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Lecture 12:
Optimization
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Administrative

2

- HW1 Grades Released
- Submit regrade requests via Gradescope by Friday 3/5
- Minor regrades (<1 point per question, <3 points overall) will be 

processed at the end of the semester only if they affect your 
final grade. Submit on Gradescope, and send an email to course 
staff with subject “EECS 442W21 Minor Regrade Request”

- HW1 Color Space & Illumination context
- See entries here: https://web.eecs.umich.edu/~justincj/teaching/eecs442/resources/WI21-hw1-vote/

- Vote here: https://forms.gle/vJrDzGVChbsLV6on6

- HW3 due Wednesday 3/10
- One extra late day with HW3 release (up to 7 total)

https://web.eecs.umich.edu/~justincj/teaching/eecs442/resources/WI21-hw1-vote/
https://forms.gle/vJrDzGVChbsLV6on6
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Last Time: Image Classification
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cat
bird
deer
dog
truck

Output: Assign image to one 
of a fixed set of categories

This image by Nikita is 
licensed under CC-BY 2.0

Input: image

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Last Time: Nearest Neighbor
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Known Images
Labels

…

𝒙!

𝒙"

Test
Image

𝒙#

𝐷(𝒙" , 𝒙#)

𝐷(𝒙!, 𝒙#)

(1) Compute distance between 
feature vectors (2) find nearest 
(3) use label.

Cat

Dog

Cat!
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Last Time: Linear Classifiers

5

Example Setup: 3 classes

𝒘$, 𝒘!, 𝒘%Model – one weight per class:
big if cat𝒘!

"𝒙
big if dog𝒘#"𝒙

big if hippo𝒘$
"𝒙

𝑾𝟑𝒙𝑭Stack together: where x is in RF

Want: 
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Last Time: Linear Classifiers
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0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0.0 0.3 0.2 -0.3

1.1

3.2

-1.2

𝑾

56

231

24

2

1

𝒙𝒊

Cat weight vector

Dog weight vector

Hippo weight vector

𝑾𝒙𝒊

-96.8

437.9

61.95

Cat score

Dog score

Hippo score

Diagram by: Karpathy, Fei-Fei

Weight matrix a collection of scoring 
functions, one per class

Prediction is vector 
where jth component is 
“score” for jth class.
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Last Time: Cross-Entropy Loss
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Loss is –log(P(correct class))

𝐿* = − log
exp 𝑠+!
∑, exp(𝑠,)

-0.9

0.4

0.6

Cat score

Dog score

Hippo score

exp(x)

e-0.9

e0.4

e0.6

0.41

1.49

1.82

∑=3.72

Norm

0.11

0.40

0.49

P(cat)

P(dog)

P(hippo)

Converting Scores to “Probability Distribution”

exp (𝑊𝑥 ,)
∑- exp( 𝑊𝑥 -)

Generally P(class j):

Called softmax function
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Today:
- Multiclass SVM loss
- Optimization

8
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Multiclass SVM Loss

”The score of the correct class should 
be higher than all the other scores”

9

Loss

Score for 
correct class

Highest score 
among other 
classes

“Margin”

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

“Hinge Loss”

SVM = ”Support Vector Machine”
Lots of great theory about why 
this is a good idea – see EECS 
445/545 or this book for more:

https://web.stanford.edu/~
hastie/ElemStatLearn/

https://web.stanford.edu/~hastie/ElemStatLearn/
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1



Justin Johnson & David Fouhey March 2, 2021EECS 442 WI 2021: Lecture 12 -

Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1 = max(0, 5.1 - 3.2 + 1) 

+ max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

Loss 2.9

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1 = max(0, 1.3 - 4.9 + 1) 

+max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

Loss 0

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

2.9
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1 = max(0, 2.2 - (-3.1) + 1) 

+max(0, 2.5 - (-3.1) + 1)
= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.9

Loss 12.9

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

02.9
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 12.9

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

02.9

Loss over the dataset is:

L = (2.9 + 0.0 + 12.9) / 3
= 5.27
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 12.9

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

02.9
Q: What happens to the 
loss if the scores for the 
car image change a bit?
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 12.9

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

02.9
Q: What are the min 
and max possible loss?
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 12.9

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

02.9
Q: If all scores were 
random, what loss 
would we expect?
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 12.9

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

02.9
Q: What would 
happen if sum were 
over all classes? 
(including 𝑗 = 𝑦!)
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 12.9

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

02.9
Q: What if the loss used 
mean instead of sum?
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Multiclass SVM Loss
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3.2cat
car
frog

5.1
-1.7

1.3
4.9
2.0

2.2
2.5
-3.1

Loss 12.9

Given an example 𝑥! , 𝑦!
(𝑥! is image, 𝑦! is label)

Let  𝑠 = 𝑓(𝑥! ,𝑊) be scores

Then the SVM loss has the form:

𝐿! = +
"#$!

max 0, 𝑠" − 𝑠$! + 1

02.9
Q: What if we used this 
loss instead?

𝐿% = %
&'(!

max 0, 𝑠& − 𝑠(! + 1
$
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Cross-Entropy vs SVM Loss

22

𝐿! = − log
exp 𝑠"!
∑# exp(𝑠#)

𝐿! = 0
#$"!

max 0, 𝑠# − 𝑠"! + 1

Assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 𝑦! = 0

A: Cross-entropy loss > 0
SVM loss = 0

Q: What is cross-entropy 
loss? What is SVM loss?
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Cross-Entropy vs SVM Loss

23

𝐿! = − log
exp 𝑠"!
∑# exp(𝑠#)

𝐿! = 0
#$"!

max 0, 𝑠# − 𝑠"! + 1

Assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 𝑦! = 0

A: Cross-entropy loss will 
change; SVM loss will stay 
the same

Q: What happens to each 
loss if I slightly change the 
scores of the last datapoint?
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Cross-Entropy vs SVM Loss
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𝐿! = − log
exp 𝑠"!
∑# exp(𝑠#)

𝐿! = 0
#$"!

max 0, 𝑠# − 𝑠"! + 1

Assume scores:
[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and 𝑦! = 0

A: Cross-entropy loss will 
decrease, SVM loss still 0

Q: What happens to each loss 
if I double the score of the 
correct class from 10 to 20?
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Cross-Entropy vs SVM Loss

25

𝐿! = − log
exp 𝑠"!
∑# exp(𝑠#)

𝐿! = 0
#$"!

max 0, 𝑠# − 𝑠"! + 1

Question: How to find weights that 
minimize these losses on our training data?

Answer: Optimization!
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Today: Optimization

26

arg min
𝒘∈0"

𝐿(𝒘)Goal: find the w minimizing
some loss function L.

𝐿 𝑾 = 𝝀 𝑾 𝟐
𝟐 + .

#$%

&

− log
exp( 𝑊𝑥 '!)

∑( exp( 𝑊𝑥 ())

𝐿(𝒘)=𝜆 𝒘 )
) + .

#$%

&

𝑦# −𝒘𝑻𝒙𝒊
)

𝐿 𝒘 =𝐶 𝒘 )
) +.

#$%

&

max 0,1 − 𝑦#𝒘,𝒙𝒊

Works for lots of 
different Ls:
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Sample Function to Optimize

27

Global minimum

f(x,y) = (x+2y-7)2 + (2x+y-5)2

Warning: This is 
2D, intuition may 
not generalize to 
high dimension
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Optimization: A Caveat

28

• Each point in the picture is a 
function evaluation

• Here it takes microseconds – so we 
can easily see the answer

• Functions we want to optimize may 
take hours to evaluate
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Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Walking man image is CC0 1.0 public domainThis image is CC0 1.0 public domain

http://www.publicdomainpictures.net/view-image.php?image=139314&picture=walking-man
https://creativecommons.org/publicdomain/zero/1.0/
http://maxpixel.freegreatpicture.com/Mountains-Valleys-Landscape-Hills-Grass-Green-699369
https://creativecommons.org/publicdomain/zero/1.0/
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Idea #1A: Grid Search

31

#systematically try things
best, bestScore = None, Inf
for dim1Value in dim1Values:

….
for dimNValue in dimNValues:

w = [dim1Value, …, dimNValue]
if L(w) < bestScore:

best, bestScore = w, L(w)
return best
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Idea #1A: Grid Search

32
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Idea #1A: Grid Search

33

Pros:
1. Super simple
2. Only requires being able 

to evaluate model

Cons:
1. Scales horribly to high 

dimensional spaces

Complexity: samplesPerDimnumberOfDims
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Option #1B: Random Search

34

#Do random stuff RANSAC Style
best, bestScore = None, Inf
for iter in range(numIters):

w = random(N,1) #sample
score = 𝐿 𝒘 #evaluate
if score < bestScore:

best, bestScore = w, score
return best
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Option #1B: Random Search

35
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Option #1B: Random Search

36

Pros:
1. Super simple
2. Only requires being able 

to sample model and 
evaluate it

Cons:
1. Slow –throwing darts at 

high dimensional dart 
board

2. Might miss something

Good parameters

All parameters
0 1

ε
P(all correct) = 

εN
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When To Use Options 1A / 1B?

37

Use these when
• Number of dimensions small, space bounded
• Objective is impossible to analyze (e.g., test 

accuracy if we use this distance function)

Random search is arguably more effective; grid 
search makes it easy to systematically test something 
(people love certainty)
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Idea #2: Follow the slope

38
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Idea #2: Follow the slope

39

Arrows:
gradient
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Idea #2: Follow the slope

40

Arrows:
gradient

direction
(scaled to unit 

length)
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Idea #2: Follow the slope

41

argmin
𝒘
𝐿(𝒘)

∇𝒘𝐿 𝒘 =
𝜕𝐿/𝜕𝒙!

⋮
𝜕𝐿/𝜕𝒙"

What’s the geometric 
interpretation of:

Want:

Which is bigger (for small α)?

𝐿 𝒘 𝐿 𝒘 + 𝛼∇𝒘𝐿(𝒘)
≤?

>?
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Idea #2: Follow the slope

42

w0 = initialize() #initialize
for iter in range(numIters):

g = ∇𝒘𝐿 𝒘 # eval gradient
w = w + -stepsize(iter)*g     # update w

return w

Method: at each step, move in 
direction of negative gradient
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Gradient Descent

43

Given starting point (blue)
wi+1 = wi + -9.8x10-2 x gradient
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Computing Gradients: Numeric

44

How Do You Compute The Gradient?
Numerical Method:

∇𝒘𝐿 𝒘 =

𝜕𝐿(𝑤)
𝜕𝑤&
⋮

𝜕𝐿(𝑤)
𝜕𝑤'

𝜕𝑓(𝑥)
𝜕𝑥

= lim
(→*

𝑓 𝑥 + 𝜖 − 𝑓(𝑥)
𝜖

How do you compute this?

𝑓 𝑥 + 𝜖 − 𝑓 𝑥 − 𝜖
2𝜖

In practice, use:
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Computing Gradients: Numeric

45

∇𝒘𝐿 𝒘 =

𝜕𝐿(𝑤)
𝜕𝑥&
⋮

𝜕𝐿(𝑤)
𝜕𝑥'

How many function 
evaluations per dimension?

𝑓 𝑥 + 𝜖 − 𝑓 𝑥 − 𝜖
2𝜖

Use:

How Do You Compute The Gradient?
Numerical Method:
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Computing Gradients: Analytic

46

∇𝒘𝐿 𝒘 =

𝜕𝐿(𝑤)
𝜕𝑥&
⋮

𝜕𝐿(𝑤)
𝜕𝑥'

How Do You Compute The Gradient?

This image is in the public domain This image is in the public domain

Better Idea: Use Calculus!

https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
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Computing Gradients: Analytic

47

∇𝒘𝐿(𝒘) = 2𝜆𝒘 +E
*1!

2

− 2 𝑦* −𝒘#𝒙𝒊 𝒙*

𝜕
𝜕𝒘

𝐿(𝒘)=𝜆 𝒘 %
% + E

*1!

2

𝑦* −𝒘𝑻𝒙𝒊
%
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Interpreting Gradients: 1 Sample

48

𝐿(𝒘)=𝜆 𝒘 %
% + 𝑦* −𝒘𝑻𝒙𝒊

%

∇𝒘𝐿(𝒘) = 2𝜆𝒘 + − 2 𝑦 − 𝒘+𝒙 𝒙

−∇𝒘𝐿 𝒘 = −2𝜆𝒘 + 2 𝑦 − 𝒘+𝒙 𝒙

Push w towards 0 

If y > wTx (too low): then w = w + αx for some α
Before: wTx

After: (w+ αx)Tx = wTx + αxTx

α

Recall: w = w + -∇𝒘𝐿 𝒘 #update w
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Computing Gradients

49

- Numeric gradient: approximate, slow, 
easy to write

- Analytic gradient: exact, fast, error-prone

In practice: Always use analytic gradient, but 
check implementation with numerical 
gradient. This is called a gradient check.
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negative 
gradient 
direction

W_1

W_2 original W
Iteratively step in the direction of 
the negative gradient
(direction of local steepest descent)

Hyperparameters:
- Weight initialization method
- Number of steps
- Learning rate

Gradient Descent
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Batch Gradient Descent
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𝐿 𝑊 =
1
𝑁
%
%E#

F

𝐿% 𝑥%, 𝑦%,𝑊 + 𝜆𝑅(𝑊)

∇G𝐿 𝑊 =
1
𝑁
%
%E#

F

∇G𝐿% 𝑥%, 𝑦%,𝑊 + 𝜆∇G𝑅(𝑊)
Solution: Approximate 
sum using a minibatch
of examples, e.g. 32

Problem: Full sum 
is expensive when 
N is large!
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Stochastic Gradient Descent (SGD)
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𝐿 𝑊 =
1
𝑁
%
%E#

F

𝐿% 𝑥%, 𝑦%,𝑊 + 𝜆𝑅(𝑊)

∇G𝐿 𝑊 =
1
𝑁
%
%E#

F

∇G𝐿% 𝑥%, 𝑦%,𝑊 + 𝜆∇G𝑅(𝑊)

Problem: Full sum 
is expensive when 
N is large!

Solution: Approximate 
sum using a minibatch
of examples, e.g. 32

Hyperparameters:
- Weight initialization
- Number of steps
- Learning rate
- Batch size
- Data sampling

Note: Some people say “stochastic gradient descent” is batch size 1, and “minibatch gradient descent” for other 
batch sizes. I think this distinction is confusing, and use “stochastic gradient descent” for any minibatch size
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Gradient Descent: Learning Rate
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Step size (also called learning rate / lr)
critical parameter

10x10-2

converges
12x10-2

diverges
1x10-2

falls short



Justin Johnson & David Fouhey March 2, 2021EECS 442 WI 2021: Lecture 12 -

Gradient Descent: Learning Rate
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11x10-2 :oscillates
(Raw gradients)



Justin Johnson & David Fouhey March 2, 2021EECS 442 WI 2021: Lecture 12 -

Learning Rate Decay
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Idea: Start with high learning rate, reduce it over time.
Step Decay: Reduce by some factor at fixed iterations
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Learning Rate Decay
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Idea: Start with high learning rate, reduce it over time.

Cosine Decay: 𝛼, =
&
-
𝛼* 1 + 𝑐𝑜𝑠 ,.

+
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Problems with SGD

57

What if loss changes quickly in one direction and slowly in another?

Loss function has high condition number: ratio of largest to 
smallest singular value of the Hessian matrix is large
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Problems with SGD
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What if loss changes quickly in one direction and slowly in another?
Slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to 
smallest singular value of the Hessian matrix is large
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Problems with SGD
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What if the loss function 
has a local minimum or 
saddle point?

Local 
Minimum

Saddle 
point

Gradient is zero, 
SGD gets stuck
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Problems with SGD

60

Our gradients come 
from minibatches so 
they can be noisy!

𝐿 𝑊 =
1
𝑁
4
!%&

'

𝐿! 𝑥!, 𝑦!,𝑊 + 𝜆𝑅(𝑊)
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SGD

Lectur
e 4 - 61

SGD

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

𝑥45! = 𝑥4 − 𝛼∇𝑓 𝑥4
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SGD + Momentum
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SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically 𝜌 = 0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD + Momentum

𝑥45! = 𝑥4 − 𝛼∇𝑓 𝑥4
𝑣45! = 𝜌𝑣4 + ∇𝑓 𝑥4
𝑥45! = 𝑥4 − 𝛼𝑣45!
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SGD + Momentum
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SGD + Momentum

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD + Momentum

𝑣45! = 𝜌𝑣4 + ∇𝑓 𝑥4
𝑥45! = 𝑥4 − 𝛼𝑣45!

𝑣45! = 𝜌𝑣4 − 𝛼∇𝑓 𝑥4
𝑥45! = 𝑥4 + 𝑣45!

You may see SGD+Momentum formulated different ways, but 
they are equivalent - give same sequence of x
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SGD + Momentum
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Local Minima Saddle points

Gradient Noise

SGD+MomentumSGD

Poor Conditioning

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013
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Other Update Rules: Adam
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Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 
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Adam: Very Common in Practice!
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Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3, 5e-4, 1e-4
is a great starting point for many models! 

Gkioxari, Malik, and Johnson, ICCV 2019 Zhu, Kaplan, Johnson, and Fei-Fei, ECCV 2018

Johnson, Gupta, and Fei-Fei, CVPR 2018

Gupta, Johnson, et al, CVPR 2018

Bakhtin, van der Maaten, Johnson, Gustafson, and Girshick, NeurIPS 2019
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Optimization in Practice
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• Conventional wisdom: minibatch stochastic 
gradient descent (SGD) + momentum (package 
implements it for you) + some sensibly changing 
learning rate

• The above is typically what is meant by “SGD”
• Other update rules exist (Adam very common); 

sometimes better, sometimes worse than SGD
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Optimizing Everything
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• Optimize w on training set with SGD to maximize 
training accuracy

• Optimize λ with random/grid search to maximize 
validation accuracy

• Note: Optimizing λ on training sets it to 0

𝐿 𝑾 = 𝝀 𝑾 𝟐
𝟐 + %

%E#

I

− log
exp( 𝑊𝑥 (!)

∑J exp( 𝑊𝑥 J))

𝐿(𝒘)=𝜆 𝒘 $
$ + %

%E#

I

𝑦% −𝒘𝑻𝒙𝒊
$
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Next Time:
Nonlinear Models,
Neural Networks!

69


