Lecture 13: Neural Networks

Administrative

- HW3 due Wednesday 3/10

Where we are:

- 1. Use Linear Models for image classification problems
- Use Loss Functions to express preferences over different choices of weights
- Use Stochastic Gradient
 Descent to minimize our loss functions and train the model
- 4. Add **Regularization** to control overfitting

- $egin{aligned} L_i &= -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) ext{ Softmax} \ L_i &= \sum_{j
 eq y_i} \max(0, s_j s_{y_i} + 1) \ L &= rac{1}{N} \sum_{i=1}^N L_i + R(W) \end{aligned}$
 - v = 0
 for t in range(num_steps):
 dw = compute_gradient(w)
 v = rho * v + dw
 w -= learning_rate * v

Problem: Linear Classifiers not enough

Visual Viewpoint

One template per class: Can't recognize different modes of a class

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 13 - 7

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 13 - 8

Image Features: Color Histogram

Frog image is in the public domain

- 1. Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

- 1. Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

> Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Weak edges Strong diagonal edges Edges in all directions

- 1. Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

> Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Captures texture and position, robust to small image changes

- Weak edges
 Strong diagonal edges
 Edges in all directions
- 1. Compute edge direction / strength at each pixel
- 2. Divide image into 8x8 regions
- Within each region compute a histogram of edge directions weighted by edge strength

Example: 320x240 image gets divided into 40x30 bins; 8 directions per bin; feature vector has 30*40*9 = 10,800 numbers

> Lowe, "Object recognition from local scale-invariant features", ICCV 1999 Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Bag of Words

Learn a feature transform from data!

Image Features: Bag of Words

Learn a feature transform from data!

Image Features: Bag of Words

Learn a feature transform from data!

Image Features

Common trick: Combine multiple feature transforms

Winner of 2011 ImageNet Challenge

Low-level feature extraction \approx 10k patches per image

SIFT: 128-dim
color: 96-dim
reduced to 64-dim with PCA

FV extraction and compression:

- N=1,024 Gaussians, R=4 regions ⇒ 520K dim x 2
- compression: G=8, b=1 bit per dimension

One-vs-all SVM learning with SGD

Late fusion of SIFT and color systems

F. Perronnin, J. Sánchez, "Compressed Fisher vectors for LSVRC", PASCAL VOC / ImageNet workshop, ICCV, 2011.

Image Features vs Neural Networks

Krizhevsky, Sutskever, and Hinton, "Imagenet classification with deep convolutional neural networks", NIPS 2012

Image Features vs Neural Networks

Deep Neural Network

Krizhevsky, Sutskever, and Hinton, "Imagenet classification with deep convolutional neural networks", NIPS 2012

March 4, 2021

Input image: $x \in \mathbb{R}^D$ **Category scores**: $s \in \mathbb{R}^C$

Linear Classifier:

$$s = Wx$$
$$W \in \mathbb{R}^{C \times D}$$

In practice we add a learnable bias +b after each matrix multiply

Input image:
$$x \in \mathbb{R}^D$$

Category scores: $s \in \mathbb{R}^C$

$$s = Wx$$
$$W \in \mathbb{R}^{C \times D}$$

2-layer Neural Net: $s = W_2 \max(0, W_1 x)$ $W_1 \in \mathbb{R}^{H \times D}$ $W_2 \in \mathbb{R}^{C \times H}$

In practice we add a learnable bias +b after each matrix multiply

Input image:
$$x \in \mathbb{R}^D$$

Category scores: $s \in \mathbb{R}^C$

$$s = Wx$$
$$W \in \mathbb{R}^{C \times D}$$

2-layer Neural Net: $s = W_2 \max(0, W_1 x)$ $W_1 \in \mathbb{R}^{H \times D}$ $W_2 \in \mathbb{R}^{C \times H}$

3-layer Neural Net:
$$s = W_3 \max(0, W_2 \max(0, W_1 x))$$

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

Linear classifier: s = WxOne template per class

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Neural Network:

First layer is a bank of templates Second layer recombines templates

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Different templates can cover different modes of a class!

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Many templates not interpretable: "Distributed representation"

Two-Layer Neural Network: $s = W_2 \max(0, W_1 x)$

 $x \in \mathbb{R}^{D}, W_{1} \in \mathbb{R}^{H \times D}, W_{2} \in \mathbb{R}^{C \times H}$

Deep Neural Networks

 $s = W_6 \max(0, W_5 \max(0, W_4 \max(0, W_3 \max(0, W_2 \max(0, W_1 x)))))$

2-layer Neural Network

The function ReLU(z) = max(0, z)is called "Rectified Linear Unit"

$$s = W_2 \max(\mathbf{0}, W_1 x)$$

This is called the **activation function** of the neural network

2-layer Neural Network

The function ReLU(z) = max(0, z)is called "Rectified Linear Unit"

$$s = W_2 \max(\mathbf{0}, W_1 x)$$

This is called the activation function of the neural network

Q: What happens if we build a neural network with no activation function?

$$s = W_2 W_1 x$$

2-layer Neural Network

The function ReLU(z) = max(0, z)is called "Rectified Linear Unit"

$$s = W_2 \max(\mathbf{0}, W_1 x)$$

This is called the activation function of the neural network

Q: What happens if we build a neural network with no activation function?

$$s = W_2 W_1 x$$

A: We get a linear classifier! $W_3 = W_2 W_1 \in \mathbb{R}^{C \times D}$ $s = W_3 x$

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

ReLU $\max(0, x)$

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 13 - 35

ReLU is a good default choice

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 13 - 36

Neural Net in <20 lines!

import numpy as np 1 from numpy.random import randn 2 3 N, Din, H, Dout = 64, 1000, 100, 10 4 5 x, y = randn(N, Din), randn(N, Dout) w1, w2 = randn(Din, H), randn(H, Dout) 6 7 for t in range(10000): h = 1.0 / (1.0 + np.exp(-x.dot(w1)))8 $y_pred = h.dot(w2)$ 9 loss = np.square(y_pred - y).sum() 10 11 $dy_pred = 2.0 * (y_pred - y)$ 12 $dw2 = h.T.dot(dy_pred)$ 13 $dh = dy_pred_dot(w2.T)$ dw1 = x.T.dot(dh * h * (1 - h))14 15 w1 -= 1e-4 * dw1 $w_2 = 1e - 4 * dw_2$ 16

Neural Net in <20 lines!

Initialize weights and data

1 import numpy as np from numpy.random import randn 2 3 N, Din, H, Dout = 64, 1000, 100, 10 x, y = randn(N, Din), randn(N, Dout) w1, w2 = randn(Din, H), randn(H, Dout) 7 for t in range(10000): h = 1.0 / (1.0 + np.exp(-x.dot(w1)))8 9 $y_pred = h_dot(w2)$ loss = np.square(y_pred - y).sum() 10 11 $dy_pred = 2.0 * (y_pred - y)$ 12 $dw2 = h.T.dot(dy_pred)$ 13 $dh = dy_pred_dot(w2.T)$ dw1 = x.T.dot(dh * h * (1 - h))14 15 w1 -= 1e-4 * dw1 $w^2 -= 1e^{-4} * dw^2$ 16

Neural Net in <20 lines!

Initialize weights and data

Compute loss (sigmoid activation, L2 loss)

1 import numpy as np 2 from numpy.random import randn 3 N, Din, H, Dout = 64, 1000, 100, 10 x, y = randn(N, Din), randn(N, Dout) w1, w2 = randn(Din, H), randn(H, Dout) 7 for t in range(10000): h = 1.0 / (1.0 + np.exp(-x.dot(w1)))9 $y_pred = h_dot(w2)$ 10 loss = np.square(y_pred - y).sum() 11 $dy_pred = 2.0 * (y_pred - y)$ 12 $dw2 = h.T.dot(dy_pred)$ 13 $dh = dy_pred_dot(w2.T)$ dw1 = x.T.dot(dh * h * (1 - h))14 15 w1 -= 1e-4 * dw1 $w_2 = 1e - 4 * dw_2$ 16

This image by Fotis Bobolas is licensed under CC-BY 2.0

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 13 - 42

Our brains are made of Neurons

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 13 - 43

Biological Neurons: Complex connectivity patterns

Neurons in a neural network: Organized into regular layers for computational efficiency

This image is CC0 Public Domain

Be very careful with brain analogies!

Biological Neurons:

- Many different types
- Can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Can have feedback, time-dependent
- Probably don't learn via gradient descent

[Dendritic Computation. London and Hausser]

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Space Warping Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 13 - 51

Space Warping Consider a linear transf

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

Consider a linear transform: h = Wx Where x, h are both 2-dimensional

March 4, 2021

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Points not linearly separable in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Points not linearly separable in original space

Points are linearly separable in features space!

Linear classifier in feature space gives nonlinear classifier in original space

Consider a neural net hidden layer: h = ReLU(Wx) = max(0, Wx) Where x, h are both 2-dimensional

Points not linearly separable in original space

Points are linearly separable in features space!

Neural Networks Web Demo

(Web demo with ConvNetJS:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 13 - 64

Next Time: How to compute gradients? Backpropagation

