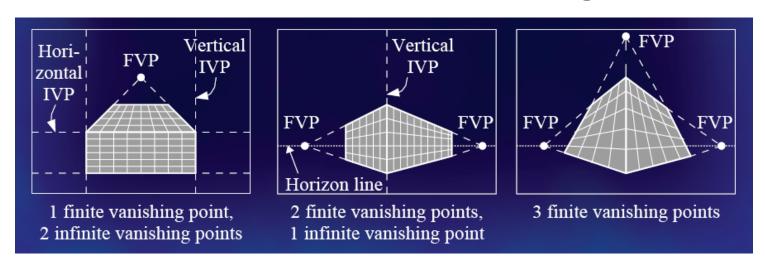
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

$$\lambda oldsymbol{v}_i = K[R,t]egin{bmatrix} oldsymbol{e}_i \ \lambda oldsymbol{v}_i = KRoldsymbol{e}_i \end{bmatrix}$$
 Drop the t $R^{-1}K^{-1}\lambda oldsymbol{v}_i = oldsymbol{e}_i$ Inverses

So
$$e_i = R^{-1}K^{-1}\lambda v_i$$
, but who cares? What are some properties of axes? Know $e_i^T e_j = 0$ for $i \neq j$, so K, R have to satisfy $\left(R^{-1}K^{-1}\lambda_j v_j\right)^T \left(R^{-1}K^{-1}\lambda_i v_i\right) = \mathbf{0}$ $\left(R^TK^{-1}\lambda_j v_j\right)^T \left(R^TK^{-1}\lambda_i v_i\right) = \mathbf{0}$ $R^{-1} = R^T$ $\lambda_i \lambda_j \left(R^TK^{-1}v_j\right)^T \left(R^TK^{-1}v_i\right) = \mathbf{0}$ Move scalars $v_j K^{-T}RR^TK^{-1}v_i = \mathbf{0}$ Clean up $v_j K^{-T}K^{-1}v_i = \mathbf{0}$ $RR^T = I$

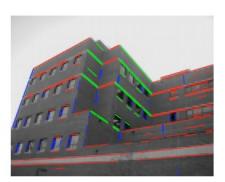
Intrinsics (focal length f, principal point u₀,v₀)
have to ensure that the rays corresponding to
vanishing points for 3 mutually orthogonal
directions are orthogonal

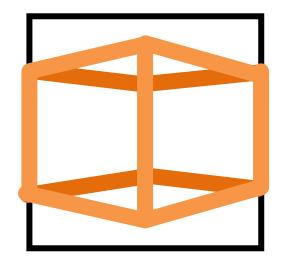
$$v_i K^{-T} K^{-1} v_i = 0$$

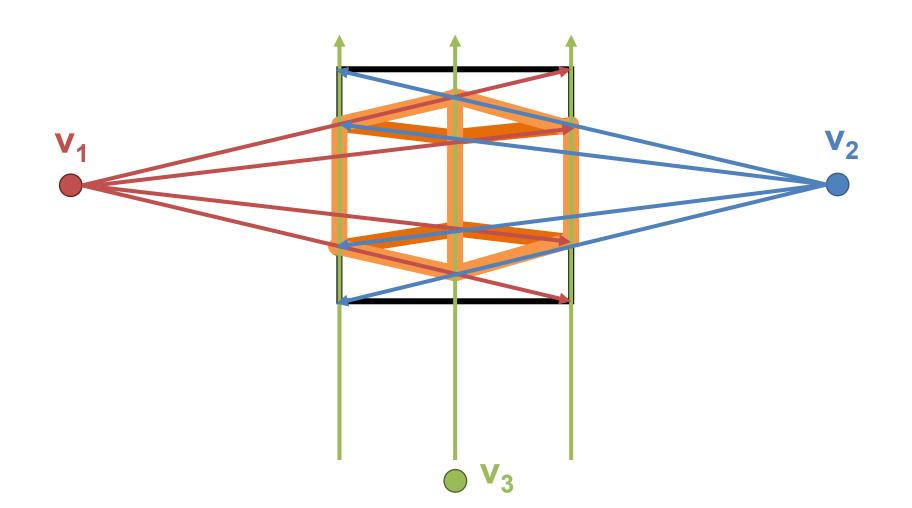


Cannot recover focal length, principal point is the third vanishing point

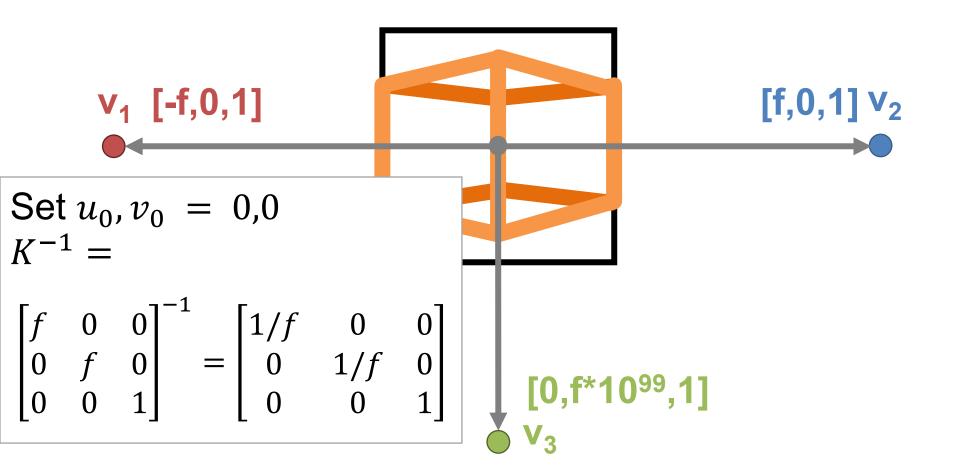
Can solve for focal length, principal point







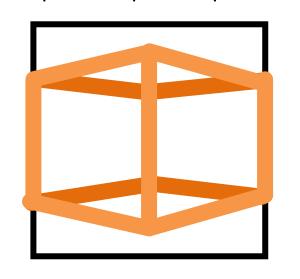
If v vanishing point, and K the camera intrinsics, $K^{-1}v$ is the corresponding direction.



If I normalize each $K^{-1}v_i$, I get:

$$\left[-\frac{1}{\sqrt{2}}, 0\frac{1}{\sqrt{2}}\right], \left[\frac{1}{\sqrt{2}}, 0\frac{1}{\sqrt{2}}\right], [0,1,0]$$

$$v_1$$
 [-f,0,1]
•
$$K^{-1}v_1 = [-1,0,1]$$



$$[f,0,1] V_2$$

•

 $K^{-1}V_2 = [1,0,1]$

$$K^{-1} = \begin{bmatrix} 1/f & 0 & 0 \\ 0 & 1/f & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$K^{-1}v_3 = [0, 10^{99}, 1]$$
 $[0, f*10^{99}, 1]$
 V_3

Rotation from vanishing points

Know that $\lambda_i v_i = KRe_i$ and have **K**, but want **R**

So:
$$\lambda K^{-1} v_i = Re_i$$

What does Re_i look like?

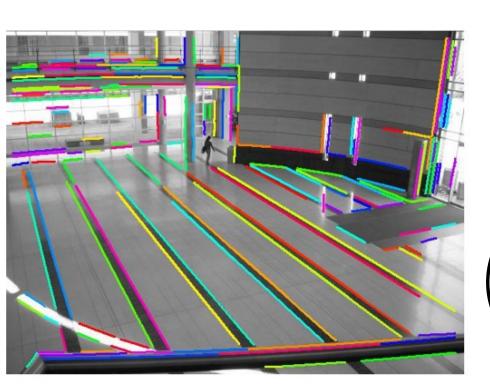
$$Re_1 = \begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = r_1$$

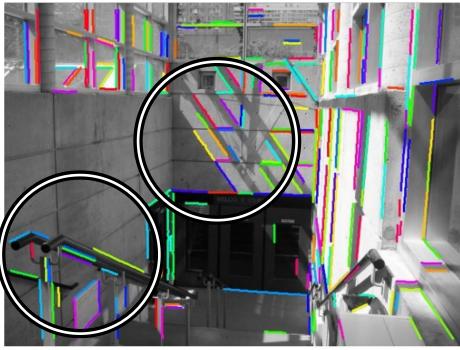
The ith column of R is a scaled version of

$$r_i = \lambda K^{-1} v_i$$

- Solve for K (focal length, principal point) using 3 orthogonal vanishing points
- Get rotation directly from vanishing points once calibration matrix known
- Pros:
 - Could be totally automatic!
- Cons:
 - Need 3 vanishing points, estimated accurately, AND orthogonal with at least two finite!

Finding Vanishing Points





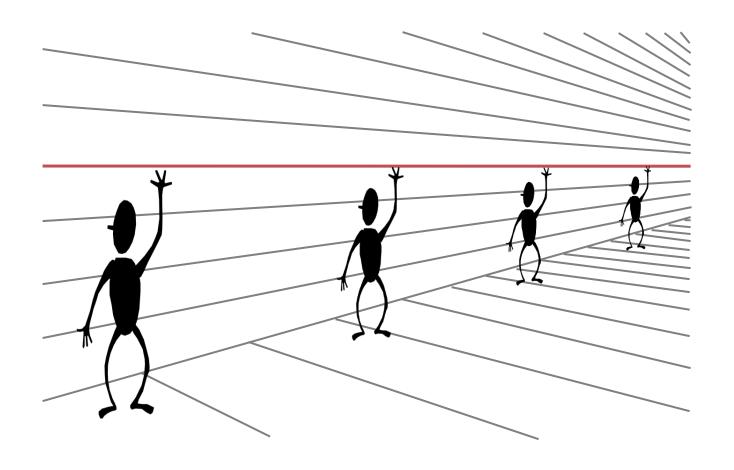
What might go wrong with the circled points?

Finding Vanishing Points

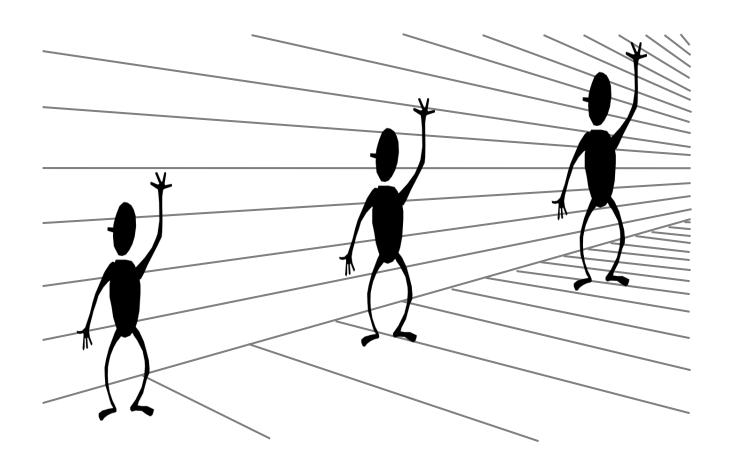
- Find long edges $E = \{e_1, \dots, e_n\}$
- All $\binom{n}{2}$ intersections of edges $v_{ij} = e_i \times e_j$ are potential vanishing points
- Try all triplets of popular vanishing points, check if the camera's focal length, principal point "make sense"
- What are some options for this?

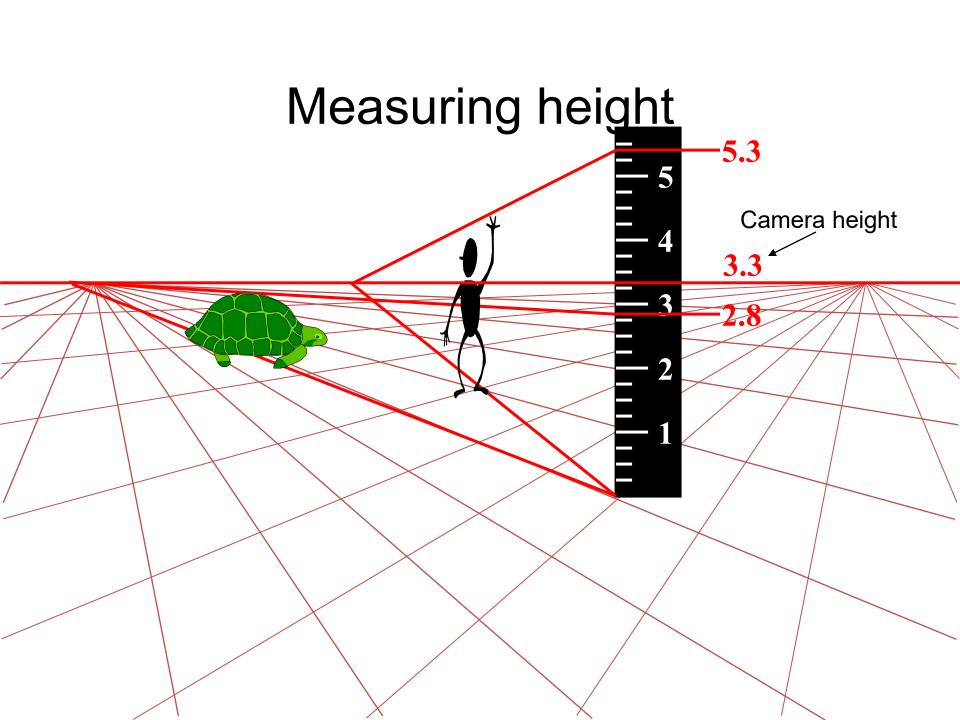
Finding Vanishing Points

Measuring height

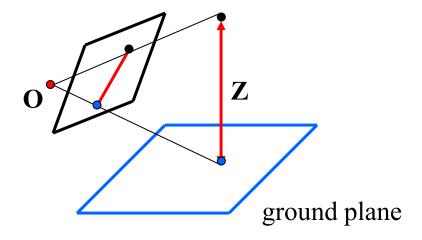


Measuring height





Measuring height without a ruler



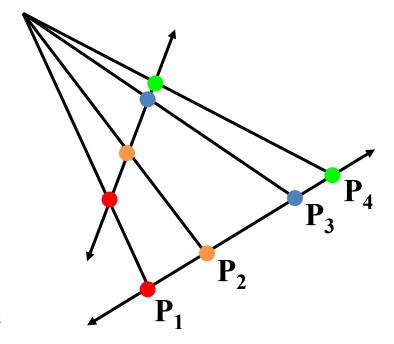
Compute Z from image measurements: We'll need more than vanishing points to do this

Projective invariant

• We need to use a *projective invariant*: a quantity that does not change under projective transformations (including perspective projection)

Projective invariant

- We need to use a *projective invariant*: a quantity that does not change under projective transformations (including perspective projection)
- The cross-ratio of four points:

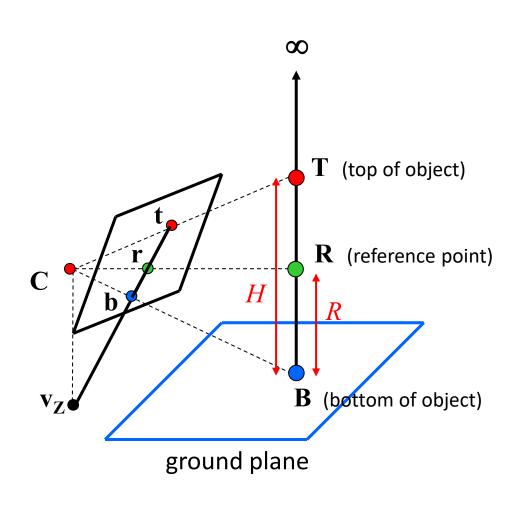


$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{3} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{1}\|}$$

This is one of the cross-ratios (can reorder arbitrarily)

Slide credit: S. Lazebnik

Measuring height

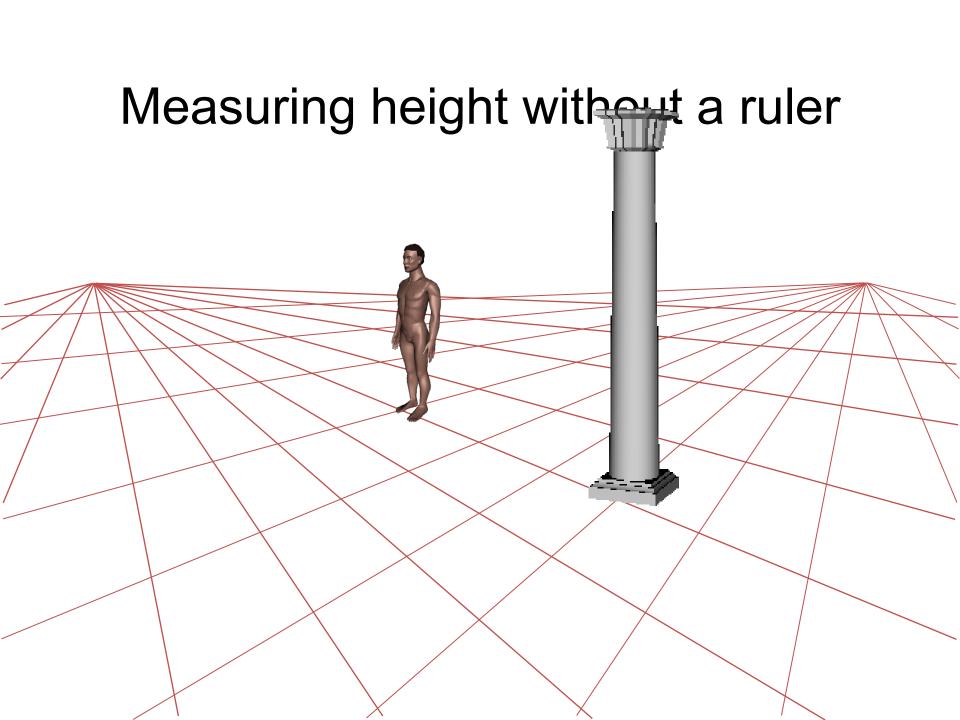


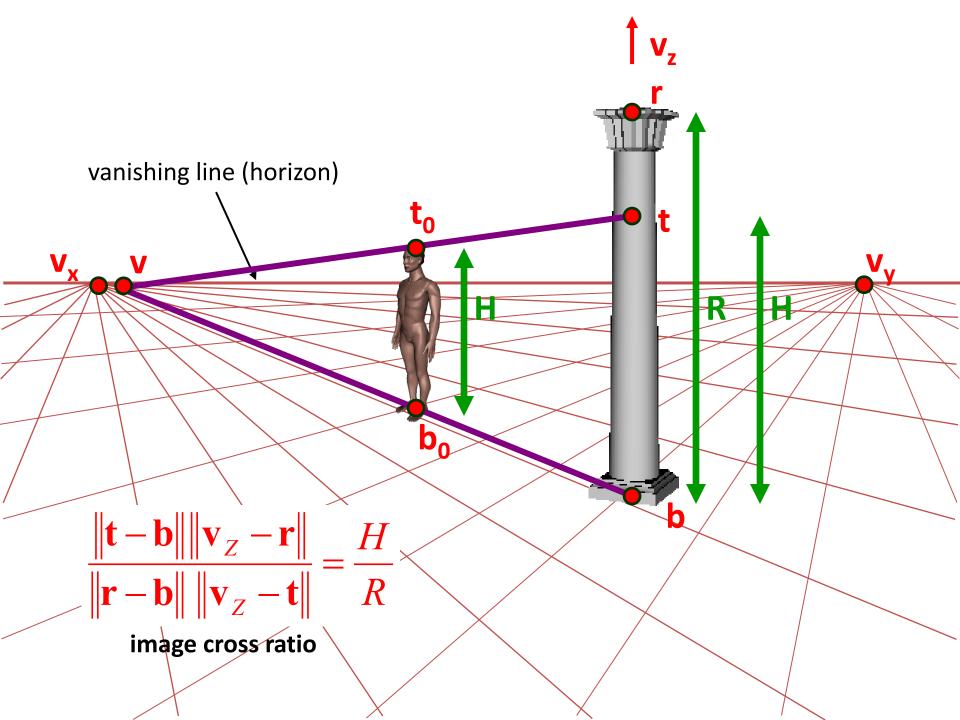
$$\frac{\|\mathbf{T} - \mathbf{B}\| \|\infty - \mathbf{R}\|}{\|\mathbf{R} - \mathbf{B}\| \|\infty - \mathbf{T}\|} = \frac{H}{R}$$

scene cross ratio

$$\frac{\|\mathbf{t} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{r}\|}{\|\mathbf{r} - \mathbf{b}\| \|\mathbf{v}_Z - \mathbf{t}\|} = \frac{H}{R}$$

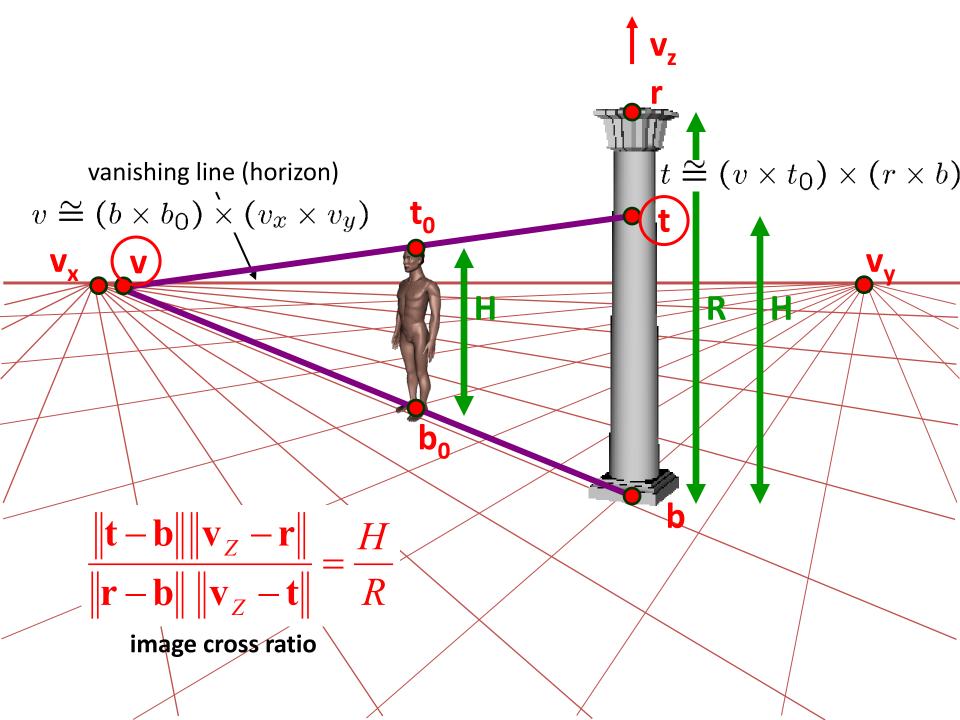
image cross ratio





Remember This?

- Line equation: ax + by + c = 0
- Vector form: $l^T p = 0$, l = [a, b, c], p = [x, y, 1]
- Line through two points?
 - $l = p_1 \times p_2$
- Intersection of two lines?
 - $p = l_1 \times l_2$
- Intersection of two parallel lines is at infinity

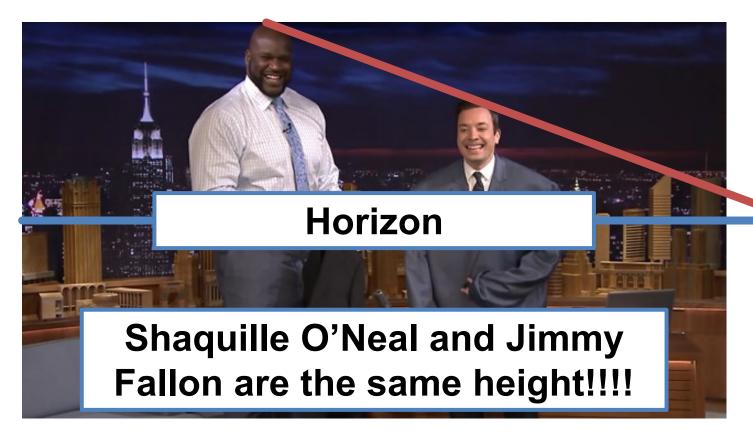


Example Gone Wrong

Know length of red → can figure out height of blue because they intersect at vanishing point v

Wrong! Any two lines always intersect! Need to point to same 3D direction / VP.

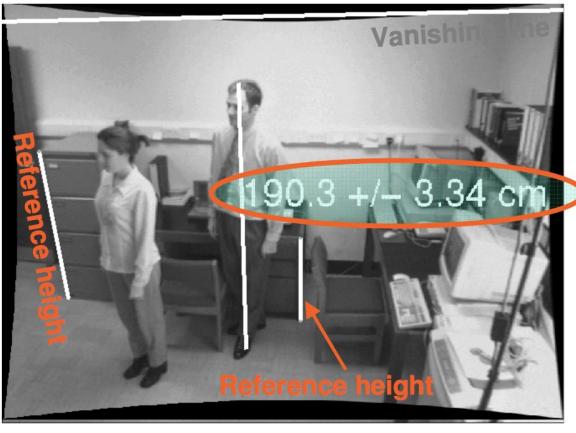
Example Gone Wrong



Wrong! Need to connect feet to the horizon (at infinity – thank homogenous coordinates), and then to Jimmy's head.

reference 185.3 cm

Examples



Another example

 Are the heights of the two groups of people consistent with one another?

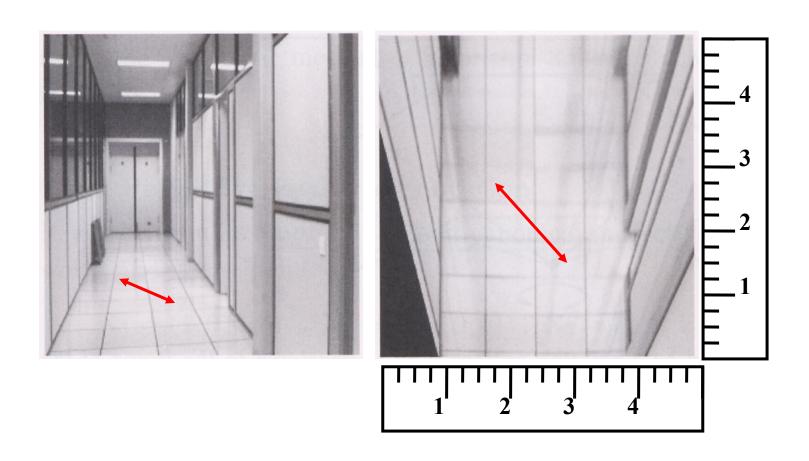
Piero della Francesca, Flagellation, ca. 1455

A. Criminisi, M. Kemp, and A. Zisserman, <u>Bringing Pictorial Space to Life: computer techniques for the analysis of paintings</u>,

Slide credit: S. Lazebnik

Proc. Computers and the History of Art, 2002

Measurements on planes



Measurements on planes

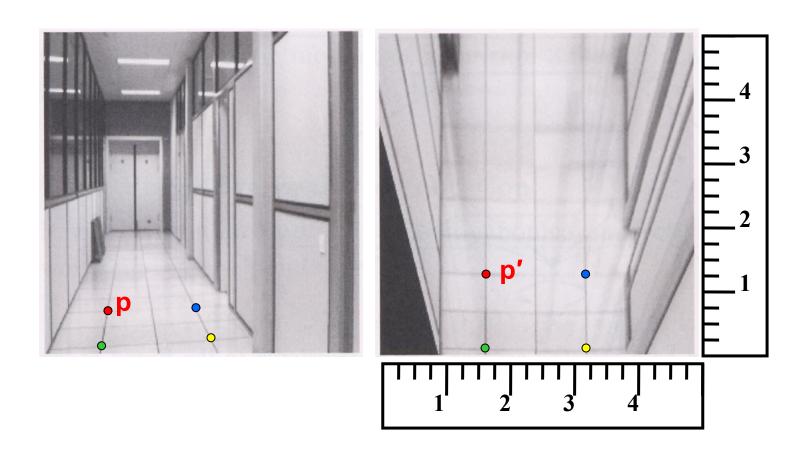
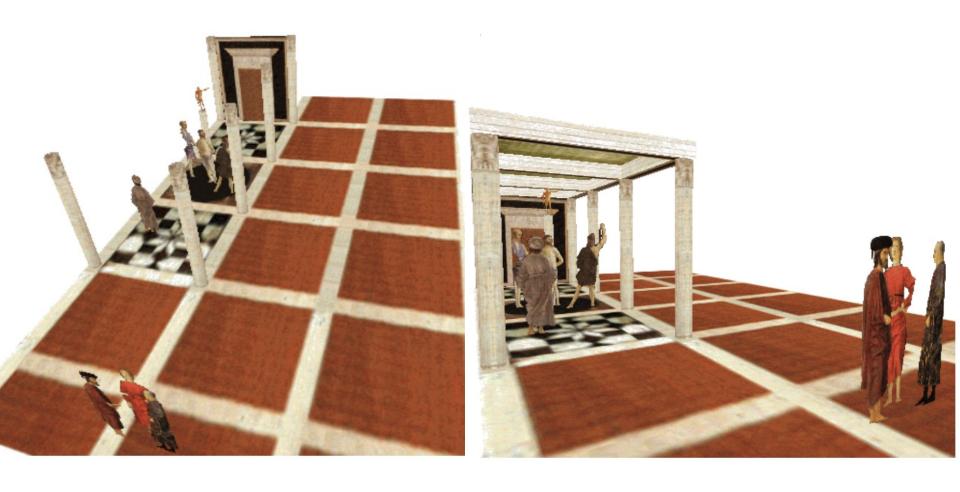


Image rectification: example





Application: 3D modeling from a single image

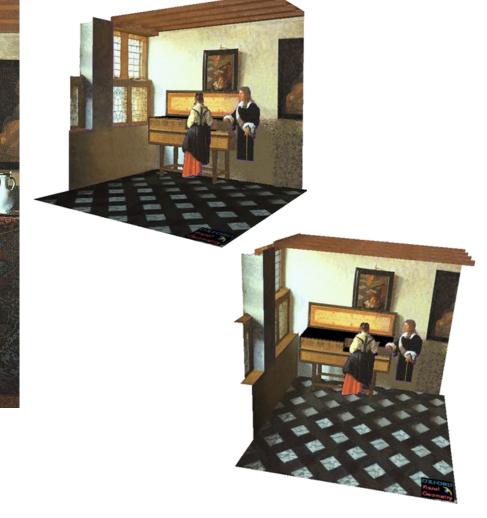


A. Criminisi, M. Kemp, and A. Zisserman, <u>Bringing Pictorial Space to Life: computer techniques for the analysis of paintings</u>,

Slide credit: S. Lazebnik Proc. Computers and the History of Art, 2002

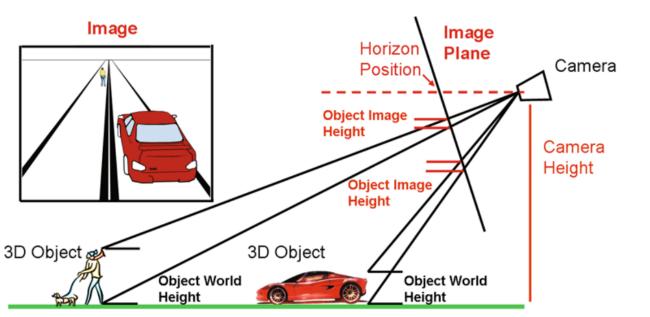
Application: 3D modeling from a single image

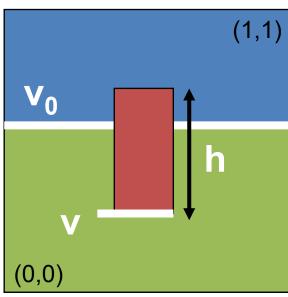
J. Vermeer, Music Lesson, 1662



A. Criminisi, M. Kemp, and A. Zisserman, <u>Bringing Pictorial Space to Life: computer techniques for the analysis of paintings</u>,

Application: Object Detection





"Reasonable" approximation:

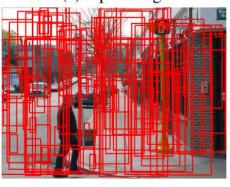
$$y_{object} \approx \frac{hy_{camera}}{v_0 - v}$$

Application: Object detection

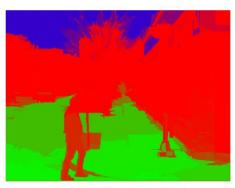
(a) input image

Application: Object detection

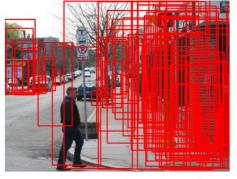
(a) input image



(b) P(person) = uniform

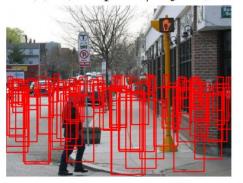


(c) surface orientation estimate

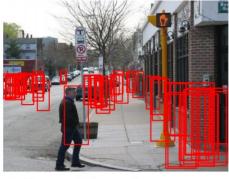


(d) P(person | geometry)

(e) P(viewpoint | objects)



(f) P(person | viewpoint)



(g) P(person|viewpoint,geometry)

Application: Image Editing

Application: Estimating Layout

