Lecture 4.
Math Review
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Administrative

HWO out, due 2/3

HW1 out soon
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This Lecture: Math Review

Two goals for today:

 Math with computers # Math

* Practical math you need to know but may
not have been taught

UNIVERSI
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This Lecture: Goal

* Not a “Linear algebra in one lecture” — that’s
impossible.

* You should have seen this before

* Aimed at reviving your knowledge and plugging any
gaps
* Aimed at giving you intuitions

* I’ll intentionally go fast; intent is for slides to be a
reference for you to review later
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Floating Point Arithmetic
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Adding Numbers

*l1+1="?

* Suppose x; is normally distributed with mean u and
standard deviationofor1 <i <N

o P 1 [ [
* How is the average, or U = NZ’i":l X, distributed
(qualitatively), in terms of variance?

* The Free Drinks in Vegas Theorem:

it has mean u and standard deviation —

Nk
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Free Drinks in Vegas
Each game/variable has mean $0.10, std S2
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Let’s make it big

e Suppose we take the average of 50M normally
distributed numbers (mean=31, std=1)
* Theory: Average is a normally distributed random

. . 1 ﬁv —5
variable with mean 31 and std Teom 10

Y PraCtiCEZ #include <iostream>

#include <random>

int main() A
std::default_random_engine engine;
std::normal _distribution<float> normal(31, 1);
const int N = 50000000;

float avg = 0.0f;
for (int i = 03 1 < N; ++1i) {

. avg += normal(engine);
Result: .
17.469577 IEEEGRN

std::cout << avg << std::endl;
return 0;
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Trying It out

35

Hmm.

301

N
%))

N
o

Hmm.

Empirical average
-
(9)]

[
o

= Theory
- Reality with 32 bit

0 1 2 3 a4 5
Number of numbers le7
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What is a number?

27 26 25 24 23 22 21 90
1 0 1 1 1 O 0 1 185
128+ 32+16+8+1 = 185
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Adding two numbers

27 26 2> 24 23 22 2t 2
1 0 1 1 1 0 0 1 185
+0 1 1 0 1 O 0 1 105

1 0 0 1 0 0 O 1 0 34

—

Carry Result
Flag

“Integers” on a computer are integers modulo 2*
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Some Gotchas

32+(3/4)x40= 32

Why?
32+(3x40) /4= 62
Underflow No Underflow
32+(3/4) x40 = 32+(3x40) /4=
32+0 X 40 = 32+120 /4=
32+0 = 32+ 30 =

32 62
Ok — you have to multiply before dividing
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Some Gotchas

Should be:
math 32+ (9 x 40) / 10 = \4’ IXa=36
uint8 32+(9x40)/10= 42

Overflow
32+9x40/10= Why 104>

32 +004 |/10= 9 x 40 = 360
32 + 10 = 360 % 256 = 104

42
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What is a number?

27 26 2> 24 23 22 2t 2
1 0 1 1 1 0 0 1 185

How can we do fractions?
2> 24 23 22 21 2&2'1 22

1 0 1 1 1 O‘O 1 45.25

45 0.25
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Fixed-Point Arithmetic

2° 24 23 22 21 20‘2'1 272

1 0 1 1 1 0 0 14525

What’s the largest number we can represent?
63.75 — Why?
How precisely can we measure at 63?
0.25

How precisely can we measure at 0?
0.25

Fine for many purposes but for science, seems silly
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Floating Point Numbers
Sign (S) Exponent (E) Fraction (F)

1 7 1
-1 27-7=20=1 1+1/8 =1.125

(—15)(2E+bias) (1 +2_P:°’>

Bias: allows exponent to be negative (bias =-127 for float32)
Note: fraction = significant = mantissa;
exponents of all ones or all zeros are special numbers
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Floating Point Numbers

: F
_15 2E+blas (1 + )
=1 ) 23 Fraction

0/8 20%1.00 = -1
1/8 -20x1.125 = -1.125
Sign Exponent

2/8 010 -20x125_-125
. 0111

7-7=0
i bis) /8 -20%1.75=-1.75
7/8 -20% 1.875 =-1.875
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Floating Point Numbers

. F
_15 2E+blas (1 4+ )
(=1 ) 23 Fraction

0/8 22x1.00 = -4
1/8 -22%1.125 = -4.5
Sign Exponent

2/8 010 -22x125_-5
. 1001

(9b7| 2) 6/8 22x1.75=-7
7/8 -22x1.875=-7.5

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 4 - 18 January 28, 2021



Floating Point Numbers

Fraction
Sign Exponent

. 7111 -2°x1.00=-1
m 001]-20x1.125=-1.125
7] [foot
-22x1125—-45

Gap between numbers is relative, not absolute
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Adding Floating Point Numbers

Sign Exponent Fraction

-21x1.00=-0.5
+1] [000] -22x1.00=-4

22x1.125=-4.5

Actual implementation is complex
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Adding Floating Point Numbers

Sign Exponent Fraction

-23x1.00 =-0.125
411 [000] -2x1.00=-4

-22x1.03125 =-4.125

(1][1001][000]2*x100=4
22x1.125 = -4.5 '
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Adding Floating Point Numbers

Sign Exponent Fraction

-23x1.00 =-0.125
411 [000] -2x1.00=-4

-22x1.03125 =-4.125

For a and b, these can happen
a+b=a at+b-azb
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Real Floating Point Numbers

|IEEE 754 Single Precision / Single / float32

8 bits 23 bits
2127 = 1038 ~ 7 decimal digits
S Exponent Fraction

IEEE 754 Double Precision / Double / float64

11 bits 52 bits
21023 =~ 10308 ~ 15 decimal digits

S Exponent Fraction
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Real Floating Point Numbers

IEEE 754 Half Precision / Half / float16

5 bits 10 bits
232=10° ~ 3 decimal digits
S Exponent Fraction

Brain Floating Point / bfloat16

8 bits 7 bits
212721038 = 2 decimal digits
) Exponent Fraction

Same range as FP32, but reduced precision
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Trymg it Out Recall: Average

of many Gaussian

35

B § Roundoff random variables
- error occurs
D o5
S a+b=a ->
q) °
s 20 numerator is
.§ 15 StUCk,
= denominator
1 10 .
ISN’t
> = Theory
- Reality with 32 bit
% 1 3 3 2 5

Number of numbers le7
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Things to Remember

 Computer numbers aren’t math numbers

e Overflow, accidental zeros, roundoff error, and
basic equalities are almost certainly incorrect for
some values

* Floating point defaults and numpy try to protect
you.

* Generally safe to use a double and use built-in-
functions in numpy (not necessarily others!)

* Spooky behavior = look for numerical issues
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Vectors
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Operations You Should Know

 Scale (vector, scalar - vector)
* Add (vector, vector - vector)
* Magnitude (vector - scalar)

* Dot product (vector, vector - scalar)
* v -w=||v||[[w]|[cos®
* Dot products are projection / angles
* Orthogonal vectors have dot product O

* Cross product (vector, vector - vector)
* Only in 3 dimensions!
e Output is orthogonal to both inputs
* Vectors facing same direction have cross product 0

* You can never mix vectors of different sizes
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Vectors

[2,3]= 2x[1,0] +3x][0,1]

2 X +3x 1%
2 X +3Xx e,
X =[2,3] Can be arbitrary # of

dimensions
(typically denoted R")

A
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Scaling Vectors

2x =[4,6] | « Can scale vector by a scalar
* Scalar =single number
{  Dimensions changed
X =[2,3] independently

* Changes magnitude / length,
does not change direction.
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Adding Vectors

 (Can add vectors

* Dimensions changed independently
 Order irrelevant

 Can change direction and magnitude

x=1[2,3] | = [5,4]

=[3,1]

et

Justin Johnson & David Fouhey EECS 442 W1 2021: Lecture 4 - 31 January 28, 2021



Scaling and Adding

X = [23]{

=[7,7]

time

31]

Can do both at the same

Justin Johnson & David Fouhey
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Measuring Length

Magnitude / length / (L2) norm of vector

n 1/2
21l = llxlzy= (Z x?)

L
X =[2,3] There are other norms; assume L2 unless

told otherwise
lxll, = V13
lyll, = V10

Why?

y=1[3,1]
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Normalizing a Vector

X = [2,3] Diving by norm gives
something on the unit

sphere (all vectors with
length 1)

x' =x/|lx
/” “2 y= [3’1]

7 4
y =y/lyll2
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Dot Products

n
Xy =zxiyi =xTY
i=1

x -y = cos(@)|lx|l [yl

What happens with
normalized / unit
vectors?
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Dot Products

x=[23] xy=) x

What's x - e, x - e,?

0
1 Ans:x-eq=2; x-e,=3
: * Dot product is projection
€1 ) * Amount of x that’s also
: pointing in direction of y
€2
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Dot Products

x = [2,3] x')’:zxi%'

What'sx - x ?
Ans: X - X = ) x;X; = “x“%
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Special Angles

[é]-[2]=0*1+1*0=0

x Perpendicular /
orthogonal vectors
, have dot product O
X irrespective of their

magnitude
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Special Angles

[;C;] ‘ B,]ﬂ = X1Y1 T XY, =

Perpendicular /
orthogonal vectors
have dot product O
X irrespective of their
magnitude
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Orthogonal Vectors

x =12,3]

 Geometrically,
what’s the set of
vectors that are
orthogonal to x?

 Aline[3,-2]

"
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Orthogonal Vectors

x* e What’s the set of vectors that are
orthogonal to
* A plane/2D space of vectors/any vector

, =P )0 b]

*  What’s the set of vectors that are
X orthogonal to < and
1 * Aline/1D space of vectors/any vector
Lppp  [0,0,D]
* y  Ambiguity in sign and magnitude
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Cross Product

 Set{z:z-x=0,z-y =0}hasan
ambiguity in sign and magnitude

* Cross product xXvy is: (1) orthogonal
to x, y (2) has sign given by right hand
rule and (3) has magnitude given by
area of parallelogram of x and y

 Important: if xand y are the same

a direction or either is 0, then xXy = 0
< \ e Onlyin 3Dl
L W //  (See wedge product for D = 3)

Image credit: Wikipedia.org
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Matrices
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Things you should know

* A linear map between vector spaces is a function
satisfying: f(av + bw) = af (v) + bf (w) for all vectors
v,w and all scalars a, b

e Alinear map from R" to R™ can be represented by a
matrix of shape M XN

* Given a matrix A € RM*N and a vector v € RY, the
matrix vector product Av is a vector in RM containing
the dot products of v with the rows of A

* Given matrices A € RM*N and B € RY*P the matrix-
matrix product AB is a matrix in RM*¥ containing all dot
products of A’s rows and B’s columns

* Matrix multiplication is associative: (AB)C = A(BC)
but (in general) not commutative: AB #+ BA
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Matrices

Horizontally concatenate n, m-dim column vectors and
you get a mxn matrix A (here 2x3)

14 21 31
A= [vl'"'Jvn] —
1, 27 3>

(scalar) (vector) A (matrix)
lowercase lowercase uppercase
undecorated bold or arrow bold
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Matrices

Horizontally concatenate n, m-dim column vectors and
you get a mxn matrix A (here 2x3)

14 21 31
A= [vl'"'Jvn] —
1, 27 3>

Watch out: In math, it’s common to treat D-dim
vector as a Dx1 matrix (column vector);
In numpy these are different things
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Matrices

q-T
Transpose: flip b

rows / columns

=la b c] (3x1)"=1x3

LC-

Vertically concatenate m, n-dim row vectors
and you get a mxn matrix A (here 2x3)

u;
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Matrix-vector Product

Yox1 = Azx3X3x1

N

— [ Vo U3] X9
3’2] X

y — + vaZ —+ X3U3

Linear combination of columns of A
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Matrix-vector Product

Yox1 = A2x3x3x1

3

V1 = ulx Yo = uzx

Dot product between rows of A and x
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Matrix Multiplication

Generally: A, and B, yield product (AB),,

— al ||| |
AB=| by - b,
am —| [ |

Yes —in A, I'm referring to the rows, and in B, I'm
referring to the columns
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Matrix Multiplication

Generally: A, and B, yield product (AB),,
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Matrix Multiplication

e Dimensions must match
* Dimensions must match

* Dimensions must match
 (Associative): ABx = (A)(Bx) = (AB)x
* (Not Commutative): ABx # (BA)x # (BxA)
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Working with Matrices
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Two uses for Matrices

1. Storing things in a rectangular array (e.g. images)

* Typical operations: element-wise operations,
convolution (which we’ll cover later)

* Atypical operations: almost anything you learned in a
math linear algebra class

2. Alinear operator that maps vectors to another
space (Ax)
* Typical/Atypical: reverse of above
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Images as Matrices

Suppose someone hands you this matrix.
What’s wrong with it?

0 100 200 300 400 500
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Contrast: Gamma Curve

Typical way to change 10/ — Y22 lpostgamma)
— =X (N0 gamma
the contrast is to

apply a nonlinear 0.8
correction )
% 0.6
. y >
pixelvalue =
42_0.4
@)

The quantity y
controls how much 0.2
contrast gets added

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Input Value
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Contrast: Gamma Curve

Now the darkest Lo| — Y=x"4 (postgamma 00
regions (10t" pctile) are 0
much darker than the 0.8
moderately dark i}
regions (50" pctile).  Zeos ew
’ 90%
g
8 0.4
hew 10% 50%

Input Value

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 4 - 57 January 28, 2021



Contrast: Gamma Correction

500
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Contrast: Gamma Correction

Phew! Much Better.

0
50 20) ‘ =  Peemiteg
100 A < | " o [

LE T
oess
b8 0o
'OOOQ
LY
Ooeas

200

150 ; | = b
T:g Fabraiee wemssmes ‘1',.~

250
300
T
350 ,e’f
T E / |[ __ 4 T
0 100 200 300 400 500
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Implementation

Python+Numpy (right way):
1imNew = 1m**4
Python+Numpy (slow way — why? ):

imNew = np.zeros(im.shape)
for vy 1n range(im.shape[0]) :
for x 1n range(im.shapel[l]) :
imNew[y,x] = 1m[y,Xx] **expFactor

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 4 - 60 January 28, 2021



Elementwise Operations

Element-wise power — beware notation

PY.. = AP
(A )lJ — Aij
“Hadamard Product” / Element-wise multiplication
(A© B);j = A;; * By;
Element-wise division

(A/B);; = A
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Sums Across Axes

Let A be a matrix _x.l }/.1'
of shape (N, 2): A=]: '
A = np.random.randn(N, 2) X Vn.

N N -
Sum over rows gives
vector of shape (2,) %(4,0) = z Xj ’ Z Yi
A.sum(axis=0) -1=1 (=1 -
Sum over columns gives (X1 T V1]
vector of shape (N,) (A1) = :
A.sum(axis=1) X, + V.

Note — libraries distinguish between N-D column vector and Nx1 matrix.
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Operations they don’t teach

You Probably Saw Matrix Addition

b+
. 2]+[; {z B [?i; d—-]fz

What is this? FYI: e is a scalar

@ Olve= [ote bte

Justin Johnson & David Fouhey EECS 442 W1 2021: Lecture 4 - 63 January 28, 2021



Broadcasting

If you want to be pedantic and proper, you expand e by
multiplying a matrix of 1s (denoted 1)

]+e = ? Z]+12xze

a b e e
=l¢ altle e
c d e e
Many smart matrix libraries do this automatically.
This is the source of many bugs.
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Broadcasting Example

Given: Matrix P of shape (N, 2) vector v of shape (2, 1)
Want: Difference matrix D of shape (N, 2)

(X1 V1

p=|: i|p=][? _
XN 3’N-v [b] Y

X1 —a Yy;—Db

Xy — ad yN_b-

X1 V1] [aq b] Bluestuffis
P — vl = 5 D | — : assumed /
xy Yyl la b] broadcast
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Broadcasting Rules

Suppose we have numpy arrays x and y.
How will they broadcast?

1. Write down the shape of each array as a tuple of integers:
For example: x: (10,) v: (20, 10)
2. If they have different numbers of dimensions, prepend
with ones until they have the same number of dimensions
For example: x: (10,) v:(20,10) -2 x:(1, 10) v: (20, 10)
3. Compare each dimension. There are 3 cases:

(a) Dimension match. Everything is good

(b) Dimensions don’t match, but one is =1.

“"Duplicate” the smaller array along that axis to match
(c) Dimensions don’t match, neither are =1. Error!
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Broadcasting Examples

X = np.ones (10, 20) X = np.ones (10, 20)
Yy = np.ones(20) y = np.ones(10)

Z = X +y Z = X +y
print(z.shape) print(z.shape)

(10, 20) ERROR

X = np.ones (10, 20) X = np.ones(1l, 20)
y = np.ones (10, 1) y = np.ones (10, 1)
Z = X +y Z = X +y
print(z.shape) print(z.shape)
(10,20) (10,20)
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Tensors

Scalar: Just one number
Vector: 1D list of numbers
Matrix: 2D grid of numbers

Tensor: N-dimensional grid of numbers
(Lots of other meanings in math, physics)
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Broadcasting with Tensors

The same broadcasting rules apply to
tensors with any number of dimensions!

= np.ones(30)

= np.ones(20, 1)

= np.ones(10, 1, 1)
W =X + Yy + Z
print(w.shape)

(10, 20, 30)

N < X
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Vectorization

Writing code without explicit loops:
use broadcasting, matrix multiply,
and other (optimized) numpy
primitives instead
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Vectorization Example

e Suppose | have two sets of (D-dimensional) vectors
{Xy, ..., X5} and {yy, ..., Y} and | want to compute all
pairwise distances d; ; = ||x; — yj||

* Identity: [|x — yII* = lIx[I* + lyll* — 2x"y
* Or: [lx — yll = (llxlI* + llyll* — 2x"y)*/?
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Vectorization Example

— X - | | | -
x=| + fv=| & |[¥Y'=|m - yu
— Xy - Yu | |
Compute a Nx1 vector [EAlk
X(Xx%,1) =] :
of norms ,
(can also do Mx1) [l
Compute a NxM matrix N _ .T
(XY )ij = Xi Yj

of dot products
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Vectorization Example

/
D = (2(x%, 1) +2(v% 1) - ZXYT)1 2

o
X
B0 iz - Iy li?]
ey 112
g2 + a2 = Negll + [[yall?

: : Why?
e ll? + a2 - Il + [ywll?

(Z(X2,1) +2(v2, D)y = xll? + |y ||
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Vectorization Example

1/2
D = (2(x%,1) + — 2xY")
D;; = [lx;lI* + + 2x'y
Numpy code:
XNorm = np.sum(X**2,axis=1, keepdims=True)
D = (XNorm+ -2*np.dot (X,Y.T))**0.5

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):
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Vectorization Example

1/2
D = (2(x%,1) + — 2xY")
D;; = |lx;]|* + + 2x'y
Numpy code: (N, 1)
XNorm = np.sum(X**2,axis=1, keepdims=True)
D = (XNorm+ -2*np.dot (X,Y.T))**0.5

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):
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Vectorization Example

/
D = (2(x%, 1) +2(v% 1) - ZXYT)1 2

D;; = llxlI% + ||| + 2xTy

(N,1) (M, 1)

Numpy code:
XNorm = np.sum(X**2,axis=1, keepdims=True)
YNorm =fnp.sum(Y**2,axi1s=1, keepdims=True)

D = (XNorm+YNorm.T-2*np.dot (X,Y.T))**0.5

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):
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Vectorization Example

/
D = (2(x%, 1) +2(v% 1) - ZXYT)1 2
D;; = llxl12 + ||| + 24Ty

Numpy code: (N, 1) (Mz 1) (N, M)

XNorm = np.sum(X**2,axis=1, keepdims=True)

YNorm = np.sum(Y**2,axis=1, keepdims=True)
D = (XNorm+YNorm.T¥2*np.dot (X,Y.T)]) **0.5

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):
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Vectorization Example

1/2
D = (2(x%,1) + — 2xY")
D;; = |[x;|* + + 2x"y
Numpy code: (N' 1) (N, M) (N; M)
XNorm = np.sum(X**2,axis=1, keepdims=True)

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):
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Vectorization Example

1/2

D = (2(x%,1) + — 2xY")

D;; = |lx;]|* + + 2x'y
Numpy code: (N; 1) (NI IVI) (Nr IVI)
XNorm = np.sum(X**2,axis=1, keepdims=True)
D = [XNorm+ -2*np.dot (X, Y.T) )J**0.5

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):
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Vectorization Example

1/2

D = (2(x%,1) + — 2xY")

D;; = |lx;]|* + + 2x'y
Numpy code: (N; 1) (NI IVI) (Nr IVI)
XNorm = np.sum(X**2,axis=1, keepdims=True)
D = [XNorm+ -2*np.dot (X,Y.T))**0.5

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):
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Vectorization Example

1/2
D = (2(x%,1) + — 2xY")
D;; = [lx;lI* + + 2x'y
Numpy code:
XNorm = np.sum(X**2,axis=1, keepdims=True)
D = (XNorm+ -2*np.dot (X,Y.T))**0.5

*May have to make sure this is at least 0 (sometimes
roundoff issues happen)
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Does Vectorization Matter?

Computing pairwise distances between 300 and 400
128-dimensional vectors

1. forxinX, foryinY, using native python: 9s

2. forxinX, foryinY, using numpy to compute
distance: 0.8s

3. vectorized: 0.0045s (~2000x faster than 1, 175x
faster than 2)

Expressing things in primitives that are optimized is

usually faster

Even more important with special hardware like
GPUs or TPUs!

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 4 - 82 January 28, 2021



Linear Algebra
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Things you should know:

* A set of vectors are linearly independent if you
can’t write one as a a linear combination of the
others

* The rank of a matrix is the number of linearly
independent columns (or rows)

* An NXN matrix with rank N is nonsingular and
behaves nicely: has an inverse, spans the full
output space

A symmetric matrix is its own transpose: AT = A4

* A rotation matrix has its transpose as its inverse:
RRT =RTR =1
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Linear Independence

A set of vectors is linearly independent if you can’t
write one as a linear combination of the others.

o
Suppose: a = |0
|2

o 0] 1 1

x=10]= y=|-2|= za—zb

4. 1] 2 3

e Isthe set {a,b,c}linearly independent?
* Isthe set {a,b,x} linearly independent?
 Max # of independent 3D vectors?

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 4 - 85 January 28, 2021



Span

Span: all linear
combinations of a set
of vectors

span({ {}) =
Span({[0,2]}) = ?

All vertical lines
through origin =
{1[0,1]: 1 € R}

Is blue in {red}’s span?
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Span

Span: all linear
combinations of a set
of vectors

Span({f —>}) =7
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Span

Span: all linear
combinations of a set
of vectors

span({t, | =2
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Matrix-Vector Product

| | - Right-multiplying A by x
Ax =|€C1 - C€u|X mixes columns of A
N | 1 according to entries of x

 The output space of f(x) = Ax is constrained to be
the span of the columns of A.

e Can’t output things you can’t construct out of your
columns
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An Intuition

I
y=Ax =|C1 Cy Cypl||X2
| | X,
y Vi ~Ix
w0 (D)
Y3 M

X — knobs on machine (e.g., fuel, brakes)
y — state of the world (e.g., where you are)
A — machine (e.g., your car)

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 4 - 90 January 28, 2021



Linear Independence

Suppose the columns of 3x3 matrix A are not linearly
independent (c,, ac,, ¢, for instance)

y=Ax =|c1 acq

Co

X1

X3

y=X1C1 + Cl +X3C2

y = (x1 +ax,)cq + %3¢

Justin Johnson & David Fouhey
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Linear Independence Intuition

Knobs of x are redundant. Even if y has 3 outputs,
you can only control it in two directions

y = (x1 +ax,)cq + %3¢

Y/ Y1
Y>

Y3

-

-

=

a1 QM)
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Linear Independence

Recall: Ax = (x; + ax,)cq + x3€;

— x1—|—ﬁ -

y:A :(Xl‘l‘%‘ _/)C1+X3C2
| X3 i

 Can write y an infinite number of ways by adding
B

a

 Or, given a vector y there’s not a unique vector x
s.t. y =AX

* Not all y have a corresponding x s.t. y=Ax
(assuming ¢4 and c{have dimension >= 3)

f to x, and subtracting = from x,
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Linear Independence

Ax = (x; + ax,)cqy + x5¢y

y=A i _=(,B—a )c1+0c2

e \What else can we cancel out?

* An infinite number of non-zero vectors x can map

to a zero-vectory
* C(Called the right null-space of A.
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Rank

* Rank of a nxn matrix A — number of linearly
independent columns (or rows) of A / the
dimension of the span of the columns

* Matrices with full rank (n x n, rank n) behave nicely:
can be inverted, span the full output space, are
one-to-one.

* Matrices with full rank are machines where every
knob is useful and every output state can be made
by the machine
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Matrix Inverses

* Given y = Ax, y is a linear combination of columns
of A proportional to x. If A is full-rank, we should be
able to invert this mapping.

e Given some y (output) and A, what x (inputs)
produced it?
e x=Aly

* Note: if you don’t need to compute it, never ever
compute it. Solving for x is much faster and stable
than obtaining AL

Bad:y = np.linalg.inv(A).dot(y)
Good:y = np.linalg.solve(A, V)
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Symmetric Matrices

« Symmetric: AT = A or

(11 d13]
A;j = Aj;
. 2 4123
* Have lots of special e
. |31 U3z 033
properties
Any matrix of the form A = XT X is symmetric.

Quick check: AT = ( TX)T
AT = XT( T)
A" =Xx"

T
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Special Matrices: Rotations

1711 T12 T13
21 T2 T323
31 T332 T33.

e Rotation matrices R rotate vectors and do not

change vector L2 norms (||Rx||, = ||x||,)
e Every row/column is unit norm

* Every row is linearly independent

* Transpose is inverse RRT = RTR =1

 Determinantis 1 (otherwise it’s also a coordinate
flip/reflection), eigenvalues are 1
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Elgensystems

* An eigenvector v; and eigenvalue A; of a matrix A
satisfy Av; = A;v; (Av; is scaled by 4;)

* Vectors and values are always paired and typically
you assume ||| = 1

* Biggest eigenvalue of A gives bounds on how much
f(x) = Ax stretches a vector x.

* Hints of what people really mean:
» “Largest eigenvector” = vector w/ largest value
e “Spectral” just means there’s eigenvectors somewhere
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Suppose | have points in a grid
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Pointy-end: Ax . Non-Pointy-End: x
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Red box — unit square, Blue box — after f(x) = Ax.
What are the yellow lines and why?
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Now | apply f(x) = Ax to these points
Pointy-end: Ax . Non-Pointy-End: x
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Red box — unit square, Blue box — after f(x) = Ax.
What are the yellow lines and why?
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Eigenvectors of Symmetric Matrices

* Always n mutually orthogonal eigenvectors with n
(not necessarily) distinct eigenvalues

* For symmetric A, the eigenvector with the largest
xT Ax
xTx
* So for unit vectors (where xTx = 1), that
eigenvector maximizes xT Ax

eigenvalue maximizes (smallest/min)

* A surprisingly large number of optimization
problems rely on (max/min)imizing this
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Singular Value Decomposition

Can always write a mxn matrix Aas: A = UZV!

M x M M x N
) O
Rotation Scale
Eigenvectors Sgrt of O
of AAT Eigenvalues
of ATA
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Singular Value Decomposition

Can always write a mxn matrix Aas: A = UZV!

Mx M M x N N x N
A = U >
Rotation
Rotation Scale
Eigenvectors Sqrt of Eigenvectors
of AAT Eigenvalues of ATA
of ATA

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 4 - 108 January 28, 2021



Singular Value Decomposition

e Every matrix is a rotation, scaling, and rotation

* Number of non-zero singular values = rank /
number of linearly independent vectors

e “Closest” matrix to A with a lower rank

0
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Singular Value Decomposition

e Every matrix is a rotation, scaling, and rotation

* Number of non-zero singular values = rank /
number of linearly independent vectors

e “Closest” matrix to A with a lower rank

0

IS
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Singular Value Decomposition

* Every matrix is a rotation, scaling, and rotation

* Number of non-zero singular values = rank /
number of linearly independent vectors

e “Closest” matrix to A with a lower rank

* Secretly behind basically many things you do with
matrices
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Least Squares

Given: y € RM, 4 € RM*
Find: v € R" such that Av is closestto y
(M > N, more equations than )

arg min, ||y — Av||?

Solution satisfies (ATA)v" = ATy
or
= (ATA) ATy

(Don’t actually compute the inverse!)
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Solving Least-Squares

Start with two points (x;y;)

y=A
V1 _ X1 1]
}’2 _XZ 1
yl] _ mxq, + ]
Y2 X9 +

We know how to solve this —
invert A and find v (i.e., (m,b) that
fits points)
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Solving Least-Squares

(%,,V>) Start with two points (x,y;)
y=4

o fx 1
L 1]
o L 6
Y2 X, +

= (3’1 — (mx; + ))2 +(3’2 — _XL))Z
The sum of squared differences between

the actual value of y and
what the model says y should be.
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Solving Least-Squares

® Suppose there are n > 2 points
y=4
Vil [x1 T

YN XN 1.

Compute ||y — Ax||* again

Iy = 4vl> = ) (v = (nx; + b))’
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Solving Least-Squares

Giveny, A, and v with y = Av overdetermined
(A tall / more equations than )
We want to minimize ||y — Av||?, or find:

arg min, ||y — Av||?
(The value of x that makes
the expression smallest)

Solution satisfies (ATA)v" = ATy
or
= (ATA) AT

(Don’t actually compute the inverse!)
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When is Least-Squares Possible?

Giveny, A, and v. Want y = Av

A: rows (outputs) > columns
V| (knobs). Thus can’t get precise
A output you want (not enough
knobs). So settle for “closest”

knob setting.

Want n outputs, have n knobs to

fiddle with, every knob is useful if
A is full rank.
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When is Least-Squares Possible?

Giveny, A, and v. Want y = Av

:

-
Vv

Want n outputs, have n knobs to

fiddle with, every knob is useful if
A is full rank.

A: columns (knobs) > rows

(outputs). Thus, any output can be
expressed in infinite ways.
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Homogeneous Least-Squares

Given a set of unit vectors (aka directions) and |
want vector v that is as orthogonal to all the x; as
possible (for some definition of orthogonal)

Stack x; into A, compute Av
] Oif
v = v=| * |orthog

(%

i | g

v 2
Compute [|Av||? = z( V)

<
Sum of how orthog. v is to each x

xn
X2
X1
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Homogenous Least-Squares

* A lot of times, given a matrix A we want to find the
v that minimizes ||Av||? .

e |.e., want v* = arg min||Av||5
v
 What'’s a trivial solution?
e Setv=0—>Av=0
* Exclude this by forcing v to have unit norm
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Homogenous Least-Squares

Let’s look at ||AV||5

Av||5 = Rewrite as dot product

Av||5 = (Av)T(Av)  Distribute transpose
Av||% = vTATAv = vT(ATA)v

N NN NN

We want the vector minimizing this quadratic form
Where have we seen this?
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Homogenous Least-Squares

Ubiquitous tool in vision:

arg min ||Av||?
g||v||2=1

(1) “Smallest”* eigenvector of ATA

(2) “Smallest” right singular vector of A

—

For min — max, switch smallest — largest

*Note: AT A is positive semi-definite so it has all non-negative eigenvalues
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Derivatives
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Things to know

* Given a scalar-valued function f: R = R, the
derivative f'(x) € R of f at the point x € R is the
rate at which the function changes at that point

* Given a vector-valued function f: RY - R, the
gradient Vf(x) € RY at the point x € RN is the

vector of all partial derlvatlves (x)

* The gradient points in the directlon of greatest

increase; it’s magnitude is the slope in that
direction

* If x is a local minimum of f, thenVf(x) = 0
(but the converse is not true!)
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Derivatives

Remember derivatives?

Derivative: rate at which a function f(x) changes at a
point as well as the direction that increases the
function
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Given quadratic function f(x)
fl,y)=(x—-2)*+5

f(x)is function *° a2 a s

== g(x) = 2(x-2)

g =f'(x)
aka N
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Given quadratic function f(x)
fl,y)=(x—-2)*+5

50

What'’s special about — f(x) = (x2)"2 + 5

=77 = = g(x) = 2(x-2)
X=2: 40 :

f(x) minim. at 2
g(x)=0at2

a = minimum of f —
gla) =0

Reverse is not true
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Rates of change
flx,y) =(x—2)*+5

50

Suppose | want to — f(X) = (x-2)"2 + 5
. —— = 2(x-2
increase f(x) by , 960 = 20c2)

changing x:

30
Blue area: move left

Red area: move right 20

Derivative tells you
direction of ascent and
rate
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Calculus to Know

* Really need intuition
* Need chain rule

* Rest you should look up / use a computer algebra
system / use a cookbook

 Partial derivatives (and that’s it from multivariable
calculus)
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Partial Derivatives

* Pretend other variables are constant, take a
derivative. That’s it.

 Make our function a function of two variables
) == +5

if(x) =2(x—2)*x1=2(x—2)
ox Pretend it’s
fL0(,y) =(x—2)>+5+(y +1)?| constant —
derivative =0

0
afz(x) =2(x —2)
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Zooming Out
fole,y) =(x—2)+5+y+1)°

3 -

Dark = f(x,y) low
Bright = f(x,y) high 2

23 -2 -1 0 1 2 3 4 5
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Taking a slice of
f26y)=(x—-2)"+5+(y+ 1)°

3

Slice of y=0 is the
function from before: >
f(x)=(x—-2)*+5

fix) =2(x—-2)

I
— f(X) = (X-2)"2 + 5
== g(x) = 2(x-2)

1

50

40

30

20

10
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Taking a slice of
f26y)=(x—-2)"+5+(y+ 1)°

3 I | ] |

~y P

<>

aa_x f>(x,y) is rate of

change & direction in x
dimension 1

>
>

4

50 I
— f(X) = (X-2)"2 + 5

== g(x) = 2(x-2) -1 — 4 -«

40
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Zooming Out
fole,y) =(x—2)+5+y+1)°

Gradient/Jacobian: °

Making a vector of 2 ¥
af Jdf *
Vf: [ )
dx 0dy
gives rate and direction
of change.

Arrows point OUT of
minimum / basin.
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What Should | Know?

* Gradients are simply partial derivatives per-
dimension: if x in f(x) has n dimensions, V¢(x)
has n dimensions

e Gradients point in direction of ascent and tell the
rate of ascent

e If ais minimum of f(x) — V¢(a) = 0

* Reverse is not true, especially in high-dimensional
spaces

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 4 - 135 January 28, 2021



Recap

Lots of things today:

- Floating point numbers

- Vectors

- Matrices

- Broadcasting / Vectorization
- Linear Algebra

- Derivatives
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Next Time:
Image Filtering
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