Lecture 4: Light + Color

Administrative

HW0 is out, due 1/27

Office Hours and **Discussion Sections** start this week See <u>Google Calendar</u> for schedule and info

Debugging

Learning to debug is an important goal for this class!

Don't: Debug via Piazza

Do:

- Google to find documentation for numpy / other libraries
- Figure out how numpy / other APIs work by poking around in an interactive shell, small standalone script, or notebook
- Try to isolate and reproduce errors in small standalone cases (unit testing!)

Recap: Projection

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 4

Recap: Lenses

Pinhole Model

Mathematically correct Not quite correct in practice Reasonable approximation

Reality: Lenses

Necessary in practice Introduce complications Complications fixable

- A little bit about light and how you represent it
- A little bit about lighting and how it works

Your Very Own Camera

Where's the film/CCD?

January 26, 2021

Slide Credit: NIH

Your Very Own Camera

Where's the film/CCD?

Slide Credit: NIH

Demo Time

https://bit.ly/2lNJ3xc

What is the Retina made of?

Slide Credit: J. Hays

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 10

Two Types of Photo Receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

Slide Credit: J. Hays

Rod / Cone Sensitivity

Slide Credit: J. Hays

Rod / Cone Distribution

Diagram Credit: B. A. Wandell, Foundations of Vision

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 13

Electromagnetic Spectrum

Why do we see light in these wavelengths?

January 26, 2021

Slide Credit: J. Hays

The Physics of Light

Slide Credit and Copyright: S. Palmer

The Physics of Light

Slide Credit and Copyright: S. Palmer

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 16

The Physics of Light

Slide Credit and Copyright: S. Palmer

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 17

<u>Color wheel image</u> is free for commercial use under the <u>Pixabay license</u>

The Physics of Light

Smooth transition from violet to red is an artifact of our visual system!

Slide Credit and Copyright: S. Palmer

Justin Johnson & David Fouhey

EECS 442 WI 2021: Lecture 3 - 18

Red-Green Color Blindness

"Peaks" of these red/green cones shifted, making it hard to distinguish red and green (%) 100 Μ RELATIVE ABSORBANCE S 50 400 450 500 550 600 650 WAVELENGTH (nm.)

Four possibilities:

- Deuteranomaly: Green cone shifted toward red
- Protanomaly: Red cone shifted toward green
- Deuteranopia: Green cone missing
- Protanopia: Red cone missing

Red-Green Color Blindness

"Peaks" of these red/green cones shifted, making it hard to distinguish red and green % 100 M RELATIVE ABSORBANCE S 50 400 500 550 600 650 450 WAVELENGTH (nm.)

Four possibilities:

- Deuteranomaly: Green cone shifted toward red
- Protanomaly: Red cone shifted toward green
- Deuteranopia: Green cone missing
- Protanopia: Red cone missing
- Genes for red and green cones on X chromosome
- Men (XY): ~8% red-green color blind, (Northern European descent)
- Women (XX): ~0.5% red-green color blindness (Northern European descent)

Red-Green Color Blindndess

"Peaks" of these red/green cones shifted, making it hard to distinguish red and green % 100 M RELATIVE ABSORBANCE S 50 400 500 550 600 650 450 WAVELENGTH (nm.)

Four possibilities:

- Deuteranomaly: Green cone shifted toward red
- Protanomaly: Red cone shifted toward green
- Deuteranopia: Green cone missing
- Protanopia: Red cone missing
- Genes for red and green cones on X chromosome
- Men (XY): ~8% red-green color blind, (Northern European descent)
- Women (XX): ~0.5% red-green color blindness (Northern European descent)
- Up to 15% of women may have four types of cones! (Tetrachromacy)

Jordan and Mollon, "A study of women heterozygous for colour deficiencies", Vision Research 1993

Color Vision in Animals

Birds have four types of cones: can see ultraviolet light

Some flowers have "Nectar Guides" visible under UV light

Visible Light UV light

Human cones also sensitive to UV light! But blocked by lens

Image source: Wikipedia

Justin Johnson & David Fouhey

Image Source: Wikipedia

January 26, 2021

EECS 442 WI 2021: Lecture 3 - 22

Color Vision in Animals

Mantis Shrimp: Up to 16 types of photoreceptors! Can also detect polarization of light!

Image source: Wikipedia

Artificial Cones

Slide Credit: S. Seitz

Color Images

Slide Credit: J. Hays

Color Images

Combined

Slide Credit: J. Hays

Images in Python

097	097	097	097	097	097	097	097	096	097	097	096	096	096		K				
100	100	100	100	100	100	101	101	102	101	100	100	100	099						
105	105	105	105	105	105	105	103	102	102	101	103	104	105	96	096	096		G	
109	109	109	109	109	110	107	118	145	132	120	112	106	103	0	100	099			
113	113	113	112	112	113	110	129	160	160	164	162	157	151)3	104	105	96	096	096
118	117	118	123	119	118	112	125	142	134	135	139	139	175	2	106	103	0	100	099
123	121	125	162	166	157	149	153	160	151	150	146	137	168	52	157	151)3	104	105
127	127	125	168	147	117	139	135	126	147	147	149	156	160	9	139	175	2	106	103
133	130	150	179	145	132	160	134	150	150	111	145	126	121	6	137	168	52	157	151
138	134	179	185	141	090	166	117	120	153	111	153	114	126	9	156	160	9	139	175
144	151	188	178	159	154	172	147	159	170	147	185	105	122	15	126	121	-6	137	168
152	157	184	183	142	127	141	133	137	141	131	147	144	147	3	114	126	9	156	160
130	147	185	180	139	131	154	121	140	147	107	147	120	128	5	105	122	-5	126	121
035	102	194	175	149	140	179	128	146	168	096	163	101	125	17	144	147	3	114	126
		1	30 1	47	85 1	80 1	39 1	31 1	54 1	21 1	40 1	47 1	07 1	47	120	128	5	105	122
		0	35 1	02 1	94 1	75 1	49 1	40 1	79 1	28 1	46 1	68 0	96 1	63	101	125	.7	144	147
		٢			130) 147	7 185	5 180) 139	9 131	154	121	1 140	1	47 1	07 1	47	120	128
					035	5 102	2 194	4 175	5 149	9 140	179	128	3 146	1	68 0	96 1	63	101	125

January 26, 2021

Images in Python

Images are matrix / tensor im

im[0,0,0] top, left, red

im[y,x,c]
row y, column x, channel c

im[H-1,W-1,2]
bottom right blue

097	097	097	097	097	097	097	097	096	097	097	096	096	096		R				
100	100	100	100	100	100	101	101	102	101	100	100	100	099				_		
105	105	105	105	105	105	105	103	102	102	101	103	104	105	96	096	096			
109	109	109	109	109	110	107	118	145	132	120	112	106	103	0	100	099	L		
113	113	113	112	112	113	110	129	160	160	164	162	157	151)3	104	105	96	096	096
118	117	118	123	119	118	112	125	142	134	135	139	139	175	2	106	103	0	100	099
123	121	125	162	166	157	149	153	160	151	150	146	137	168	52	157	151)3	104	105
127	127	125	168	147	117	139	135	126	147	147	149	156	160	9	139	175	2	106	103
133	130	150	179	145	132	160	134	150	150	111	145	126	121	6	137	168	2	157	151
138	134	179	185	141	090	166	117	120	153	111	153	114	126	.9	156	160	9	139	175
144	151	188	178	159	154	172	147	159	170	147	185	105	122	5	126	121	-6	137	168
152	157	184	183	142	127	141	133	137	141	131	147	144	147	3	114	126	.9	156	160
130	147	185	180	139	131	154	121	140	147	107	147	120	128	5	105	122	-5	126	121
035	102	194	175	149	140	179	128	146	168	096	163	101	125	.7	144	147	3	114	126
		1	30 1	47 1	85 1	80 1	39 1	31 1	54 1	21 1	40 1	47 1	07 1-	47	120	128	5	105	122
		0	35 1	02 1	94 1	75 1	49 1	40 1	79 1	28 1	46 1	680	96 1	63	101	125	-7	144	147
		٢	1 [1	130) 147	/ 185	5 180) 139	9 13]	l 154	4 121	l 140	1	47 1	07 1	47	120	128
035 102 194 175 149 140 179 128 146 168 096 163 101 125											125								

Slide inspired by James Hays

Justin Johnson & David Fouhey

5 Things to Remember

- 1. Origin is top left
- 2. Rows are first index (what's the fastest direction for accessing?)
- Usually referred to as HWC (Height x Width x Channel) But you'll sometimes see CHW (especially with neural networks)
- 4. Typically stored as uint8 [0,255]
- 5. for y in range(H): for x in range(W): will run <u>1 million</u> <u>times</u> for a 1000x1000 image. A 4GHz processor can do only 4K clock cycles per pixel per second.

Representing Colors

Discussion time: how many numbers do you actually need for colored light? Assume all tuples (R,G,B) are legitimate colors (they are).

Image Credit: http://en.wikipedia.org/wiki/File:RGB_illumination.jpg

One Option: RGB

Pros

- 1. Simple
- 2. Common

<u>Cons</u> 1. Distances don't make sense 2. Correlated

G

B

eren de la constante de la constan

Slide Credit: J. Hays, RGB cube: https://en.wikipedia.org/wiki/RGB_color_model

Another Option: HSV

<u>Pros</u> 1. Intuitive for picking colors 2. Sort of common

3. Fast to convert

<u>Cons</u> 1. Not as good as other better spaces

Slide Credit: J. Hays, HSV cylinder: https://en.wikipedia.org/wiki/HSL_and_HSV

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 32

Another Option: YUV / YCbCr

<u>Pros</u> 1. Great for transmission / compression

Y = 0

<u>Cons</u> 1. Not as good as other better smart color spaces

Y = 0.5

● (Cb=0.5, Cr=0.5)

Cb (Y=0.5, Cr=0.5)

Cr (Y=0.5,

Cb=05)

Slide Credit: J. Hays, YUV cube: https://en.wikipedia.org/wiki/YUV

Another Option: LAB

<u>Pros</u> 1. Distances correspond with human judgment 2. Safe <u>Cons</u> 1. Complex to calculate (don't write it yourself, lots of fp calculations)

(a=0,b=0)

a (L=65,b=0)

b (L=65,a=0)

Slide Credit: J. Hays, Lab diagram cube: https://en.wikipedia.org/wiki/CIELAB_color_space

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 34

Why are there so many?

- Each serves different functions
 - RGB: sort of intuitive, standard, everywhere
 - HSV: good for picking, fast to compute
 - YCbCr/YUV: fast to compute, compresses well
 - Lab: the right(?) thing to do, but "slow" to compute
- Pick based on what you need and don't sweat it: color really isn't crucial

Other Types of "Images"

- Almost all of this class is about ordinary RGB images because this has driven a lot of applications
- However, there are lots of other images

Depth Map

Surface Normals

Legend

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 38

Science Data

Magnetic Field in: x, y, z

Light at 9 ~wavelenths: 9.4nm, 13.1nm, 17.1nm 19.3nm, 21.1nm, 30.4nm 33.5nm, 160nm, 170nm

NASA Solar Dynamics Observatory observing solar flare

Volumes

Volumes: images with more dimensions.

Emerge in 3D reconstruction, medical imaging, temporal data

From: Girdhar et al., *Learning a predictable and generative vector representation for objects*. ECCV 2016

Other Types of "Images"

- Almost all of this class is about ordinary RGB images because this has driven a lot of applications
- However, there are lots of other images

So Far:

How do we represent light and its storage on film?

January 26, 2021

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 44

What happens when light hits a surface? 1. Absorbed It's absorbed and converted into some other form of energy (e.g., a black shirt getting hot in the sun)

What happens when light hits a surface?

2. Transmitted

Possibly bouncing around before going through or out (e.g. lenses bend and go through, milk bounces around)

What happens when light hits a surface?

3. Reflected

It's reflected back, in one or more directions with varying amounts (e.g., mirror, or a white surface)

What happens when light hits a surface?

4. Everything All of the above! Real surfaces often have combinations of all of these options.

Modeling Light and Surfaces

Opaque Reflections

Bi-directional reflectance distribution function (BRDF): % reflected given <u>i</u>ncident angle to light reflected angle to the viewer.

Note: have not specified form of function.

Specular and Diffuse Reflectionv

Same lighting, as close as possible camera settings, but different **location**

Specular and Diffuse Reflection

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 51

Diffuse Reflection

Lambertian Surface

Light depends **only** on orientation of surface ϕ_i, θ_i to light. Result of random small facets. Looks identical at all views.

Diffuse Reflection

Lambert's Law N: surface normal S: source direction **and** strength ρ: how much is reflected

$$B = \rho N \cdot S$$
$$B = \rho \|S\| \cos(\theta)$$

Specular Reflection

Specular Surface

Light reflected like a mirror, but spreads out in a "lobe" around the reflection ray

Specular Reflection

<u>Phong Model</u> V: vector to viewer R: reflection ray α: shininess constant

 $B = (V^T R)^{\alpha}$

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 55

BRDFs can be very complex

Slide Credit: L. Lazebnik

Justin Johnson & David Fouhey

EECS 442 WI 2021: Lecture 3 - 56

Shape from Shading

- System of equations that's underdetermined (N equations, 2N unknowns, N+3 known)
 - **Solution**: Add more equations that enforce smoothness or finding a single surface.

Realistic Shape from Shading

- System of equations that's underdetermined (N equations, 2N+3 unknowns)
 - **Solution**: need prior beliefs to disambiguate.

Ambiguity

Ambiguity

Humans assume light from above (and the blueness also tells you distance)

Photo Credit: https://en.wikipedia.org/wiki/Meteor_Crater

Shape from Shading in Practice

https://www.youtube.com/watch?v=4GiLAOtjHNo

Modeling Light and Surfaces

Color that reaches eye depends on color of light and color of material

Color Ambiguity: "The Dress"

Blue / Black dress under yellow light?

White / Gold dress under blue light?

https://en.wikipedia.org/wiki/The_dress

Recap

Light and Surfaces

Color Vision

Color Spaces

Justin Johnson & David Fouhey EECS 442 WI 2021: Lecture 3 - 65

Next Lecture: Math Review

