# Structure From Motion

### EECS 442 – David Fouhey and Justin Johnson Winter 2021, University of Michigan

https://web.eecs.umich.edu/~justincj/teaching/eecs442/WI2021/

### Structure-from-Motion Revisited

Johannes L. Schönberger, Jan-Michael Frahm

CVPR 2016

Code available at: <u>https://github.com/colmap/colmap</u>

### Structure from motion

Have: 2D points  $\mathbf{p}_{ij}$  seen in m images Assume: points generated from n fixed 3D points  $\mathbf{X}_j$ and cameras  $M_i$  or  $p_{ij} \equiv M_i \mathbf{X}_j$ Want: Cameras  $M_i$ , points  $\mathbf{X}_j$ 

(Remember)  $M_i \equiv K_i[R_i, t_i]$  $\lambda p_{ij} = M_i X_j, \lambda \neq 0$ 



### Is SFM always uniquely solvable?



<u>Necker cube</u>

Source: N. Snavely

## Structure from motion ambiguities Let's first find one easy ambiguity

$$p_{ij} \equiv M_i X_j$$
3x1 3x4 4x1



#### MOVIECLIPS.com

#### Zoolander, 2001

### Structure from motion ambiguities

Let's first find one easy ambiguity

$$\boldsymbol{p}_{ij} \equiv \boldsymbol{M}_i \boldsymbol{X}_j$$

Can pick any arbitrary scaling factor k and adjust the cameras and points

$$\mathbf{p}_{ij} \equiv \mathbf{M}_i k^{-1} k \mathbf{X}_j$$

(Can usually be fixed in practice: just need a number, obtainable from heights of known objects or an IMU)

### Structure from motion ambiguity

Does this diagram change meaning if I use this coordinate system?



Versus this coordinate system?





Coordinate system irrelevant! So global **R,t** also ambiguous Structure from motion ambiguities

Not just limited to scale. Given:

$$\boldsymbol{p}_{ij} \equiv \boldsymbol{M}_i \boldsymbol{X}_j$$

Can insert any global transform H

## $p_{ij} \equiv M_i X_j = M_i H^{-1} H X_j$

**H** is a 3D homography / perspective transform / projective transform

### Similarity/Affine/Perspective





Perspective



Lines





+Parallelism

$$\begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix}$$





+Angles

| [s <b>R</b> | t] |
|-------------|----|
| 0           | 1  |

3D: same idea, different dimensions

### Projective ambiguity

With no constraints on cameras matrices and scene, can only reconstruct up to a perspective ambiguity



### Projective ambiguity









Slide credit: S. Lazebnik

### Affine ambiguity

If we have constraints in the form of what lines are parallel, can reduce ambiguity to *affine ambiguity*.



### Affine ambiguity





Slide credit: S. Lazebnik

### Similarity ambiguity

If we have orthogonality constraints, get up to similarity transform. *Really the best we can do.* We get this if we have calibrated cameras.



### Similarity ambiguity







### Affine structure from motion

## We'll do the math with affine / weak perspective cameras (math is much easier)







Weak Perspective

Recall: orthographic projection Orthographic camera: things infinitely far away but you have an amazing camera



### Field of view and focal length



#### wide-angle

#### standard

#### telephoto

Slide Credit: F. Durand

Affine Camera
$$M = \begin{bmatrix} A_{2D} & t_{2D} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{3D} & t_{3D} \\ 0 & 1 \end{bmatrix}$$
3x3 Matrix3x4 Ortho.4x4 MatrixAffine 2DProjAffine 3D

Tedious math...

$$\boldsymbol{M} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Affine CameraSo what? Who cares?Examine the projection
$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Projection becomes linear mapping + translation and doesn't involve homogeneous coordinates!

$$\begin{bmatrix} u \\ v \end{bmatrix} \equiv \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

b is projection of origin. Can anyone see why?

Affine structure from motionGeneral structure<br/>from motion: $p_{ij} \equiv M_i X_j$ <br/> $_{3x1} = M_i X_j$ <br/> $_{3x4} = 4x1$ Assume M is affine<br/>camera: $p_{ij} = A_i X_j + b_i$ <br/> $_{2x1} = 2x3 = 3x1 = 2x1$ 

mn 2D points, m cameras, n 3D points up to arbitrary 3D affine (12 DOF)

> Need:  $2mn \ge 8m + 3n - 12$   $(m = 2): n \ge 4$ (for all m!)

### One simplifying trick

 $p_{ij} = A_i X_j + b_i$  Subtract off the average 2D point  $\widehat{\boldsymbol{p}_{ij}} = \boldsymbol{p}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \boldsymbol{p}_{ik} = \boldsymbol{A}_i \boldsymbol{X}_j + \boldsymbol{b}_i - \frac{1}{n} \sum_{k=1}^{n} \boldsymbol{A}_i \boldsymbol{X}_k + \boldsymbol{b}_i$ Gather terms involving  $A_i$ , push out  $b_i$  $\widehat{p_{ij}} = A_i \left( \frac{X_j}{n} - \frac{1}{n} \sum_{k=1}^n \frac{X_k}{n} \right) + \frac{b_i}{n} - \frac{1}{n} \sum_{k=1}^n \frac{b_i}{n}$ Set origin to mean of 3D points  $\widehat{p_{ii}} = A_i X_i$ Can do this entirely in terms of A!

### Affine structure from motion

First, make data measurement matrix consisting of all the points stacked together



### How big is this matrix?

C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

### Affine structure from motion

Then, write all the equations in one in terms of product of cameras and points.



C. Tomasi and T. Kanade. <u>Shape and motion from image streams under orthography:</u> <u>A factorization method.</u> *IJCV*, 9(2):137-154, November 1992.

### Making Matrices Rank Deficient

Repeat of epipolar geometry class, but important enough to see twice. Given matrix **M**:

 $M \rightarrow U\Sigma V^{T} \qquad \begin{array}{c} U_{m \times m}, V_{n \times n} & \text{rotation matrices} \\ \Sigma_{m \times n} & \text{diagonal scaling matrix} \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ squares) subject to rank( $\widehat{M}$ )  $\leq$  k

See Eckart–Young–Mirsky theorem if you're interested

### Affine structure from motion We'd like to take the measurements and convert them into **M**, **S**





#### Truncate to top 3 singular values



Affine structure from motion Nearly there apart from this annoying  $\Sigma_3$ .

$$D = U_3 \times \Sigma_3 \times V_3^{\mathsf{T}}$$

One solution (split  $\Sigma_3$  in two):  $D = U_3 \Sigma_3^{1/2} \Sigma_3^{1/2} V_3^T$ 



But remember that we can put **HH**<sup>-1</sup> in the middle

S

M

Remake of M. Hebert diagram

### Eliminating the affine ambiguity

Rows  $a_i$  of  $A_i$  give axes of camera. Can multiply each projection  $A_i$  with **C** to make  $A_i$ **C** that satisfies:



Gives 3 equations per camera, can set A<sub>i</sub>C to new camera, and C<sup>-1</sup>S to new points. In general, a recipe for eliminating ambiguities

### **Reconstruction results**



C. Tomasi and T. Kanade, <u>Shape and motion from image streams under orthography:</u> <u>A factorization method</u>, IJCV 1992

### Dealing with missing data

So far, assume we can see all points in all views In reality, measurement matrix typically looks like this:



Possible solution: find dense blocks, solve in block, fuse. In general, finding these dense blocks is NP-complete

### But cameras aren't affine! Want: m cameras $M_i$ , n 3D points $X_j$ Given: mn 2D points $p_{ij}$ $p_{ij} \equiv M_i X_j = M_i H^{-1} H X_j$

When is this Possible? Want: m cameras M<sub>i</sub>, n 3D points X<sub>i</sub> Given: mn 2D points p<sub>ii</sub>  $p_{ij} \equiv M_i X_j = M_i H^{-1} H X_j$ 3D point (3) 2D 4x4 homography 3x4 camera point (2) (15) **why?** matrix (11) why? Need  $2mn \ge 11m + 3n - 15$  $(m = 2): n \ge 7$ (m = 3):  $n \ge 6$  (doesn't get better after) (m=1): n ≤ 4

### Two Camera Case

## For two cameras, we need 7 points. Hmm. What else (in theory) requires 7 points?



Compute fundamental matrix **F** and epipole **b** s.t.  $\mathbf{F}^{\mathsf{T}}\mathbf{b} = 0$ . Then:

$$\boldsymbol{M}_1 = [\boldsymbol{I}, \boldsymbol{0}]$$
$$\boldsymbol{M}_2 = [-[\boldsymbol{b}_x]\boldsymbol{F}, \boldsymbol{b}]$$

Remember: this is up to a projective ambiguity!

### **Incremental SFM**

#### Key idea: incrementally add cameras, points



Remake of S. Lazebnik material

Note: numbers of points aren't to scale.

Key idea: incrementally add cameras, points

1. Initialize motion  $M_i$ = [ $R_i$ , $t_i$ ] with fundamental matrix



Key idea: incrementally add cameras, points

- 1. Initialize motion  $M_i$ = [ $R_i$ , $t_i$ ] with fundamental matrix
- 2. Initialize structure X<sub>j</sub> with triangulation

# How could we add another camera?



Remake of S. Lazebnik material

Key idea: incrementally add cameras, points

 Solve for camera matrix using visible, known points using calibration



Remake of S. Lazebnik material

Key idea: incrementally add cameras, points

 Solve for camera matrix using visible, known points using calibration

Now we can see the fourth point in two cameras.



Remake of S. Lazebnik material

Key idea: incrementally add cameras, points

- Solve for camera matrix using visible, known points using calibration
- Solve for 3D coordinates of newly visible points using triangulation



Remake of S. Lazebnik material

Key idea: incrementally add cameras, points

Big problem: don't ever jointly consider all the 3D points and camera.

Leads to final step, called bundle adjustment.



Remake of S. Lazebnik material

### **Bundle Adjustment**

Do non-linear minimization over cameras  $M_i$ , points  $X_j$  to minimize distance between observed points  $p_{ij}$  and projections  $M_i X_i$  when they're visible.



### Devil is in the details

High-level idea:  $\arg\min_{M_i, X_i} w_{ij} d(M_i X_j, p_{ij})^2$ 

In practice:

- Have to initialize reasonably well
- Should minimize over K,R,t directly
- Problem is very sparse: w<sub>ii</sub> almost always zero
- Need to integrate uncertainty information
- Probably want to use a system written by experts

### **Representative SFM pipeline**



N. Snavely, S. Seitz, and R. Szeliski, <u>Photo tourism: Exploring photo collections in 3D</u>, SIGGRAPH 2006. <u>http://phototour.cs.washington.edu/</u>

### Feature detection

#### **Detect SIFT features**



Source: N. Snavely

### Feature detection

#### **Detect SIFT features**



### Feature matching

#### Match features between each pair of images



### Feature matching

Use RANSAC to estimate fundamental matrix between each pair



### Feature matching Use RANSAC to estimate fundamental matrix between each pair



### Feature matching

Use RANSAC to estimate fundamental matrix between each pair



### Image connectivity graph



(graph layout produced using the Graphviz toolkit: <a href="http://www.graphviz.org/">http://www.graphviz.org/</a>)

Source: N. Snavely

### In practice

- Pick a pair of images with lots of inliers (and preferably, good EXIF data)
  - Initialize intrinsic parameters (focal length, principal point) from EXIF
  - Estimate extrinsic parameters (R and t) Use triangulation to initialize model points
- While remaining images exist
  - Find an image with many feature matches with images in the model
  - Run RANSAC on feature matches to register new image to model
  - Triangulate new points
  - Perform bundle adjustment to re-optimize everything

### The devil is in the details

- Degenerate configurations (homographies)
- Eliminating outliers
- Repetition and symmetry





Slide Credit: S. Lazebnik

### The devil is in the details

- Degenerate configurations (homographies)
- Eliminating outliers
- Repetition and symmetry
- Multiple connected components

### **Next Class**

# Particular Challenge

#### Given: two RGB images with unknown relationship Want: single, coherent reconstruction











Andrew Owens

# Particular Challenge

#### Given: two RGB images with unknown relationship Want: single, coherent reconstruction

