
Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Lecture 4:
Math Review

1



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Administrative

2

HW0 out, due 2/3

HW1 out soon



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

This Lecture: Math Review

3

Two goals for today:
• Math with computers ≠ Math
• Practical math you need to know but may 

not have been taught



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

This Lecture: Goal

4

• Not a “Linear algebra in one lecture” – that’s 
impossible.

• You should have seen this before
• Aimed at reviving your knowledge and plugging any 

gaps
• Aimed at giving you intuitions 
• I’ll intentionally go fast; intent is for slides to be a 

reference for you to review later



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Floating Point Arithmetic

5



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Adding Numbers

6

• 1 + 1 = ? 
• Suppose 𝑥! is normally distributed with mean 𝜇 and 

standard deviation 𝜎 for 1 ≤ 𝑖 ≤ 𝑁

• How is the average, or (𝝁 = 𝟏
𝑵
∑𝒊%𝟏𝑵 𝒙𝒊, distributed 

(qualitatively), in terms of variance? 
• The Free Drinks in Vegas Theorem: 
-𝜇 has mean 𝜇 and standard deviation &

'
.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Free Drinks in Vegas

7

Each game/variable has mean $0.10, std $2

100 games is
uncertain and 
fun!

100K games is 
guaranteed profit: 
99.999999% lowest 
value is $0.064.
$0.01 for drinks
$0.054 for profits



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 8

Let’s make it big
• Suppose we take the average of 50M normally 

distributed numbers (mean=31, std=1)
• Theory: Average is a normally distributed random 

variable with mean 31 and std (
)*+

≈ 10,)

• Practice:

Result:
17.4695??



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Trying it out

9

Hmm.

Hmm.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

What is a number?

10

1 0 1 1 1 0 0
27 26 25 24 23 22 21 20

1 185
185128 + 32 + 16 + 8 + 1 = 



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Adding two numbers

11

“Integers” on a computer are integers modulo 2k

Carry
Flag

Result

28 27

1
26

0
25

1
24

1
23

1
22

0
21

0
20

1 185
0 1 1 0 1 0 0 1 105

1 340 0 1 0 0 0 1 0



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Some Gotchas

12

Why?
32 + (3 / 4) x 40 = 32
32 + (3 x 40) / 4 = 62

32 + (3 / 4) x 40 =
32 + 0         x 40 =
32 + 0              =
32

Underflow
32 + (3 x 40) / 4 =
32 + 120       / 4 =
32 + 30            =
62

No Underflow

Ok – you have to multiply before dividing 



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Some Gotchas

13

42

32 + 9 x 40 / 10 =
32 + 104     / 10 =

Overflow
32 + (9 x 40) / 10 = uint8

32 + (9 x 40) / 10 = 68math

Why 104?
9 x 40 = 360
360 % 256 = 104

Should be: 
9x4=36

32 + 10              =
42



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

What is a number?

14

27

1
26

0
25

1
24

1
23

1
22

0
21

0
20

1 185
How can we do fractions?

25 24 23 22 21 20 2-1 2-2

1 0 1 1 1 0 0 1 45.25
45 0.25



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Fixed-Point Arithmetic

15

25

1
24

0
23

1
22

1
21

1
20

0
2-1

0
2-2

1 45.25
What’s the largest number we can represent?

63.75 – Why?
How precisely can we measure at 63?

How precisely can we measure at 0?
0.25

0.25

Fine for many purposes but for science, seems silly



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Floating Point Numbers

16

0 1 1 11 0 0 1
Sign (S) Exponent (E) Fraction (F)

−𝟏𝑺 𝟐𝑬#𝒃𝒊𝒂𝒔 𝟏 +
𝑭
𝟐𝟑

1 7 1

-1 27-7 = 20 =1 1+1/8 = 1.125

Bias: allows exponent to be negative (bias = -127 for float32)
Note: fraction = significant = mantissa; 
exponents of all ones or all zeros are special numbers



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Floating Point Numbers

17

Sign Exponent

Fraction

0 0 0 -20 x 1.00 = -1 0/8

0 0 1 -20 x 1.125 = -1.125 1/8

-20 x 1.25 = -1.25 0 1 02/8

1 1 0
1 1 1

-20 x 1.75 = -1.75 

-20 x 1.875 = -1.875 

…
6/8

7/8

1 0 1 1 1

7-7=0 
*(-bias)*

-1

−𝟏𝑺 𝟐𝑬#𝒃𝒊𝒂𝒔 𝟏 +
𝑭
𝟐𝟑



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Floating Point Numbers

18

Fraction

0 0 0 -22 x 1.00 = -4 0/8

0 0 1 -22 x 1.125 = -4.51/8

0 1 0

1 1 0
1 1 1

-22 x 1.25 = -5 

-22 x 1.75 = -7

-22 x 1.875 = -7.5

…
2/8

6/8

7/8

Sign Exponent

1 1 0 0 1

9-7=2 
*(-bias)*

-1

−𝟏𝑺 𝟐𝑬#𝒃𝒊𝒂𝒔 𝟏 +
𝑭
𝟐𝟑



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Floating Point Numbers

19

0 0 0
1 0 1 1 1

Sign Exponent
Fraction

0 0 1
-20 x 1.00 = -1 

-20 x 1.125 = -1.125 

0 0 0
1 1 0 0 1

0 0 1
-22 x 1.00 = -4 

-22 x 1.125 = -4.5

Gap between numbers is relative, not absolute



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Adding Floating Point Numbers

20

Sign Exponent Fraction

1 1 0 0 1 0 0 0 -22 x 1.00 = -4 

1 0 1 1 0 0 0 0 -2-1 x 1.00 = -0.5 

1 1 0 0 1 0 0 1 -22 x 1.125 = -4.5 

Actual implementation is complex



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Adding Floating Point Numbers

21

Sign Exponent Fraction

1 1 0 0 1 0 0 0 -22 x 1.00 = -4 

1 0 1 0 0 0 0 0 -2-3 x 1.00 = -0.125 

-22 x 1.00 = -4 1 1 0 0 1 0 0 0

1 1 0 0 1 0 0 1 -22 x 1.125 = -4.5 
?

-22 x 1.03125 = -4.125 



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Adding Floating Point Numbers

22

Sign Exponent Fraction

1 1 0 0 1 0 0 0 -22 x 1.00 = -4 

1 0 1 0 0 0 0 0 -2-3 x 1.00 = -0.125 

-22 x 1.03125 = -4.125 

-22 x 1.00 = -4 1 1 0 0 1 0 0 0
For a and b, these can happen 

a + b = a a+b-a ≠ b



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Real Floating Point Numbers

23

S Exponent Fraction

8 bits
2127 ≈ 1038

23 bits
≈ 7 decimal digits

S Exponent Fraction

11 bits
21023 ≈ 10308

52 bits
≈ 15 decimal digits

IEEE 754 Single Precision / Single / float32

IEEE 754 Double Precision / Double / float64



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Real Floating Point Numbers

24

S Exponent Fraction

5 bits
232 ≈ 109

10 bits
≈ 3 decimal digits

IEEE 754 Half Precision / Half / float16

8 bits
2127 ≈ 1038

S Exponent Fraction

7 bits
≈ 2 decimal digits

Brain Floating Point / bfloat16

Same range as FP32, but reduced precision



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Trying it out

25

a+b=a -> 
numerator is 
stuck, 
denominator 
isn’t

Roundoff 
error occurs

Recall: Average 
of many Gaussian 
random variables



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Things to Remember

26

• Computer numbers aren’t math numbers
• Overflow, accidental zeros, roundoff error, and 

basic equalities are almost certainly incorrect for 
some values

• Floating point defaults and numpy try to protect 
you.

• Generally safe to use a double and use built-in-
functions in numpy (not necessarily others!)

• Spooky behavior = look for numerical issues



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectors

27



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Operations You Should Know

28

• Scale (vector, scalar → vector)
• Add (vector, vector → vector)
• Magnitude (vector → scalar)
• Dot product (vector, vector → scalar)
• 𝒗 ⋅ 𝒘 = ||𝒗|| ||𝒘|| cos 𝜃
• Dot products are projection / angles 
• Orthogonal vectors have dot product 0

• Cross product (vector, vector → vector)
• Only in 3 dimensions!
• Output is orthogonal to both inputs
• Vectors facing same direction have cross product 0

• You can never mix vectors of different sizes



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectors

29

[2,3] = + 3 x [0,1]2 x [1,0]
2 x + 3 x

e1 e22 x + 3 x
x = [2,3] Can be arbitrary # of 

dimensions 
(typically denoted Rn)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Scaling Vectors

30

x = [2,3]

2x = [4,6] • Can scale vector by a scalar
• Scalar = single number
• Dimensions changed 

independently
• Changes magnitude / length, 

does not change direction.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Adding Vectors

31

y = [3,1]

x+y = [5,4]x = [2,3]

• Can add vectors
• Dimensions changed independently
• Order irrelevant
• Can change direction and magnitude



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Scaling and Adding

32

y = [3,1]

2x+y = [7,7]

Can do both at the same 
timex = [2,3]



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Measuring Length

33

y = [3,1]

x = [2,3]

Magnitude / length / (L2) norm of vector

𝒙 = 𝒙 ! = #
"

#

𝑥"!
$/!

There are other norms; assume L2 unless 
told otherwise

𝒙 ) = 13
𝒚 ) = 10

Why?



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Normalizing a Vector

34

x = [2,3]

y = [3,1]𝒙& = 𝒙/ 𝒙 𝟐

𝒚& = 𝒚/ 𝒚 𝟐

Diving by norm gives 
something on the unit 
sphere (all vectors with 
length 1)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Dot Products

35

𝒙&

𝒚&

𝒙 ⋅ 𝒚 =#
"($

#

𝑥"𝑦" = 𝒙𝑻𝒚

𝜃

𝒙 ⋅ 𝒚 = cos 𝜃 𝒙 𝒚

What happens with 
normalized / unit 
vectors?



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Dot Products

36

𝒆𝟏

𝒆𝟐

𝒙 ⋅ 𝒚 =#
"

#

𝑥"𝑦"𝒙 = [2,3]

What’s 𝒙 ⋅ 𝒆𝟏, 𝒙 ⋅ 𝒆𝟐?
Ans: 𝒙 ⋅ 𝒆𝟏 = 2 ; 𝒙 ⋅ 𝒆𝟐 = 3
• Dot product is projection
• Amount of x that’s also 

pointing in direction of y



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Dot Products

37

What’s 𝒙 ⋅ 𝒙 ?
Ans: 𝒙 ⋅ 𝒙 = ∑𝑥"𝑥" = 𝒙 !

!

𝒙 ⋅ 𝒚 =#
"

#

𝑥"𝑦"𝒙 = [2,3]



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Special Angles

38

𝒙&

𝒚&

𝜃

1
0 ⋅ 01 = 0 ∗ 1 + 1 ∗ 0 = 0

Perpendicular / 
orthogonal vectors 
have dot product 0 
irrespective of their 
magnitude

𝒙

𝒚



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Special Angles

39

𝑥$
𝑥! ⋅

𝑦$
𝑦! = 𝑥$𝑦$ + 𝑥!𝑦! = 0

Perpendicular / 
orthogonal vectors 
have dot product 0 
irrespective of their 
magnitude

𝒙&

𝒚&

𝜃

𝒙

𝒚



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Orthogonal Vectors

40

𝒙 = [2,3]
• Geometrically, 

what’s the set of 
vectors that are 
orthogonal to x? 

• A line [3,-2]



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Orthogonal Vectors

41

• What’s the set of vectors that are 
orthogonal to x = [5,0,0]?

• A plane/2D space of vectors/any vector 
[0, 𝑎, 𝑏]

• What’s the set of vectors that are 
orthogonal to x and y = [0,5,0]?

• A line/1D space of vectors/any vector 
[0,0, 𝑏]

• Ambiguity in sign and magnitude

𝒙

𝒙

𝒚



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Cross Product

42

• Set {𝒛: 𝒛 ⋅ 𝒙 = 0, 𝒛 ⋅ 𝒚 = 0} has an 
ambiguity in sign and magnitude

• Cross product 𝒙×𝒚 is: (1) orthogonal 
to x, y  (2) has sign given by right hand 
rule and (3) has magnitude given by 
area of parallelogram of x and y

• Important: if x and y are the same 
direction or either is 0, then 𝒙×𝒚 = 𝟎

• Only in 3D! 
• (See wedge product for D != 3)

𝒙
𝒚

𝒙×𝒚

Image credit: Wikipedia.org



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrices

43



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Things you should know
• A linear map between vector spaces is a function 

satisfying: 𝑓 𝑎𝒗 + 𝑏𝒘 = 𝑎𝑓 𝒗 + 𝑏𝑓 𝒘 for all vectors 
𝒗,𝒘 and all scalars 𝑎, 𝑏

• A linear map from ℝ' to ℝ+ can be represented by a 
matrix of shape 𝑀×𝑁

• Given a matrix 𝐴 ∈ ℝ+×' and a vector 𝒗 ∈ ℝ', the 
matrix vector product 𝐴𝒗 is a vector in ℝ+ containing 
the dot products of 𝒗 with the rows of 𝐴

• Given matrices 𝐴 ∈ ℝ+×' and B ∈ ℝ'×., the matrix-
matrix product 𝐴𝐵 is a matrix in ℝ+×. containing all dot 
products of A’s rows and B’s columns

• Matrix multiplication is associative: 𝐴𝐵 𝐶 = 𝐴 𝐵𝐶
but (in general) not commutative: 𝐴𝐵 ≠ 𝐵𝐴

44



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrices

45

Horizontally concatenate n, m-dim column vectors and 
you get a mxn matrix A (here 2x3)

𝑨 = 𝒗*, ⋯ , 𝒗+ =
𝑣*/ 𝑣)/ 𝑣,/
𝑣*0 𝑣)0 𝑣,0

a (scalar)
lowercase
undecorated

a (vector)
lowercase
bold or arrow

A (matrix)
uppercase
bold



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrices

46

Horizontally concatenate n, m-dim column vectors and 
you get a mxn matrix A (here 2x3)

𝑨 = 𝒗*, ⋯ , 𝒗+ =
𝑣*/ 𝑣)/ 𝑣,/
𝑣*0 𝑣)0 𝑣,0

Watch out: In math, it’s common to treat D-dim 
vector as a Dx1 matrix (column vector);
In numpy these are different things



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrices

47

Vertically concatenate m, n-dim row vectors 
and you get a mxn matrix A (here 2x3)

𝐴 =
𝒖*-
⋮
𝒖+-

=
𝑢*/ 𝑢*0 𝑢*1
𝑢)/ 𝑢)0 𝑢)1

Transpose: flip 
rows / columns 

𝑎
𝑏
𝑐

+

= 𝑎 𝑏 𝑐 (3x1)T = 1x3



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrix-vector Product

48

𝒚).* = 𝑨).,𝒙,.*

𝒚 = 𝑥*𝒗𝟏 + 𝑥)𝒗𝟐 + 𝑥,𝒗𝟑
Linear combination of columns of A

𝑦*
𝑦) = 𝒗𝟏 𝒗𝟐 𝒗𝟑

𝑥*
𝑥)
𝑥,



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrix-vector Product

49

𝒚).* = 𝑨).,𝒙,.*

𝑦* = 𝒖𝟏𝑻𝒙

Dot product between rows of A and x

𝑦) = 𝒖𝟐𝑻𝒙

𝒖𝟏𝑻

𝒖𝟐𝑻
𝑦*
𝑦) = 𝒙

3

3



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrix Multiplication

50

− 𝒂𝟏𝑻 −
⋮

− 𝒂𝒎𝑻 −

| |
𝒃𝟏 ⋯ 𝒃𝒑
| |

𝑨𝑩 =

Generally: Amn and Bnp yield product (AB)mp

Yes – in A, I’m referring to the rows, and in B, I’m 
referring to the columns



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrix Multiplication

51

− 𝒂𝟏𝑻 −
⋮

− 𝒂𝒎𝑻 −

| |
𝒃𝟏 ⋯ 𝒃𝒑
| |

𝑨𝑩 =
𝒂𝟏𝑻𝒃𝟏 ⋯ 𝒂𝟏𝑻𝒃𝒑
⋮ ⋱ ⋮

𝒂𝒎𝑻 𝒃𝟏 ⋯ 𝒂𝒎𝑻 𝒃𝒑

𝑨𝑩". = 𝒂𝒊𝑻𝒃𝒋

Generally: Amn and Bnp yield product (AB)mp



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrix Multiplication

52

• Dimensions must match
• Dimensions must match
• Dimensions must match
• (Associative): ABx = (A)(Bx) = (AB)x
• (Not Commutative): ABx ≠ (BA)x ≠ (BxA)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Working with Matrices

53



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Two uses for Matrices

54

1. Storing things in a rectangular array (e.g. images)
• Typical operations: element-wise operations, 

convolution (which we’ll cover later)
• Atypical operations: almost anything you learned in a 

math linear algebra class

2. A linear operator that maps vectors to another 
space (Ax)
• Typical/Atypical: reverse of above



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Images as Matrices

55

Suppose someone hands you this matrix.
What’s wrong with it?

No 
contrast!



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Contrast: Gamma Curve

56

Typical way to change 
the contrast is to 
apply a nonlinear 
correction

pixelvalue/

The quantity 𝛾
controls how much 
contrast gets added 



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Contrast: Gamma Curve

57

10%

50%

90%
Now the darkest 
regions (10th pctile) are 
much darker than the 
moderately dark 
regions (50th pctile).

new 10%
new 
50%

new 
90%



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 58

Contrast: Gamma Correction



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 59

Phew! Much Better. 

Contrast: Gamma Correction



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Implementation

60

imNew = im**4

Python+Numpy (right way):

Python+Numpy (slow way – why? ):

imNew = np.zeros(im.shape)
for y in range(im.shape[0]):
for x in range(im.shape[1]):
imNew[y,x] = im[y,x]**expFactor



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Elementwise Operations

61

𝑨⊙𝑩 ". = 𝑨". ∗ 𝑩".

“Hadamard Product” / Element-wise multiplication

𝑨/𝑩 ". =
𝐴".
𝐵".

Element-wise division

𝑨1 ". = 𝐴".
1

Element-wise power – beware notation



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 62

Sums Across Axes

𝑨 =
𝑥$ 𝑦$
⋮ ⋮
𝑥# 𝑦#

Let A be a matrix 
of shape (N, 2):
A = np.random.randn(N, 2)

Σ(𝑨, 1) =
𝑥$ + 𝑦$

⋮
𝑥# + 𝑦#

Sum over columns gives 
vector of shape (N,)
A.sum(axis=1)

Σ(𝑨, 0) = #
"($

#

𝑥" ,#
"($

#

𝑦"
Sum over rows gives 
vector of shape (2,)
A.sum(axis=0)

Note – libraries distinguish between N-D column vector and Nx1 matrix.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Operations they don’t teach

63

𝑎 + 𝑒 𝑏 + 𝑒
𝑐 + 𝑒 𝑑 + 𝑒

𝑎 𝑏
𝑐 𝑑 + 𝑒 𝑓

𝑔 ℎ = 𝑎 + 𝑒 𝑏 + 𝑓
𝑐 + 𝑔 𝑑 + ℎ

You Probably Saw Matrix Addition 

𝑎 𝑏
𝑐 𝑑 + 𝑒 =

What is this? FYI: e is a scalar



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Broadcasting

64

𝑎 𝑏
𝑐 𝑑 + 𝑒

= 𝑎 𝑏
𝑐 𝑑 + 𝑒 𝑒

𝑒 𝑒

= 𝑎 𝑏
𝑐 𝑑 + 𝟏!"!𝑒

If you want to be pedantic and proper, you expand e by 
multiplying a matrix of 1s (denoted 1)

Many smart matrix libraries do this automatically. 
This is the source of many bugs.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Broadcasting Example

65

𝑷 =
𝑥# 𝑦#
⋮ ⋮
𝑥$ 𝑦$

𝒗 = 𝑎
𝑏

Given: Matrix P of shape (N, 2) vector v of shape (2, 1)
Want: Difference matrix D of shape (N, 2)

𝑫 =
𝑥# − 𝑎 𝑦# − 𝑏
⋮ ⋮

𝑥$ − 𝑎 𝑦$ − 𝑏

𝑷 − 𝒗% =
𝑥# 𝑦#
⋮ ⋮
𝑥$ 𝑦$

−
𝑎 𝑏

𝑎 𝑏
⋮

Blue stuff is 
assumed / 
broadcast



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Broadcasting Rules

66

Suppose we have numpy arrays x and y.
How will they broadcast?

1. Write down the shape of each array as a tuple of integers:
For example: x: (10,)    y: (20, 10)
2. If they have different numbers of dimensions, prepend 
with ones until they have the same number of dimensions
For example: x: (10,)   y: (20, 10)    à x: (1, 10)   y: (20, 10)
3. Compare each dimension. There are 3 cases:

(a) Dimension match. Everything is good
(b) Dimensions don’t match, but one is =1. 

”Duplicate” the smaller array along that axis to match
(c) Dimensions don’t match, neither are =1. Error!



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Broadcasting Examples

67

x = np.ones(10, 20)
y = np.ones(20)
z = x + y
print(z.shape)

x = np.ones(10, 20)
y = np.ones(10, 1)
z = x + y
print(z.shape)

x = np.ones(10, 20)
y = np.ones(10)
z = x + y
print(z.shape)

x = np.ones(1, 20)
y = np.ones(10, 1)
z = x + y
print(z.shape)

(10,20) ERROR

(10,20) (10,20)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Tensors

68

Scalar: Just one number

Vector: 1D list of numbers

Matrix: 2D grid of numbers

Tensor: N-dimensional grid of numbers
(Lots of other meanings in math, physics)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Broadcasting with Tensors

69

x = np.ones(30)
y = np.ones(20, 1)
z = np.ones(10, 1, 1) 
w = x + y + z
print(w.shape)

(10, 20, 30)

The same broadcasting rules apply to 
tensors with any number of dimensions!



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization

70

Writing code without explicit loops: 
use broadcasting, matrix multiply, 
and other (optimized) numpy
primitives instead



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

71

• Suppose I have two sets of (D-dimensional) vectors
{x1, …, xN} and {y1, …, yM} and I want to compute all 
pairwise distances 𝑑!,1 = ||𝑥! − 𝑦1||

• Identity: 𝒙 − 𝒚 2 = 𝒙 2 + 𝒚 2 − 2𝒙3𝒚
• Or: 𝒙 − 𝒚 = 𝒙 2 + 𝒚 2 − 2𝒙3𝒚 (/2



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

72

𝑿 =
− 𝒙( −

⋮
− 𝒙' −

𝒀 =
− 𝒚( −

⋮
− 𝒚+ −

𝑿𝒀𝑻 !1 = 𝒙𝒊𝑻𝒚𝒋

𝒀𝑻 =
| |
𝒚( ⋯ 𝒚+
| |

𝚺 𝑿𝟐, 𝟏 =
𝒙𝟏 𝟐

⋮
𝒙𝑵 𝟐

Compute a Nx1 vector 
of norms
(can also do Mx1)

Compute a NxM matrix 
of dot products



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

73

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

(/2

𝒙𝟏 𝟐

⋮
𝒙𝑵 𝟐

+ 𝒚( 𝟐 ⋯ 𝒚+ 𝟐

Σ 𝑿2, 1 + Σ 𝒀2, 1 3
!1 = 𝒙! 2 + 𝒚1

2

𝒙𝟏 2 + 𝒚𝟏 2 ⋯ 𝒙𝟏 2 + 𝒚𝑴 2

⋮ ⋱ ⋮
𝒙𝑵 2 + 𝒚𝟏 2 ⋯ 𝒙𝑵 2 + 𝒚𝑴 2

Why?



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

74

𝐃!1 = 𝒙𝒊 2 + 𝒚𝒋
2 + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

(/2

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

75

𝐃!1 = 𝒙𝒊 2 + 𝒚𝒋
2 + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

(/2

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(N, 1)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

76

𝐃!1 = 𝒙𝒊 2 + 𝒚𝒋
2 + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

(/2

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

77

𝐃!1 = 𝒙𝒊 2 + 𝒚𝒋
2 + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

(/2

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

78

𝐃!1 = 𝒙𝒊 2 + 𝒚𝒋
2 + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

(/2

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M) (N, M)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

79

𝐃!1 = 𝒙𝒊 2 + 𝒚𝒋
2 + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

(/2

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M) (N, M)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

80

𝐃!1 = 𝒙𝒊 2 + 𝒚𝒋
2 + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

(/2

Get in the habit of thinking about shapes as tuples.
Suppose X is (N, D), Y is (M, D):

(M, 1)(N, 1) (N, M) (N, M)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Vectorization Example

81

𝐃!1 = 𝒙𝒊 2 + 𝒚𝒋
2 + 2𝒙𝑻𝒚

Numpy code:
XNorm = np.sum(X**2,axis=1,keepdims=True) 
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5

𝐃 = Σ 𝑿𝟐, 1 + Σ 𝒀𝟐, 1
𝑻
− 2𝑿𝒀𝑻

(/2

*May have to make sure this is at least 0 (sometimes 
roundoff issues happen)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Does Vectorization Matter?

82

Computing pairwise distances between 300 and 400 
128-dimensional vectors
1. for x in X, for y in Y, using native python: 9s
2. for x in X, for y in Y, using numpy to compute 

distance: 0.8s
3. vectorized: 0.0045s (~2000x faster than 1, 175x 

faster than 2)
Expressing things in primitives that are optimized is 
usually faster
Even more important with special hardware like 
GPUs or TPUs!



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Linear Algebra

83



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Things you should know:
• A set of vectors are linearly independent if you 

can’t write one as a a linear combination of the 
others

• The rank of a matrix is the number of linearly 
independent columns (or rows)

• An 𝑁×𝑁 matrix with rank 𝑁 is nonsingular and 
behaves nicely: has an inverse, spans the full 
output space

• A symmetric matrix is its own transpose: 𝐴3 = 𝐴
• A rotation matrix has its transpose as its inverse: 
𝑅𝑅3 = 𝑅3𝑅 = 𝐼

84



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Linear Independence

85

𝒚 =
0
−2
1

=
1
2
𝒂 −

1
3
𝒃𝒙 =

0
0
4
=

• Is the set {a,b,c} linearly independent?
• Is the set {a,b,x} linearly independent?

• Max # of independent 3D vectors?

𝒂 =
0
0
2
𝒃 =

0
6
0
𝒄 =

5
0
0

Suppose:

A set of vectors is linearly independent if you can’t 
write one as a linear combination of the others.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Span

86

Span: all linear 
combinations of a set 
of vectors

Span({    }) =
Span({[0,2]}) = ?
All vertical lines 
through origin =
𝜆 0,1 : 𝜆 ∈ 𝑅
Is blue in {red}’s span? 



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Span

87

Span: all linear 
combinations of a set 
of vectors

Span({    ,      }) = ? 



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Span

88

Span: all linear 
combinations of a set 
of vectors

Span({    ,      }) = ? 



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrix-Vector Product

89

𝑨𝒙 =
| |
𝒄𝟏 ⋯ 𝒄𝒏
| |

𝒙
Right-multiplying A by x
mixes columns of A
according to entries of x

• The output space of f(x) = Ax is constrained to be 
the span of the columns of A.

• Can’t output things you can’t construct out of your 
columns



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

An Intuition

90

x
Ax

y1
y2
y3

x1 x2 x3

y

𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝒄𝟐 𝒄𝒏
| | |

𝑥#
𝑥!
𝑥)

x – knobs on machine (e.g., fuel, brakes)
y – state of the world (e.g., where you are)
A – machine (e.g., your car)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Linear Independence

91

𝒚 = 𝑨𝒙 =
| | |
𝒄𝟏 𝛼𝒄𝟏 𝒄𝟐
| | |

𝑥#
𝑥!
𝑥)

Suppose the columns of 3x3 matrix A are not linearly 
independent (c1, αc1, c2 for instance)

𝒚 = 𝑥#𝒄𝟏 + 𝛼𝑥!𝒄𝟏 + 𝑥)𝒄𝟐
𝒚 = 𝑥# + 𝛼𝑥! 𝒄𝟏 + 𝑥)𝒄𝟐



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Linear Independence Intuition

92

Knobs of x are redundant. Even if y has 3 outputs, 
you can only control it in two directions

𝒚 = 𝑥# + 𝛼𝑥! 𝒄𝟏 + 𝑥)𝒄𝟐

x
Ax

y1
y2
y3

x1 x2 x3

y



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Linear Independence

93

𝑨𝒙 = 𝑥( + 𝛼𝑥2 𝒄𝟏 + 𝑥9𝒄𝟐

• Or, given a vector y there’s not a unique vector x 
s.t. y =Ax

• Not all y have a corresponding x s.t. y=Ax
(assuming 𝒄𝟏 and 𝒄𝟏have dimension >= 3)

𝒚 = 𝑨
𝑥( + 𝛽
𝑥2 − 𝛽/𝛼

𝑥9
• Can write y an infinite number of ways by adding 

𝛽 to x1 and subtracting :
;

from x2

Recall:

= 𝑥( + 𝛽 + 𝛼𝑥2 − 𝛼
𝛽
𝛼
𝑐( + 𝑥9𝑐2



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Linear Independence

94

𝑨𝒙 = 𝑥( + 𝛼𝑥2 𝒄𝟏 + 𝑥9𝒄𝟐

• An infinite number of non-zero vectors x can map 
to a zero-vector y

• Called the right null-space of A.

𝒚 = 𝑨
𝛽

−𝛽/𝛼
0

= 𝛽 − 𝛼
𝛽
𝛼
𝒄𝟏 + 0𝒄𝟐

• What else can we cancel out?



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Rank

95

• Rank of a nxn matrix A – number of linearly 
independent columns (or rows) of A / the 
dimension of the span of the columns

• Matrices with full rank (n x n, rank n) behave nicely: 
can be inverted, span the full output space, are 
one-to-one. 

• Matrices with full rank are machines where every 
knob is useful and every output state can be made 
by the machine



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Matrix Inverses

96

• Given 𝒚 = 𝑨𝒙, y is a linear combination of columns 
of A proportional to x. If A is full-rank, we should be 
able to invert this mapping.

• Given some y (output) and A, what x (inputs) 
produced it?

• x = A-1y
• Note: if you don’t need to compute it, never ever 

compute it. Solving for x is much faster and stable 
than obtaining A-1.

Bad: y = np.linalg.inv(A).dot(y)
Good: y = np.linalg.solve(A, y)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Symmetric Matrices

97

• Symmetric: 𝑨𝑻 = 𝑨 or 
𝑨!1 = 𝑨1!

• Have lots of special 
properties

𝑎## 𝑎#! 𝑎#)
𝑎!# 𝑎!! 𝑎!)
𝑎)# 𝑎)! 𝑎))

Any matrix of the form 𝑨 = 𝑿𝑻𝑿 is symmetric.

Quick check: 𝑨𝑻 = 𝑿𝑻𝑿 𝑻

𝑨𝑻 = 𝑿𝑻 𝑿𝑻 𝑻

𝑨𝑻 = 𝑿𝑻𝑿



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Special Matrices: Rotations

98

𝑟(( 𝑟(2 𝑟(9
𝑟2( 𝑟22 𝑟29
𝑟9( 𝑟92 𝑟99

• Rotation matrices 𝑹 rotate vectors and do not 
change vector L2 norms ( 𝑹𝒙 2 = 𝒙 2)

• Every row/column is unit norm
• Every row is linearly independent
• Transpose is inverse 𝑹𝑹𝑻 = 𝑹𝑻𝑹 = 𝑰
• Determinant is 1 (otherwise it’s also a coordinate 

flip/reflection), eigenvalues are 1



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Eigensystems

99

• An eigenvector 𝒗𝒊 and eigenvalue 𝜆! of a matrix 𝑨
satisfy 𝑨𝒗𝒊 = 𝜆!𝒗𝒊 (𝑨𝒗𝒊 is scaled by 𝜆!)

• Vectors and values are always paired and typically 
you assume 𝒗𝒊 2 = 1

• Biggest eigenvalue of A gives bounds on how much 
𝑓 𝒙 = 𝑨𝒙 stretches a vector x. 

• Hints of what people really mean:
• “Largest eigenvector” = vector w/ largest value
• “Spectral” just means there’s eigenvectors somewhere



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 100

Suppose I have points in a grid



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 101

Now I apply f(x) = Ax to these points
Pointy-end: Ax . Non-Pointy-End: x



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 102

Red box – unit square, Blue box – after f(x) = Ax. 
What are the yellow lines and why?

𝑨 =
1.1 0
0 1.1



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 103

𝑨 =
0.8 0
0 1.25

Now I apply f(x) = Ax to these points
Pointy-end: Ax . Non-Pointy-End: x



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 104

Red box – unit square, Blue box – after f(x) = Ax. 
What are the yellow lines and why?

𝑨 =
0.8 0
0 1.25



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 105

Red box – unit square, Blue box – after f(x) = Ax. 
Can we draw any yellow lines?

𝑨 =
cos(𝑡) −sin(𝑡)
sin(𝑡) cos(𝑡)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Eigenvectors of Symmetric Matrices

106

• Always n mutually orthogonal eigenvectors with n 
(not necessarily) distinct eigenvalues

• For symmetric 𝑨, the eigenvector with the largest 
eigenvalue maximizes 𝒙

𝑻𝑨𝒙
𝒙𝑻𝒙

(smallest/min)

• So for unit vectors (where 𝒙𝑻𝒙 = 1), that 
eigenvector maximizes 𝒙𝑻𝑨𝒙

• A surprisingly large number of optimization 
problems rely on (max/min)imizing this



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Singular Value Decomposition

107

UA =

Rotation

Can always write a mxn matrix A as: 𝑨 = 𝑼𝚺𝑽𝑻

Eigenvectors 
of AAT

σ1

σ2

σ3

0
0

M x M

∑

Scale

Sqrt of 
Eigenvalues 

of ATA

M x N



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Singular Value Decomposition

108

UA =

Rotation

Can always write a mxn matrix A as: 𝑨 = 𝑼𝚺𝑽𝑻

Eigenvectors 
of AAT

∑

Scale

Sqrt of 
Eigenvalues 

of ATA

VT

Rotation

Eigenvectors 
of ATA

M x M M x N N x N



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Singular Value Decomposition

109

• Every matrix is a rotation, scaling, and rotation
• Number of non-zero singular values = rank / 

number of linearly independent vectors
• “Closest” matrix to A with a lower rank

UA =
σ1

σ2
σ3

0

0
VT



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Singular Value Decomposition

110

• Every matrix is a rotation, scaling, and rotation
• Number of non-zero singular values = rank / 

number of linearly independent vectors
• “Closest” matrix to A with a lower rank

UÂ =
σ1

σ2

0

0
VT

0



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Singular Value Decomposition

111

• Every matrix is a rotation, scaling, and rotation
• Number of non-zero singular values = rank / 

number of linearly independent vectors
• “Closest” matrix to A with a lower rank
• Secretly behind basically many things you do with 

matrices



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Least Squares

112

Given: 𝒚 ∈ ℝ𝑴, 𝑨 ∈ ℝ𝑴×𝑵
Find: 𝒗 ∈ ℝ𝑵 such that 𝑨𝒗 is closest to 𝒚
(M > N, more equations than unknowns) 

arg min𝒗 𝒚 − 𝑨𝒗 !

Solution satisfies 𝑨𝑻𝑨 𝒗∗ = 𝑨𝑻𝒚
or

𝒗∗ = 𝑨𝑻𝑨 -#𝑨𝑻𝒚
(Don’t actually compute the inverse!)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Solving Least-Squares

113

Start with two points (xi,yi)

𝑦(
𝑦2 = 𝑥( 1

𝑥2 1
𝑚
𝑏

𝒚 = 𝑨𝒗

𝑦(
𝑦2 = 𝑚𝑥( + 𝑏

𝑚𝑥2 + 𝑏

We know how to solve this –
invert A and find v (i.e., (m,b) that 

fits points) 

(x1,y1)

(x2,y2)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Solving Least-Squares

114

Start with two points (xi,yi)

𝑦(
𝑦2 = 𝑥( 1

𝑥2 1
𝑚
𝑏

𝒚 = 𝑨𝒗

𝑦(
𝑦2 − 𝑚𝑥( + 𝑏

𝑚𝑥2 + 𝑏

2

𝒚 − 𝑨𝒗 2 =

= 𝑦( − 𝑚𝑥( + 𝑏
2
+ 𝑦2 − 𝑚𝑥2 + 𝑏

2

(x1,y1)

(x2,y2)

The sum of squared differences between 
the actual value of y and 
what the model says y should be.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Solving Least-Squares

115

Suppose there are n > 2 points

𝑦(
⋮
𝑦'

=
𝑥( 1
⋮ ⋮
𝑥' 1

𝑚
𝑏

𝒚 = 𝑨𝒗

Compute 𝑦 − 𝐴𝑥 2 again  

𝒚 − 𝑨𝒗 2 =x
!%(

>

𝑦! − (𝑚𝑥! + 𝑏) 2



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Solving Least-Squares

116

Given y, A, and v with y = Av overdetermined 
(A tall / more equations than unknowns) 
We want to minimize 𝒚 − 𝑨𝒗 𝟐, or find:

arg min𝒗 𝒚 − 𝑨𝒗 !

(The value of x that makes 
the expression smallest)

Solution satisfies 𝑨𝑻𝑨 𝒗∗ = 𝑨𝑻𝒚
or

𝒗∗ = 𝑨𝑻𝑨
-#
𝑨𝑻𝒚

(Don’t actually compute the inverse!)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

When is Least-Squares Possible?

117

Given y, A, and v. Want y = Av

Ay = v
Want n outputs, have n knobs to 
fiddle with, every knob is useful if 
A is full rank.

Ay

=
v

A: rows (outputs) > columns 
(knobs). Thus can’t get precise 
output you want (not enough 
knobs). So settle for “closest” 
knob setting.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

When is Least-Squares Possible?

118

Given y, A, and v. Want y = Av

Ay = v
Want n outputs, have n knobs to 
fiddle with, every knob is useful if 
A is full rank.

Ay =
v

A: columns (knobs) > rows 
(outputs). Thus, any output can be 
expressed in infinite ways.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Homogeneous Least-Squares

119

Given a set of unit vectors (aka directions) 𝒙𝟏, … , 𝒙𝒏 and I 
want vector 𝒗 that is as orthogonal to all the 𝒙𝒊 as 
possible (for some definition of orthogonal)

𝑨𝒗 =
− 𝒙𝟏𝑻 −

⋮
− 𝒙𝒏𝑻 −

𝒗

Stack 𝒙𝒊 into A, compute Av

=
𝒙𝟏𝑻𝒗
⋮

𝒙𝒏𝑻𝒗

𝒙𝟏
𝒙𝟐

𝒙𝒏…

𝒗
𝑨𝒗 𝟐 =x

𝒊

𝒏

𝒙𝒊𝑻𝒗
𝟐Compute

0 if 
orthog

Sum of how orthog. v is to each x



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Homogenous Least-Squares

120

• A lot of times, given a matrix A we want to find the 
v that minimizes 𝑨𝒗 2 .

• I.e., want 𝐯∗ = argmin
𝒗

𝑨𝒗 2
2

• What’s a trivial solution? 
• Set v = 0 → Av = 0
• Exclude this by forcing v to have unit norm



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Homogenous Least-Squares

121

Let’s look at 𝑨𝒗 2
2

𝑨𝒗 !
! = Rewrite as dot product

𝑨𝒗 !
! = 𝒗𝑻𝑨𝑻𝐀𝐯 = 𝐯𝐓 𝐀𝐓𝐀 𝐯

𝑨𝒗 !
! = 𝐀𝐯 /(𝐀𝐯) Distribute transpose

We want the vector minimizing this quadratic form
Where have we seen this?



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Homogenous Least-Squares

122

arg min
𝒗 $0#

𝑨𝒗 !

*Note: 𝑨𝑻𝑨 is positive semi-definite so it has all non-negative eigenvalues

(1) “Smallest”* eigenvector of 𝑨𝑻𝑨
(2) “Smallest” right singular vector of 𝑨

Ubiquitous tool in vision:

For min → max, switch smallest → largest



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Derivatives

123



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Things to know
• Given a scalar-valued function 𝑓:ℝ → ℝ, the 

derivative 𝑓B 𝑥 ∈ ℝ of 𝑓 at the point 𝑥 ∈ ℝ is the 
rate at which the function changes at that point

• Given a vector-valued function 𝑓:ℝ' → ℝ, the 
gradient ∇𝑓 𝑥 ∈ ℝ' at the point 𝑥 ∈ ℝ' is the 
vector of all partial derivatives CD

CE"
(𝑥)

• The gradient points in the direction of greatest
increase; it’s magnitude is the slope in that 
direction

• If 𝑥 is a local minimum of 𝑓, then ∇𝑓 𝑥 = 𝟎
(but the converse is not true!)

124



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Derivatives

125

Remember derivatives? 

Derivative: rate at which a function f(x) changes at a 
point as well as the direction that increases the 
function



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 126

Given quadratic function f(x)

𝑓 𝑥 is function

𝑔 𝑥 = 𝑓1 𝑥

aka

𝑔 𝑥 =
𝑑
𝑑𝑥
𝑓(𝑥)

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 127

Given quadratic function f(x)

What’s special about 
x=2?

𝑓 𝑥 minim. at 2
𝑔 𝑥 = 0 at 2

a = minimum of f →
𝑔 𝑎 = 0

Reverse is not true

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 128

Rates of change

Suppose I want to 
increase f(x) by 

changing x:

Blue area: move left
Red area: move right

Derivative tells you 
direction of ascent and 

rate

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Calculus to Know

129

• Really need intuition
• Need chain rule
• Rest you should look up / use a computer algebra 

system / use a cookbook 
• Partial derivatives (and that’s it from multivariable 

calculus)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Partial Derivatives

130

• Pretend other variables are constant, take a 
derivative. That’s it.

• Make our function a function of two variables

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝑓 𝑥 = 𝑥 − 2 2 + 5
𝜕
𝜕𝑥
𝑓 𝑥 = 2 𝑥 − 2 ∗ 1 = 2(𝑥 − 2)

𝜕
𝜕𝑥
𝑓2 𝑥 = 2(𝑥 − 2)

Pretend it’s 
constant → 
derivative = 0



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 131

Zooming Out
𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Dark = f(x,y) low
Bright = f(x,y) high



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 132

Taking a slice of
𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Slice of y=0 is the 
function from before:
𝑓 𝑥 = 𝑥 − 2 2 + 5
𝑓B 𝑥 = 2(𝑥 − 2)



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 133

Taking a slice of
𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

C
CE
𝑓2 𝑥, 𝑦 is rate of 

change & direction in x 
dimension



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 - 134

Zooming Out
𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Gradient/Jacobian:
Making a vector of 

∇D=
𝜕𝑓
𝜕𝑥

,
𝜕𝑓
𝜕𝑦

gives rate and direction 
of change.

Arrows point OUT of 
minimum / basin.



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

What Should I Know?

135

• Gradients are simply partial derivatives per-
dimension: if 𝒙 in 𝑓(𝒙) has n dimensions, ∇D(𝑥)
has n dimensions

• Gradients point in direction of ascent and tell the 
rate of ascent

• If a is minimum of 𝑓(𝒙)→ ∇F a = 𝟎
• Reverse is not true, especially in high-dimensional 

spaces



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Recap

136

Lots of things today:
- Floating point numbers
- Vectors
- Matrices
- Broadcasting / Vectorization
- Linear Algebra
- Derivatives



Justin Johnson & David Fouhey January 28, 2021EECS 442 WI 2021: Lecture 4 -

Next Time:
Image Filtering

137


