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Lecture 13:
Neural Networks
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Administrative
- HW3 due Wednesday 3/10
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Where we are:
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1. Use Linear Models for image 
classification problems

2. Use Loss Functions to express 
preferences over different 
choices of weights

3. Use Stochastic Gradient 
Descent to minimize our loss 
functions and train the model

4. Add Regularization to control 
overfitting

Softmax
SVM
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Problem: Linear Classifiers not enough
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x

y
Geometric Viewpoint Visual Viewpoint

One template per class:
Can’t recognize different 

modes of a class
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One solution: Feature Transforms
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x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature 
transform
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One solution: Feature Transforms
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x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature 
transform

r

θ
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One solution: Feature Transforms
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x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature 
transform

r

θ

Linear classifier 
in feature space
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One solution: Feature Transforms
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x

y
Original space

r = (x2 + y2)1/2

θ = tan-1(y/x)

Feature space

Feature 
transform

r

θ

Linear classifier 
in feature space

Nonlinear 
classifier in 
original space!
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Image Features: Color Histogram
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+1
Ignores texture, 
spatial positions

Frog image is in the public domain

https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength Lowe, “Object recognition from local scale-invariant features”, ICCV 1999

Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented 
Gradients (HoG)
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Image Features: Histogram of Oriented 
Gradients (HoG)
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Strong diagonal 
edges

Edges in all 
directions

Weak edges

Image Features: Histogram of Oriented 
Gradients (HoG)
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1. Compute edge direction / 
strength at each pixel

2. Divide image into 8x8 regions
3. Within each region compute a 

histogram of edge directions 
weighted by edge strength 

Example: 320x240 image gets 
divided into 40x30 bins; 8 
directions per bin; feature vector 
has 30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

Strong diagonal 
edges

Edges in all 
directions

Weak edges

Captures texture and position, robust to small image changes

Image Features: Histogram of Oriented 
Gradients (HoG)
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Image Features: Bag of Words
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Extract random 
patches 

Step 1: Build codebook

Learn a feature transform from data!
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Image Features: Bag of Words
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Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Learn a feature transform from data!
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Image Features: Bag of Words
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Extract random 
patches 

Cluster patches to 
form “codebook” 
of “visual words”

Step 1: Build codebook

Step 2: Encode images

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

Learn a feature transform from data!



Justin Johnson & David Fouhey March 4, 2021EECS 442 WI 2021: Lecture 13 -

Image Features
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Common trick: Combine multiple feature transforms
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Winner of 2011 ImageNet Challenge

Lectur
e 5 - 18

F. Perronnin, J. Sánchez, “Compressed Fisher vectors for LSVRC”, PASCAL VOC / ImageNet workshop, ICCV, 2011.
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Image Features vs Neural Networks
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Feature Extraction
f

training

Krizhevsky, Sutskever, and Hinton, “Imagenet classification with deep convolutional neural networks”, NIPS 2012

10 numbers 
giving scores 
for classes
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Image Features vs Neural Networks
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Feature Extraction
f

training

training

Krizhevsky, Sutskever, and Hinton, “Imagenet classification with deep convolutional neural networks”, NIPS 2012

10 numbers 
giving scores 
for classes

10 numbers 
giving scores 
for classes

Deep Neural Network
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Neural Networks

21

Input image: 𝑥 ∈ ℝ!
Category scores: 𝑠 ∈ ℝ"

Linear Classifier: 
𝑠 = 𝑊𝑥
𝑊 ∈ ℝ"×!

In practice we add a learnable bias 
+b after each matrix multiply
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Neural Networks
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Input image: 𝑥 ∈ ℝ!
Category scores: 𝑠 ∈ ℝ"

Linear Classifier: 
𝑠 = 𝑊𝑥
𝑊 ∈ ℝ"×!

2-layer Neural Net:
𝑠 = W$max 0,𝑊%𝑥

𝑊% ∈ ℝ&×!
𝑊$ ∈ ℝ"×&

In practice we add a learnable bias 
+b after each matrix multiply



Justin Johnson & David Fouhey March 4, 2021EECS 442 WI 2021: Lecture 13 -

Neural Networks

23

Input image: 𝑥 ∈ ℝ!
Category scores: 𝑠 ∈ ℝ"

Linear Classifier: 
𝑠 = 𝑊𝑥
𝑊 ∈ ℝ"×!

2-layer Neural Net:
𝑠 = W$max 0,𝑊%𝑥

𝑊% ∈ ℝ&×!
𝑊$ ∈ ℝ"×&

3-layer Neural Net:
𝑠 = W'max 0,𝑊$max 0,𝑊%𝑥
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Neural Networks

24

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Two-Layer Neural Network: 𝑠 = W!max 0,𝑊"𝑥

𝑥 ∈ ℝ! ,𝑊% ∈ ℝ&×! ,𝑊$ ∈ ℝ"×&
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Neural Networks

25

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Two-Layer Neural Network: 𝑠 = W!max 0,𝑊"𝑥

Element (i, j) of W1 gives 
the effect on hi from xj

Element (i, j) of W2 gives 
the effect on si from hj

𝑥 ∈ ℝ! ,𝑊% ∈ ℝ&×! ,𝑊$ ∈ ℝ"×&
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Neural Networks
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x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Two-Layer Neural Network: 𝑠 = W!max 0,𝑊"𝑥

“Fully-Connected” neural network
Also “Multi-Layer Perceptron” (MLP)

Element (i, j) of W1 gives 
the effect on hi from xj

Element (i, j) of W2 gives 
the effect on si from hj

All elements 
of x affect all 
elements of h

All elements 
of h affect all 
elements of s
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Neural Networks

27

x hW1 sW2
Input:
3072

Hidden layer:
100

Output: 10

Linear classifier: 𝑠 = 𝑊𝑥
One template per class

𝑥 ∈ ℝ!,𝑊" ∈ ℝ#×!,𝑊% ∈ ℝ&×#

Two-Layer Neural Network: 
𝑠 = W!max 0,𝑊"𝑥
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Neural Networks

28

x h sInput:
3072

Hidden layer:
100

Output: 10

Neural Network:
First layer is a bank of templates
Second layer recombines templates

W1 W2

Two-Layer Neural Network: 
𝑠 = W!max 0,𝑊"𝑥

𝑥 ∈ ℝ!,𝑊" ∈ ℝ#×!,𝑊% ∈ ℝ&×#
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Neural Networks
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x h sInput:
3072

Hidden layer:
100

Output: 10

Different templates can cover 
different modes of a class!

W1 W2

Two-Layer Neural Network: 
𝑠 = W!max 0,𝑊"𝑥

𝑥 ∈ ℝ!,𝑊" ∈ ℝ#×!,𝑊% ∈ ℝ&×#
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Neural Networks

30

x h sInput:
3072

Hidden layer:
100

Output: 10

Many templates not interpretable: 
“Distributed representation”

W1 W2

Two-Layer Neural Network: 
𝑠 = W!max 0,𝑊"𝑥

𝑥 ∈ ℝ!,𝑊" ∈ ℝ#×!,𝑊% ∈ ℝ&×#
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Deep Neural Networks

31

x h1W1 sW6

Input:
3072

Output: 10

h2 h3 h4 h5W2 W3 W4 W5

Depth = number of layers

Width:
Size of 
each 
layer

𝑠 = 𝑊#max 0,𝑊$max 0,𝑊%max 0,𝑊&max 0,𝑊!max 0,𝑊"𝑥



Justin Johnson & David Fouhey March 4, 2021EECS 442 WI 2021: Lecture 13 -

Activation Functions

32

2-layer Neural Network
The function 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)
is called “Rectified Linear Unit”

This is called the activation 
function of the neural network

𝑠 = 𝑊$𝐦𝐚𝐱 𝟎,𝑊%𝑥
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Activation Functions

33

2-layer Neural Network
The function 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)
is called “Rectified Linear Unit”

This is called the activation 
function of the neural network

𝑠 = 𝑊$𝐦𝐚𝐱 𝟎,𝑊%𝑥

Q: What happens if we build a neural 
network with no activation function?

𝑠 = 𝑊$𝑊%𝑥
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Activation Functions

34

2-layer Neural Network
The function 𝑅𝑒𝐿𝑈 𝑧 = max(0, 𝑧)
is called “Rectified Linear Unit”

This is called the activation 
function of the neural network

𝑠 = 𝑊$𝐦𝐚𝐱 𝟎,𝑊%𝑥

Q: What happens if we build a neural 
network with no activation function?

𝑠 = 𝑊$𝑊%𝑥

A: We get a linear classifier!
𝑊& = 𝑊'𝑊( ∈ ℝ)×+

𝑠 = 𝑊&𝑥
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Activation Functions

35

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

ReLU is a good 
default choice
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Neural Net in 
<20 lines!
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Neural Net in 
<20 lines!
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Initialize weights and data
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Neural Net in 
<20 lines!

39

Initialize weights and data

Compute loss (sigmoid 
activation, L2 loss)
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Neural Net in 
<20 lines!

40

Initialize weights and data

Compute loss (sigmoid 
activation, L2 loss)

Compute gradients
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Neural Net in 
<20 lines!

41

Initialize weights and data

Compute loss (sigmoid 
activation, L2 loss)

Compute gradients

SGD step
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“Neural” Networks

42

This image by Fotis Bobolas is licensed under CC-BY 2.0

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/
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Our brains are made of Neurons
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Cell 
body

Axon

Dendrite



Justin Johnson & David Fouhey March 4, 2021EECS 442 WI 2021: Lecture 13 -

Our brains are made of Neurons
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Cell 
body

Axon

Dendrite

Presynaptic 
terminal

Synapse
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Our brains are made of Neurons
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Cell 
body

Axon

Dendrite

Presynaptic 
terminal

Synapse

Impulses 
carried toward 
cell body

Impulses carried 
away from cell body
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Our brains are made of Neurons
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Cell 
body

Axon

Dendrite

Presynaptic 
terminal

Synapse

Impulses 
carried toward 
cell body

Impulses carried 
away from cell body

Firing rate is a 
nonlinear 
function of inputs
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Neuron image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Biological Neuron

Artificial Neuron

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers 
for computational efficiency

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Be very careful with brain analogies!
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Biological Neurons:
● Many different types
● Can perform complex non-linear 

computations
● Synapses are not a single weight but a 

complex non-linear dynamical system
● Can have feedback, time-dependent 
● Probably don’t learn via gradient descent

[Dendritic Computation. London and Hausser]
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Space Warping

50

x1

x2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional
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Space Warping
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x1

x2

h1

Feature transform:
h = Wx

h2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional
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Space Warping
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x1

x2

h1

A AB B

C C D

D
Feature transform:

h = Wx

h2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional
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Space Warping
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x1

x2

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Points not linearly 
separable in original space
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Space Warping
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x1

x2

h1

h2

Feature transform:
h = Wx

Consider a linear transform: h = Wx
Where x, h are both 2-dimensional

Points not linearly 
separable in original space

Points not linearly 
separable in feature space
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Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

h2



Justin Johnson & David Fouhey March 4, 2021EECS 442 WI 2021: Lecture 13 -

Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

A A
h2
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Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

Feature transform:
h = ReLU(Wx)

A AB B
B is “collapsed” 
onto +h2 axis

h2
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Space Warping

58

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

A AB B

D

D

D “collapsed” 
onto +h1 axis

B is “collapsed” 
onto +h2 axis
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Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

A AB B

D

D

C C
C “collapsed” 
onto origin

D “collapsed” 
onto +h1 axis

B is “collapsed” 
onto +h2 axis



Justin Johnson & David Fouhey March 4, 2021EECS 442 WI 2021: Lecture 13 -

Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = Wx

Points not linearly 
separable in original space
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Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Points not linearly 
separable in original space
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Space Warping

62

x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Points are linearly separable 
in features space!

Points not linearly 
separable in original space
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Space Warping
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x1

x2

Consider a neural net hidden layer:
h = ReLU(Wx) = max(0, Wx)
Where x, h are both 2-dimensional

h1

h2

Feature transform:
h = ReLU(Wx)

Linear classifier in feature 
space gives nonlinear 
classifier in original space

Points are linearly separable 
in features space!

Points not linearly 
separable in original space
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(Web demo with ConvNetJS: 
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html)

Neural Networks Web Demo

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Next Time: How to 
compute gradients?
Backpropagation

65


