Lecture 15: Convolutional Networks

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 1

Administrative

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 2

Last Time: Backpropagation

Represent complex expressions as computational graphs

Backward pass computes gradients

During the backward pass, each node in the graph receives **upstream gradients** and multiplies them by **local gradients** to compute **downstream gradients**

Problem: So far our classifiers don't respect the spatial structure of images!

Stretch pixels into column

Solution: Define new computational nodes that operate on images!

Components of a Fully-Connected Network

Fully-Connected Layers

Activation Function

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 5

Components of a <u>Convolutional</u> Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson & David Fouhey

EECS 442 WI 2021: Lecture 15 - 6

Components of a <u>Convolutional</u> Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson & David Fouhey

EECS 442 WI 2021: Lecture 15 - 7

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

Fully-Connected Layer

32x32x3 image -> stretch to 3072 x 1

dimensional dot product)

3x32x32 image: preserve spatial structure

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 10

3x32x32 image

3x5x5 filter

Convolve the filter with the image: "slide over the image spatially, computing dot products"

Filters always extend the full depth of the input volume

3x5x5 filter

Convolve the filter with the image: "slide over the image spatially, computing dot products"

3x32x32 image 3x5x5 filter 3x5x5 filter 3x5x5 filter 3x5x5 filter 1 number: the result of taking a dot product between the filter and a small 3x5x5 chunk of the image (i.e. 3*5*5 = 75-dimensional dot product + bias)

 $w^T x + b$

3

28x28 grid, at each point a 6-dim vector

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 20

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 21

Stacking Convolutions

Stacking Convolutions

Q: What happens if we stack two convolution layers?

Solution: Add a nonlinearity between each conv layer

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 25

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 27

MLP: Bank of wholeimage templates

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 28

First-layer conv filters: local image templates (Often learns oriented edges, opposing colors)

AlexNet: 64 filters, each 3x11x11

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 29

Input: 7x7 Filter: 3x3

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 30

Input: 7x7 Filter: 3x3

Input: 7x7 Filter: 3x3

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 32

Input: 7x7 Filter: 3x3

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 33

Input: 7x7 Filter: 3x3 Output: 5x5

7

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 34

Input: 7x7 Filter: 3x3 Output: 5x5

In general:Problem:Input: WFeature mapsFilter: K"shrink" withOutput: W - K + 1each layer!

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7 Filter: 3x3 Output: 5x5

In general: Input: W Filter: K Padding: P Problem: Feature maps "shrink" with each layer!

Solution: **padding** Add zeros around the input
Convolution Spatial Dimensions

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

Input: 7x7 Filter: 3x3 Output: 5x5

In general: Input: W Filter: K Padding: P Output: W – K + 1 + 2P

Very common: "same padding" Set P = (K - 1) / 2Then output size = input size

For convolution with kernel size K, each element in the output depends on a K x K **receptive field** in the input

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 38

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Output

Careful – "receptive field in the input" vs "receptive field in the previous layer" Hopefully clear from context!

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 39

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Output

Problem: For large images we need many layers for each output to "see" the whole image image

Each successive convolution adds K - 1 to the receptive field size With L layers the receptive field size is 1 + L * (K - 1)

Input

Output

Problem: For large images we need many layers for each output to "see" the whole image image Solution: Downsample inside the network

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 41

Input: 7x7 Filter: 3x3 Stride: 2

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 42

Input: 7x7 Filter: 3x3 Stride: 2

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 43

Input: 7x7 Filter: 3x3 Stride: 2

Output: 3x3

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 44

Input: 7x7 Filter: 3x3 Stride: 2

Output: 3x3

In general: Input: W Filter: K Padding: P Stride: S Output: (W – K + 2P) / S + 1

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 46

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: (32+2*2-5)/1+1 = 32 spatially, so 10 x 32 x 32

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: ?

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 48

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: **760** Parameters per filter: **3*5*5** + 1 (for bias) = **76 10** filters, so total is **10 * 76 = 760**

Input volume: 3 x 32 x 32 10 5x5 filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: ?

Input volume: **3** x 32 x 32 10 **5x5** filters with stride 1, pad 2

Output volume size: 10 x 32 x 32 Number of learnable parameters: 760 Number of multiply-add operations: 768,000 10*32*32 = 10,240 outputs; each output is the inner product of two 3x5x5 tensors (75 elems); total = 75*10240 = 768K

Convolution Summary

Input: C_{in} x H x W **Hyperparameters**:

- **Kernel size**: K_H x K_W
- Number filters: C_{out}
- Padding: P
- **Stride**: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$ giving C_{out} filters of size $C_{in} \times K_H \times K_W$

Bias vector: Cout

Output size: C_{out} x H' x W' where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Convolution Summary

Input: C_{in} x H x W **Hyperparameters**:

- **Kernel size**: K_H x K_W
- Number filters: C_{out}
- Padding: P
- **Stride**: S

Weight matrix: $C_{out} \times C_{in} \times K_H \times K_W$ giving C_{out} filters of size $C_{in} \times K_H \times K_W$

Bias vector: Cout

Output size: C_{out} x H' x W' where:

- H' = (H K + 2P) / S + 1
- W' = (W K + 2P) / S + 1

Common settings:

 $K_H = K_W$ (Small square filters) P = (K - 1) / 2 ("Same" padding) $C_{in}, C_{out} = 32, 64, 128, 256$ (powers of 2) K = 3, P = 1, S = 1 (3x3 conv) K = 5, P = 2, S = 1 (5x5 conv) K = 1, P = 0, S = 1 (1x1 conv) K = 3, P = 1, S = 2 (Downsample by 2)

Other types of convolution

So far: 2D Convolution

Other types of convolution

So far: 2D Convolution

Input: C_{in} x H x W

Weights: C_{out} x C_{in} x K x K

1D Convolution

Input: C_{in} x W Weights: C_{out} x C_{in} x K

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 55

Other types of convolution

So far: 2D Convolution

3D Convolution

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 56

PyTorch Convolution Layer

Conv2d

CLASS torch.nn.Conv2d(*in_channels*, *out_channels*, *kernel_size*, *stride=1*, *padding=0*, *dilation=1*, *groups=1*, *bias=True*, *padding_mode='zeros'*)

[SOURCE]

March 11, 2021

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size $(N, C_{\rm in}, H, W)$ and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) \star \operatorname{input}(N_i, k)$$

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 57

PyTorch Convolution Layers

Conv2d

CLASS torch.nn.Conv2d(*in_channels*, *out_channels*, *kernel_size*, *stride=1*, *padding=0*, *dilation=1*, *groups=1*, *bias=True*, *padding_mode='zeros'*)
[SOURCE]

Conv1d

CLASS torch.nn.Conv1d(*in_channels*, *out_channels*, *kernel_size*, *stride=1*, *padding=0*, *dilation=1*, *groups=1*, *bias=True*, *padding_mode='zeros'*)

[SOURCE]

Conv3d

CLASS	torch.nn.Conv3d(<i>in_channels, out_channels, kernel_size, stride=1, padding=0</i> ,	
	dilation=1, groups=1, bias=True, padding_mode='zeros')	LSOORCEJ

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 58

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson & David Fouhey

EECS 442 WI 2021: Lecture 15 - 59

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson & David Fouhey EECS

EECS 442 WI 2021: Lecture 15 - 60

Pooling Layers: Downampling

Max Pooling

Х

64 x 224 x 224

Max pooling with 2x2 kernel size and stride 2

Introduces **invariance** to small spatial shifts No learnable parameters!

y

Average Pooling

Single depth slice

Avg pooling with 2x2 kernel size and stride 2

Introduces **invariance** to small spatial shifts No learnable parameters!

Χ

y

Pooling Summary

Input: C x H x W

Hyperparameters:

- Kernel size: K
- Stride: S
- Pooling function (max, avg)

Output: C x H' x W' where

- H' = (H K) / S + 1
- W' = (W K) / S + 1

Learnable parameters: None!

Common settings: max, K = 2, S = 2 max, K = 3, S = 2 (AlexNet)

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson & David Fouhey EEC

EECS 442 WI 2021: Lecture 15 - 65

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers

Pooling Layers

Normalization

Justin Johnson & David Fouhey EEC

EECS 442 WI 2021: Lecture 15 - 66

Convolutional Networks

Classic architecture: [Conv, ReLU, Pool] x N, flatten, [FC, ReLU] x N, FC

Example: LeNet-5

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 67

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 68

			Input	
Layer	Output Size	Weight Size		
Input	1 x 28 x 28		Convolutions	ling
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5		
ReLU	20 x 28 x 28			

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 69

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 70

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 71

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 72
Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 73

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 74

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Layer	Output Size	Weight Size
Input	1 x 28 x 28	
Conv (C _{out} =20, K=5, P=2, S=1)	20 x 28 x 28	20 x 1 x 5 x 5
ReLU	20 x 28 x 28	
MaxPool(K=2, S=2)	20 x 14 x 14	
Conv (C _{out} =50, K=5, P=2, S=1)	50 x 14 x 14	50 x 20 x 5 x 5
ReLU	50 x 14 x 14	
MaxPool(K=2, S=2)	50 x 7 x 7	
Flatten	2450	
Linear (2450 -> 500)	500	2450 x 500
ReLU	500	
Linear (500 -> 10)	10	500 x 10

As we go through the network:

Spatial size **decreases** (using pooling or strided conv)

Number of channels **increases** (total "volume" is preserved!)

Lecun et al, "Gradient-based learning applied to document recognition", 1998

Problem: Deep Networks very hard to train!

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 77

Components of a Convolutional Network

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

Justin Johnson & David Fouhey

EECS 442 WI 2021: Lecture 15 - 78

Idea: "Normalize" the outputs of each layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Idea: "Normalize" the outputs of each layer so they have zero mean and unit variance

Why? Helps reduce "internal covariate shift", improves optimization

We can normalize a batch of activations like this:

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

This is a **differentiable function**, so we can use it as an operator in our networks and backprop through it!

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 81

unit variance is too restrictive?

Ioffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

Input:
$$x \in \mathbb{R}^{N \times L}$$

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$$

Per-channel mean, shape is D

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)$$

Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Output, Shape is N x D

Problem: Estimates depend on minibatch; can't do this at test-time!

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation)

$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j}$	Per-channel mean, shape is D
$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} \cdot$	$-\mu_j \Big)^2$ Per-channel std, shape is D
$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$	Normalized x, Shape is N x D
$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$	Output, Shape is N x D

Batch Normalization: Test-Time

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

Learning $\gamma = \sigma$, $\beta = \mu$ will recover the identity function (in expectation) (Running) average of $\mu_j =$ values seen during training

Per-channel mean, shape is D

 $\sigma_j^2 = \begin{array}{l} (\text{Running}) \text{ average of} & \text{Period} \\ \text{values seen during training} & \text{st} \end{array}$

Per-channel std, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Normalized x, Shape is N x D

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$ Out Share

Output, Shape is N x D

Batch Normalization: Test-Time

Input: $x \in \mathbb{R}^{N \times D}$

Learnable scale and shift parameters:

 $\gamma, \beta \in \mathbb{R}^D$

During testing batchnorm becomes a linear operator! Can be fused with the previous fully-connected or conv layer (Running) average of

 $\mu_j = \text{values seen during} \\ \text{training}$

Per-channel mean, shape is D

 $\sigma_j^2 = {(\text{Running}) \text{ average of} \over \text{values seen during training}}$

Per-channel std, shape is D

 $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$

 $y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$

Normalized x, Shape is N x D

Output, Shape is N x D

Batch Normalization for ConvNets

Batch Normalization for **fully-connected** networks

 $x : N \times D$ Normalize $\mu, \sigma : 1 \times D$ $\gamma, \beta : 1 \times D$ $y = \frac{(x - \mu)}{\sigma} \gamma + \beta$

Batch Normalization for convolutional networks (Spatial Batchnorm, BatchNorm2D) $x: N \times C \times H \times W$ Normalize μ, σ : 1 × *C* × 1 × 1 γ, β : 1 × *C* × 1 × 1 $y = \frac{(x - \mu)}{-}\gamma + \beta$

Usually inserted after Fully Connected or Convolutional layers, and before nonlinearity.

$$\hat{x} = \frac{x - E[x]}{\sqrt{Var[x]}}$$

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 88

- Makes deep networks much easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Free at test-time: can be fused with conv!

loffe and Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift", ICML 2015

- Makes deep networks **much** easier to train!
- Allows higher learning rates, faster convergence
- Networks become more robust to initialization
- Acts as regularization during training
- Free at test-time: can be fused with conv!
- Not well-understood theoretically (yet)
- Behaves differently during training and testing: this is a very common source of bugs!

Components of a Convolutional Network

Fully-Connected Layers

Convolution Layers

Pooling Layers

Normalization

Justin Johnson & David Fouhey EECS 442 WI 20

EECS 442 WI 2021: Lecture 15 - 91

So Far: Image Classification

Cat image is CC0 public domain

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 92

What about Localizing Objects?

Cat image is CC0 public domain

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 93

Next time: Detection + Segmentation

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 15 - 94