Lecture 11: Linear Classifiers
Administrative: HW2

- HW2 due Friday 2/26
Administrative: Well-Being Break

- Wednesday 2/24 is an official Well-Being Day
- No lecture on Thursday 2/25
- Regular office hours and discussion sections this week
Dithering Winners! 4th Place
Dithering Winners! 4th Place
Dithering Winners! 3rd Place
Dithering Winners! 2nd Place
Dithering Winners! 1st Place

if you're taking computer vision now

how did you see the computer in 281
Last Time: Machine Learning

Traditional Programming

```
Input --> Algorithm --> Output
```

Machine Learning

```
Data --> Algorithm --> Model --> Output
```

Human
Last Time: Supervised Learning

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

```python
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Example training set

- airplane
- automobile
- bird
- cat
- deer
Last Time: Types of ML

Supervised Learning

Data: \((x, y)\)
- \(x\) is input / feature
- \(y\) is label / target

Goal: Learn a *function* to map \(x \rightarrow y\)

Unsupervised Learning

Data: \(x\)
- Just data, no labels!

Goal: Learn underlying *structure* in the data
Last Time: Least Squares

“Least squares” = Find the line that minimizes squared error

Data:
\((x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)\)
\(x_i, y_i \in \mathbb{R}\)

Model:
y = mx + b
Or: \(x = (x, 1); \ w = (m, b)\)
y = \(w \cdot x\)

Training:
\(w^* = \arg \min_w \sum_{i=1}^{N} (y_i - w \cdot x_i)^2\)
Last Time: Over/Under Fitting, Regularization

L2-Regularized Least Squares

$$\arg\min_w \|y - Xw\|^2 + \lambda \|w\|^2$$

- **Fit training data**
- **Regularization Strength**
- **Penalize complexity**

Test data	Training data

\[\begin{array}{c|c}
\text{Temperature} & \text{Latitude} \\
90 & 10 \\
80 & 20 \\
70 & 30 \\
60 & 40 \\
\end{array}\]

Underfitting

\[\begin{array}{c|c}
\text{Temperature} & \text{Latitude} \\
80 & 10 \\
70 & 20 \\
60 & 30 \\
50 & 40 \\
\end{array}\]

Overfitting

Test data	Training data

\[\begin{array}{c|c}
\text{Temperature} & \text{Latitude} \\
80 & 10 \\
70 & 20 \\
60 & 30 \\
50 & 40 \\
\end{array}\]

\[\begin{array}{c|c}
\text{Temperature} & \text{Latitude} \\
80 & 10 \\
70 & 20 \\
60 & 30 \\
50 & 40 \\
\end{array}\]

Last Time: Choosing Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

**BAD:** $\lambda = 0$ always works best on training data

![Diagram showing data split into train and test](image)

Idea #2: Split data into _train_ and _test_, choose hyperparameters that work best on test data

**BAD:** No idea how we will perform on new data

![Diagram showing data split into train and test](image)

Idea #3: Split data into _train_, _val_, and _test_; choose hyperparameters on _val_ and evaluate on _test_

**Better!**

![Diagram showing data split into train, validation, and test](image)
Today: Linear Classifiers
Image Classification: Core Vision Task

Input: image

Output: Assign image to one of a fixed set of categories

- cat
- bird
- deer
- dog
- truck

This image by Nikita is licensed under CC-BY 2.0
Classification with Least Squares

\[x_i \in \mathbb{R}^D \text{ is image feature} \]
\[y_i \in \mathbb{R}^C \text{ is one-hot label} \]
\[y_{i,c} = 1 \text{ if } x_i \text{ has category } c, \ 0 \text{ otherwise} \]

Training \((x_i, y_i)\):
\[
\arg\min_{W} \sum_{i=1}^{n} \|Wx_i - y_i\|^2
\]

Inference \((x)\):
\[Wx > t \]

Unprincipled in theory, but often effective in practice
The reverse (regression via discrete bins) is also common

Classification via Memorization

Just **memorize** (as in a Python dictionary)
Consider cat/dog/hippo classification.

If this: cat.
If this: dog.
If this: hippo.
Classification via Memorization

Where does this go wrong?

Rule: if this, then cat

Hmmm. Not quite the same.
Classification via Memorization

(1) Compute distance between feature vectors
(2) find nearest
(3) use label.

Known Images

Labels

Cat

Dog

Test Image

Cat!

\[
D(x_1, x_T) \quad x_T
\]

\[
D(x_N, x_T)
\]

\[
x_1 \quad x_N
\]
Nearest Neighbor

“Algorithm”

Training \((x_i, y_i)\):
Memorize training set

Inference \((x)\):
bestDist, prediction = Inf, None
for i in range(N):
 if dist\((x_i, x)\) < bestDist:
 bestDist = dist\((x_i, x)\)
 prediction = \(y_i\)
Nearest Neighbor

Nearest neighbors in two dimensions

Points are training examples; colors give training labels

Background colors give the category a test point would be assigned

Decision boundaries can be noisy; affected by outliers

How to smooth out decision boundaries? Use more neighbors!

Decision boundary is the boundary between two classification regions

x_0

x_1
K-Nearest Neighbors

K = 1

K = 3

Instead of copying label from nearest neighbor, take \textbf{majority vote} from K closest points
K-Nearest Neighbors

K = 1

K = 3

Using more neighbors helps smooth out rough decision boundaries
K-Nearest Neighbors

Using more neighbors helps reduce the effect of outliers
K-Nearest Neighbors

When $K > 1$ there can be ties! Need to break them somehow.
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) Distance

\[d(x, y) = \sum_i |x_i - y_i| \]

L2 (Euclidean) Distance

\[d(x, y) = \left(\sum_i (x_i - y_i)^2 \right)^{1/2} \]
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) Distance

\[d(x, y) = \sum_i |x_i - y_i| \]

L2 (Euclidean) Distance

\[d(x, y) = \left(\sum_i (x_i - y_i)^2 \right)^{1/2} \]
K-Nearest Neighbors

What distance? What value for K?

Training | Validation | Test

- Use these data points for lookup
- Evaluate on these points for different k, distances
K-Nearest Neighbors

• No learning going on but usually effective
• Same algorithm for every task
• As number of datapoints $\rightarrow \infty$, error rate is guaranteed to be at most $2x$ worse than optimal you could do on data
• Training is fast, but inference is slow. Opposite of what we want!
Linear Classifiers

Example Setup: 3 classes

Model – one weight per class:

\[w_0^T x \] big if cat
\[w_1^T x \] big if dog
\[w_2^T x \] big if hippo

Stack together: \[W_{3xF} \] where \(x \) is in \(R^F \)
Linear Classifiers

Weight matrix a collection of scoring functions, one per class

\[W \]

\[Wx_i \]

Prediction is vector where jth component is “score” for jth class.

Diagram by: Karpathy, Fei-Fei
Linear Classifiers: Geometric Intuition

What does a linear classifier look like in 2D?

Be aware: Intuition from 2D doesn’t always carry over into high-dimensional spaces. See: *On the Surprising Behavior of Distance Metrics in High Dimensional Space*. Charu, Hinneburg, Keim. ICDT 2001

Diagram credit: Karpathy & Fei-Fei
Linear Classifiers: Visual Intuition

CIFAR 10:
32x32x3 Images, 10 Classes

- Turn each image into feature by unrolling all pixels
- Train a linear model to recognize 10 classes
Linear Classifiers: Visual Intuition

Decision rule is $\mathbf{w}^T \mathbf{x}$. If \mathbf{w}_i is big, then big values of x_i are indicative of the class.

Deer or Plane?
Linear Classifiers: Visual Intuition

Decision rule is $\mathbf{w}^\top \mathbf{x}$. If \mathbf{w}_i is big, then big values of x_i are indicative of the class.

Ship or Dog?
Linear Classifiers: Visual Intuition

Decision rule is $\mathbf{w}^T \mathbf{x}$. If \mathbf{w}_i is big, then big values of x_i are indicative of the class.
So Far: Linear Score Function

Model – one weight per class:

\[w_0^T x \quad \text{big if cat} \]
\[w_1^T x \quad \text{big if dog} \]
\[w_2^T x \quad \text{big if hippo} \]

Stack together: \[W_{3 \times F} \] where \(x \) is in \(\mathbb{R}^F \)

How do we know which \(W \) is best?
Choosing W: Loss Function

A **loss function** tells how good our current classifier is.

Low loss = good classifier
High loss = bad classifier

(Also called: **objective function**; **cost function**)

Negative loss function sometimes called **reward function**, **profit function**, **utility function**, **fitness function**, etc.

Given a dataset

\[
\{(x_i, y_i)\}_{i=1}^N
\]

of images \(x_i\) and labels \(y_i\),

Loss for a single example is:

\[
L_i(f(x_i, W), y_i)
\]

Loss for the dataset is

\[
L = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)
\]
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifier scores

\[
s = f(x_i, W)
\]

cat \quad 3.2

car \quad 5.1

frog \quad -1.7
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifier scores

\[s = f(x_i, W) \]

Softmax function

\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

cat \hspace{1cm} 3.2

car \hspace{1cm} 5.1

frog \hspace{1cm} -1.7
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifier scores

\[s = f(x_i, W) \]

Softmax function

\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

Unnormalized log-probabilities / logits

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Cross-Entropy Loss

Want to interpret raw classifier scores as probabilities

Classifier scores
\[s = f(x_i, W) \]

Softmax function
\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

Probabilities must be \(\geq 0 \)

Unnormalized log-probabilities / logits

Unnormalized probabilities
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifer scores

\[s = f(x_i, W) \]

Softmax function

\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

- **cat**: 3.2
 - **unnormalized log-probabilities / logits**: 3.2
 - **unnormalized probabilities**: 24.5
 - **probabilities**: 0.13

- **car**: 5.1
 - **unnormalized log-probabilities / logits**: 5.1
 - **unnormalized probabilities**: 164
 - **probabilities**: 0.87

- **frog**: -1.7
 - **unnormalized log-probabilities / logits**: -1.7
 - **unnormalized probabilities**: 0.18
 - **probabilities**: 0.00

Probabilities must be >= 0
Probabilities must sum to 1
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifier scores

\[s = f(x_i, W) \]

Softmax function

\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

Loss

\[L_i = -\log(p_{yi}) \]

<table>
<thead>
<tr>
<th></th>
<th>Classifier scores (s = f(x_i, W))</th>
<th>Softmax function</th>
<th>Loss (L_i = -\log(p_{yi}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unnormalized log-probabilities / logits

\[\exp \]

Unnormalized probabilities

\[\text{normalize} \]

Probabilities

\[\sum_j \exp(s_j) \]

Probabilities must be \(\geq 0 \)

Probabilities must sum to 1

\[L_i = -\log(0.13) = 2.04 \]
Cross-Entropy Loss

Want to interpret raw classifier scores as probabilities

Classifier scores
\[s = f(x_i, W) \]

Softmax function
\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

Loss
\[L_i = -\log(p_{y_i}) \]

<table>
<thead>
<tr>
<th>Class</th>
<th>Classifier scores</th>
<th>Softmax function</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
<td>[24.5]</td>
<td>[0.13]</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td>[164]</td>
<td>[0.87]</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>[0.18]</td>
<td>[0.00]</td>
</tr>
</tbody>
</table>

Maximize probabilities

Maximum Likelihood Estimation
Choose weights to maximize the likelihood of the observed data
(See EECS 445 or EECS 545)
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifier scores

\[s = f(x_i, W) \]

Softmax function

\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

Loss

\[L_i = - \log(p_{y_i}) \]

Unnormalized log-probabilities / logits

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
<th>24.5</th>
<th>0.13</th>
<th>Correct probs</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
<td>164</td>
<td>0.87</td>
<td>1.00</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>0.18</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Probabilities must be >= 0

Probabilities must sum to 1

Compare
Want to interpret raw classifier scores as **probabilities**

Classifier scores

$$s = f(x_i, W)$$

Softmax function

$$p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)}$$

Loss

$$L_i = -\log(p_{y_i})$$

<table>
<thead>
<tr>
<th></th>
<th>Classifier scores</th>
<th>Softmax function</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unnormalized log-probabilities / logits

<table>
<thead>
<tr>
<th></th>
<th>exp</th>
<th>normalize</th>
<th>Kullback-Leibler Divergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>24.5</td>
<td>0.13</td>
<td>[D_{KL}(P</td>
</tr>
<tr>
<td>car</td>
<td>164</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>frog</td>
<td>0.18</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Probabilities must be >= 0

Probabilities must sum to 1

Compare

Correct probs

1.00

0.00
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifier scores

\[s = f(x_i, W) \]

Softmax function

\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

Loss

\[L_i = -\log(p_{y_i}) \]

Examples

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
<th>24.5</th>
<th>0.13</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
<td>164</td>
<td>0.87</td>
<td>0.00</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>0.18</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Unnormalized log-probabilities / logits

Unnormalized probabilities

Probabilities

Probabilities must be \(\geq 0 \)

Probabilities must sum to 1

Correct probs

Cross-Entropy:

\[H(P, Q) = H(P) + D_{KL}(P \parallel Q) \]

\[D_{KL}(P \parallel Q) = \sum_i p_i \log \left(\frac{p_i}{q_i} \right) \]
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifier scores
\[s = f(x_i, W) \]

Softmax function
\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

Loss
\[L_i = -\log(p_{y_i}) \]

Putting it all together:
\[L_i = -\log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right) \]
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifier scores

\[s = f(x_i, W) \]

Softmax function

\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

Loss

\[L_i = - \log(p_{y_i}) \]

Putting it all together:

\[L_i = - \log\left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}\right) \]

Q: What is the min / max possible loss \(L_i \)?

<table>
<thead>
<tr>
<th>cat</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Cross-Entropy Loss

Want to interpret raw classifier scores as **probabilities**

Classifier scores
\[s = f(x_i, W) \]

Softmax function
\[p_i = \frac{\exp(s_i)}{\sum_j \exp(s_j)} \]

Loss
\[L_i = -\log(p_{y_i}) \]

Putting it all together:
\[L_i = -\log \left(\frac{\exp(s_{y_i})}{\sum_j \exp(s_j)} \right) \]

Q: If all scores are small random values, what is the loss?

<table>
<thead>
<tr>
<th>Class</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>3.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Multiclass SVM Loss

"The score of the correct class should be higher than all the other scores"

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
Multiclass SVM Loss

Given an example \((x_i, y_i)\) (\(x_i\) is image, \(y_i\) is label)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]
Multiclass SVM Loss

Given an example \((x_i, y_i)\) (\(x_i\) is image, \(y_i\) is label)

Let \(s = f(x_i, W) \) be scores

Then the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>label</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>score</td>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>4.9</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>2.5</td>
<td>-3.1</td>
</tr>
</tbody>
</table>
Multiclass SVM Loss

Given an example \((x_i, y_i)\)
\((x_i\text{ is image}, y_i\text{ is label})\)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

\[
= \max(0, 5.1 - 3.2 + 1) + \max(0, -1.7 - 3.2 + 1)
\]

\[
= \max(0, 2.9) + \max(0, -3.9)
\]

\[
= 2.9 + 0
\]

\[
= 2.9
\]
Multiclass SVM Loss

Given an example \((x_i, y_i)\)
\((x_i\) is image, \(y_i\) is label)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

\[
= \max(0, 1.3 - 4.9 + 1)
+ \max(0, 2.0 - 4.9 + 1)
= \max(0, -2.6) + \max(0, -1.9)
= 0 + 0
= 0
\]

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss</td>
<td>2.9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cat</td>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>
Multiclass SVM Loss

Given an example \((x_i, y_i)\) (\(x_i\) is image, \(y_i\) is label)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

\[
= \max(0, 2.2 - (-3.1) + 1) \\
+ \max(0, 2.5 - (-3.1) + 1) \\
= \max(0, 6.3) + \max(0, 6.6) \\
= 6.3 + 6.6 \\
= 12.9
\]
Multiclass SVM Loss

Given an example \((x_i, y_i)\) (\(x_i\) is image, \(y_i\) is label)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

Loss over the dataset is:

\[
L = \frac{(2.9 + 0.0 + 12.9)}{3} = 5.27
\]
Multiclass SVM Loss

Given an example \((x_i, y_i)\) (\(x_i\) is image, \(y_i\) is label)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

Q: What happens to the loss if the scores for the car image change a bit?

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scores</td>
<td>3.2</td>
<td>5.1</td>
<td>-1.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Loss</td>
<td>2.2</td>
<td>2.5</td>
<td>-3.1</td>
<td>12.9</td>
</tr>
</tbody>
</table>
Multiclass SVM Loss

Given an example \((x_i, y_i)\)
\((x_i \text{ is image, } y_i \text{ is label})\)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:
\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

Q: What are the min and max possible loss?

<table>
<thead>
<tr>
<th></th>
<th>Loss</th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>2.9</td>
<td>3.2</td>
<td>1.3</td>
<td>-1.7</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td>4.9</td>
<td>2.0</td>
<td>-2.9</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>2.0</td>
<td>2.5</td>
<td>-3.1</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>0</td>
<td>12.9</td>
<td></td>
</tr>
</tbody>
</table>
Multiclass SVM Loss

Given an example (x_i, y_i) (x_i is image, y_i is label)

Let $s = f(x_i, W)$ be scores

Then the SVM loss has the form:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: If all scores were random, what loss would we expect?
Multiclass SVM Loss

Given an example \((x_i, y_i)\)
\((x_i \text{ is image, } y_i \text{ is label})\)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:
\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

Q: What would happen if sum were over all classes?
(including \(j = y_i\))

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
<th>Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
<td>12.9</td>
<td></td>
</tr>
</tbody>
</table>
Multiclass SVM Loss

Given an example \((x_i, y_i)\) (\(x_i\) is image, \(y_i\) is label)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

Q: What if the loss used mean instead of sum?

<table>
<thead>
<tr>
<th></th>
<th>cat</th>
<th>car</th>
<th>frog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss</td>
<td>2.9</td>
<td>0</td>
<td>12.9</td>
</tr>
<tr>
<td>cat</td>
<td>3.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>car</td>
<td>5.1</td>
<td>4.9</td>
<td>2.5</td>
</tr>
<tr>
<td>frog</td>
<td>-1.7</td>
<td>2.0</td>
<td>-3.1</td>
</tr>
</tbody>
</table>
Multiclass SVM Loss

Given an example \((x_i, y_i)\) (\(x_i\) is image, \(y_i\) is label)

Let \(s = f(x_i, W)\) be scores

Then the SVM loss has the form:

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
\]

Q: What if we used this loss instead?

\[
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)^2
\]
Cross-Entropy vs SVM Loss

$$L_i = -\log \frac{\exp(s_{y_i})}{\sum_j \exp(s_j)}$$

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Assume scores:

[10, -2, 3]
[10, 9, 9]
[10, -100, -100]

and $y_i = 0$

Q: What is cross-entropy loss? What is SVM loss?

A: Cross-entropy loss > 0
SVM loss = 0
Cross-Entropy vs SVM Loss

\[L_i = -\log \frac{\exp(s_{y_i})}{\sum_j \exp(s_j)} \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]

Assume scores:

[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and \(y_i = 0 \)

Q: What happens to each loss if I slightly change the scores of the last datapoint?

A: Cross-entropy loss will change; SVM loss will stay the same
Cross-Entropy vs SVM Loss

\[L_i = -\log \frac{\exp(s_{y_i})}{\sum_j \exp(s_j)} \]
\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]

Assume scores:

[10, -2, 3]
[10, 9, 9]
[10, -100, -100]
and \(y_i = 0 \)

Q: What happens to each loss if I double the score of the correct class from 10 to 20?

A: Cross-entropy loss will decrease, SVM loss still 0
Recap

- **Image Classification** is a core computer vision task
- **K-Nearest Neighbors** is classification via memorization
- **Linear classifiers** learn one template per category to match with the input
- A **loss function** specifies your preference over different settings of weights
- **Cross-Entropy loss** maximizes probability of correct class
- **SVM Loss** wants correct score larger than other scores
Next Time: How to choose W? Optimization!