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Slide Credit: These slides are largely a re-make of S. Lazebnik’s diagrams following her general outline.



Multi-view geometry

Image Credit: S. Lazebnik



Multi-view geometry problems

Recovering structure:
Given cameras and
correspondences,
find 3D.
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Multi-view geometry problems

Camera 1

R19t1

Camera 2

R29t2

Stereo/Epipolar
Geomery:

Given 2 cameras and
find where a point

could be
O
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R3’t3 Slide credit:

Noah Snavely



Multi-view geometry problems

Motion:
Figure out R, t for a
.‘O set of cameras given
correspondences
© O
\ .

o Wy
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Two-view geometry
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Image Credit: Hartley & Zisserman



Camera Geometry Reminder

K-'p (Ray)
3 h. coordinates

X (3D point)
4 h. coordinates

p (2D point)
3 h. coordinates
Actual location

0 p (2D point)

3 h. coordinates
Pretending image
plane is in front

Have camera with pinhole
at origin 0




Epipolar Geometry
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Suppose we have two cameras at origins o, O’
Baseline is the line connecting the origins



Epipolar Geometry
X

O

Now add a point X, which projects to p and p’



Epipolar Geometry
X

O O

The plane formed by X, 0, and o’ is called the
epipolar plane
There is a family of planes per o, 0




Epipolar Geometry
X

0 a o'
Epipoles e, €’ are where the baseline intersects

the image planes
Projection of other camera in the image plane



The Epipole

Photo by Frank Dellaert



Epipolar Geometry
X

P
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Epipolar lines go between the epipoles and the
projections of the points.

Intersection of epipolar plane with image plane




Example: Converging Cameras
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Epipoles finite, maybe in image; epipolar lines converge



Example: Converging Cameras
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Epipolar lines come in pairs: given a point p, we can
construct the epipolar line for p'.



Example 1: Converging Cameras

Image Credit: Hartley & Zisserman



Example: Parallel to Image Plane

Suppose the cameras are both facing outwards.
Where are the epipoles (proj. of other camera)?



Example: Parallel to Image Plane

Epipoles infinitely far away, epipolar lines parallel



Example: Parallel to Image Plane

Image Credit: Hartley & Zisserman



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Image Credit: Hartley & Zisserman



Example: Forward Motion

Epipole is focus

of expansion / P
principal point of O @
the camera.
@
@
Y ‘

Epipolar lines go
out from
principal point




Motion perpendicular to image plane

http://vimeo.com/48425421



http://vimeo.com/48425421
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Epipolar Geometry
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« Suppose we don’t know X and just have p

« Can construct the epipolar line in the other image

/




Epipolar Geometry
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« Suppose we don’'t know X and just have p
« Corresponding p’ is on corresponding epipolar line




Epipolar Geometry
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« Suppose we don’t know X and just have p’
« Corresponding p is on corresponding epipolar line




Epipolar Geometry

* |[f | want to do stereo, | want to find a
corresponding pixel for each pixel in the image:

* Nalve search:
* For each pixel, search every other pixel
* With epipolar geometry:
 For each pixel, search along each line (1D search)



Epipolar constraint example

Slide Credit: S. Lazebnik



Epipolar Constraint: One Note

* This year, I've updated my slides to match the
more common convention. If you read earlier
slides from me, they may not match

* I'm pretty sure | got them all right but |
apologize for any p vs p’ typos!



Epipolar Constraint: Calibrated Case

If we know intrinsic and extrinsic parameters, set
coordinate system to first camera

Projection matrices: M; = K|I,0] and M, = K'[R, t]
What are:

MX M,X K1lp K ™'p

!



Epipolar Constraint: Calibrated Case

g —1.7
p:K_lp p =K p

» Given calibration,p = K" 'pand p’ = K'"'p’ are
“normalized coordinates”
* Note that p’ is actually translated and rotated to o’



Epipolar Constraint: Calibrated Case

The following are all co-planar: Rp, t, ﬁ’ (can ignore
translation for co-planarity here)
One way to check co-planarity (triple product):

p'T(t x Rp) = 0



Epipolar Constraint: Calibrated Case

pT(txRp)=0=p p"[t; 0 —t;|RPpP=0
_tz tl O ]

Want something like xTAy=0. What’s A?




Epipolar Constraint: Calibrated Case

Essential matrix (Longuet-Higgins, 1981): E = |t |R

If you have a normalized point p , its correspondence p’
must satisfy p'"Ep = 0



Essential Essential Matrix Facts

ﬁ’TE gives equation of the epipolar line (in
ax+by+c=0 form) in image for o.

What's ETp’ ?



Essential Essential Matrix Facts

Ee = 0 and ETé’' = 0 (epipoles are the nullspace of
E — note all epipolar lines pass through epipoles)
Degrees of freedom (Recall E = |[t,|R)?

5 -3 (R)+ 3 (t) — 1 due to scale ambiguity

E is singular (rank 2); it has two non-zero and
Identical singular values



Essential Essential Matrix Facts

* One nice thing: if | estimate E from two images
(more on this later), it's unique up to easy
symmetries



What if we don’'t know K?

0 iy 0
Have: ’ﬁ K1p, o =K1, pTEp =0

(K'~1p') E(K~1p) = 0 = pTK'TEK 1p = 0
Set: F=KTEK™! Then: pTFp =0

—

Fundamental Matrix (Faugeras and Luong, 1992)



Fundamental Matrix Fundamentals

O e e O

Fp, F'p' are epipolar lines for p’, p
Fe=0,Fle' =0

- is singular (rank 2)

- has seven degrees of freedom

- definitely not unique




Estimating the fundamental matrix

Slide Credit: S. Lazebnik



Estimating the fundamental matrix

* F has 7 degrees of freedom so it’s in principle
possible to fit F with seven correspondences,
but it's a slightly more complex and typically
not taught in regular vision classes



Estimating the fundamental matrix

Given correspondences p = [u,v,1] and p’' =
[u',v',1] (e.g., via SIFT) we know: p'TFp = 0

_f11 fi2 f13_ (U
(W, v, 1] f21 faz fas||v|=0
f31 f3s2 f33 1

[u'u, u'v,u',v'u,v'v,v',u,v,1] -

[fll' f12' f13' f21' f22' f23’ f31’ f32’ f33]

How do we solve for ?
How many correspondences do we need?
Leads to the eight point algorithm

=0



Eight Point Algorithm

Each point gives an equation:

[u'u,u'v,u,v'u,v'v,v',u,v, 1] -

=0

[fll» f121 f131f21»f22' f23' f31r f32' f33]
Stack equations to yield U:

U =

Usua

arg min ||Uf||5
Ifll=1

!

eigenva

/
uiui uivi

/ / /
Ul- U; Ui V; Ul- Uu; Vi

ue stuff to find f (F unrolled):

|2

Eigenvector of UTU with
smallest eigenvalue

1




Eight Point Algorithm — Difficulty 1

If we estimate F, we get some 3x3 matrix F.
We know F needs to be singular/rank 2. How do we

force F to be singular?

Usv?! =F;... | |
l Open it up with
g, 0 O] o 0 01 SVD, mess
= g, 0= ¥ = lo 0, 0] with singular

0

0 ‘W 0 0 0l values, putit
back together.

F=Uuxv?

See Eckart—Young—Mirsky theorem if you're interested



Eight Point Algorithm — Difficulty 1

Estimated F Estimated+SVD'd F
(Wrong) (Correct)
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Slide Credit: S. Lazebnik



Eight Point Algorithm — Difficulty 2
Muv@vuvvvuvl] — 0

fll! f12i f13) f21' f22' f23r f31r f32r f33]

Recall: u,u’ are in pixels. Suppose image is TKx1K
How big might uu’ be? How big might u’ be?
Each row looks like:

U=110° 10° 10° 10° 10° 10° 10° 10° 1

Then: UTULI 1S ~1O12, UTUZ’g is ~103




Eight Point Algorithm — Difficulty 2

Numbers of varying magnitude — instability

Remember: a floating point number (float/double) isn’t
a “real” number: for sign, coefficient, exponent integers
(-1)si9n * coefficient * 2exponent

Exercise to see how this screws up: add up Gaussian
noise (mean=100, std=10), divide by number you
added up



Remember Numerical Instability?
Code:

110 —— Floatb4
Float32
x += N(100,10) 100
1 += 1 90
mean = x/1T

80

Mean

Only change isthe 70
# of bits in
accumulator x

60

50

Note: 50M is 50 40
i 0] 10 20 30 40 50
TKx1K IMmages # numbers (millions)



Solution: Normalized 8-point

» Center the image data at the origin, and scale it so the
mean squared distance between the origin and the
data points is 2 pixels

» Use the eight-point algorithm to compute F from the
normalized points

« Enforce the rank-2 constraint (for example, take SVD
of F and throw out the smallest singular value)

« Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the
two images, than the fundamental matrix in original
coordinatesis T"F T

Slide Credit: R. Hartley
S. Lazebnik In defense of the eight-point algorithm TPAMI 1997



Last Trick

Minimizing via UTU minimizes sum of squared
algebraic distances between points p;and epipolar
lines Fp’; (or points p’; and epipolar lines F'p)):

Z_(P’iTFPi)Z
l

May want to minimize geometric distance:

d(p;, Fp;,)* +
E N2
d(Pi: FTPi)

)

Slide Credit: S. Lazebnik




Comparison

ey

8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel

Slide Credit: S. Lazebnik




The Fundamental Matrix Son

http://danielwedge.com/fmatrix/


http://danielwedge.com/fmatrix/

From Epipolar Geometry to Calibration

« Estimating the fundamental matrix is known as
“weak calibration”

 If we know the calibration matrices of the two
cameras, we can estimate the essential matrix:
E=K'FK

* The essential matrix gives us the relative
rotation and translation between the cameras,
or their extrinsic parameters

* Alternatively, if the calibration matrices are
known, the five-point algorithm can be used to
estimate relative camera pose

Slide Credit: S. Lazebnik


https://pdfs.semanticscholar.org/c288/7c83751d2c36c63139e68d46516ba3038909.pdf

