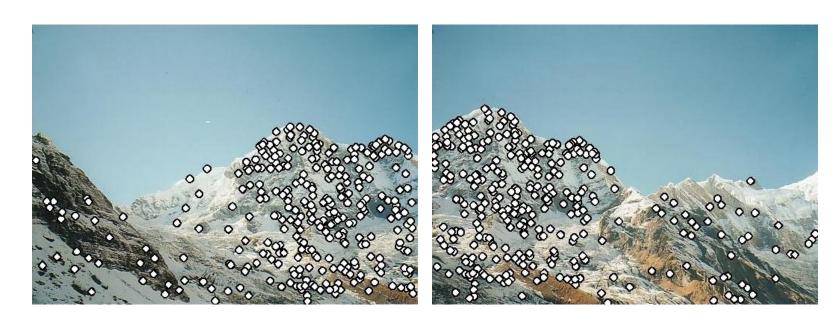
Descriptors

EECS 442 – David Fouhey and Justin Johnson Winter 2021, University of Michigan

https://web.eecs.umich.edu/~justincj/teaching/eecs442/WI2021/

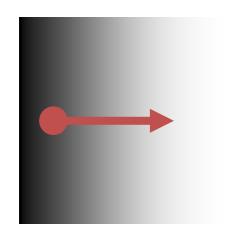
Recap: Motivation



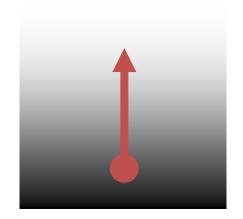
1: find corners+features

Last Time – Gradients

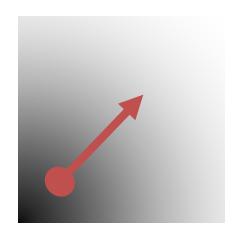
Image gradients – treat image like function of x,y – gives edges, corners, etc.



$$\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right]$$



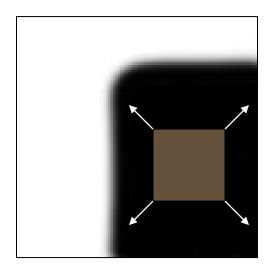
$$\nabla f = \left| 0, \frac{\partial f}{\partial y} \right|$$



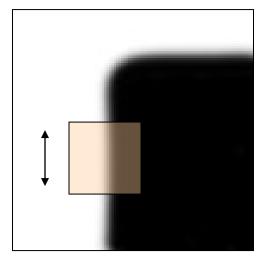
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Last Time – Corner Detection

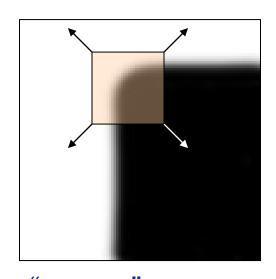
Can localize the location, or any shift → big intensity change.



"flat" region: no change in all directions



"edge":
no change
along the edge
direction

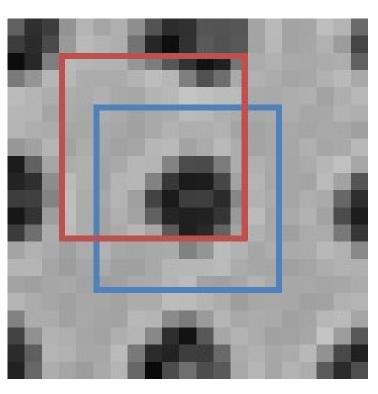


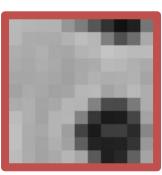
"corner":
significant
change in all
directions

Last Time – Corner Detection

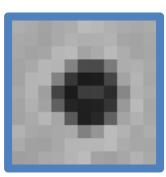
Zoom-In at x,y

Window with and w/o Offset





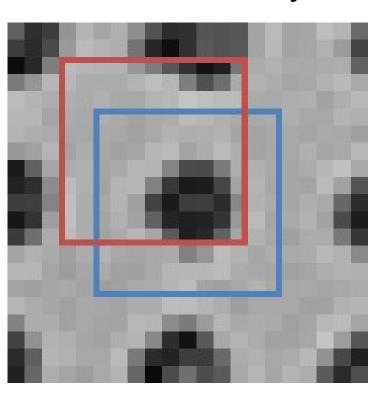
"Window"
At x+u, y+v
Here: u=-2,v=-3



"Window"
At x, y

Last Time – Corner Detection

Zoom-In at x,y

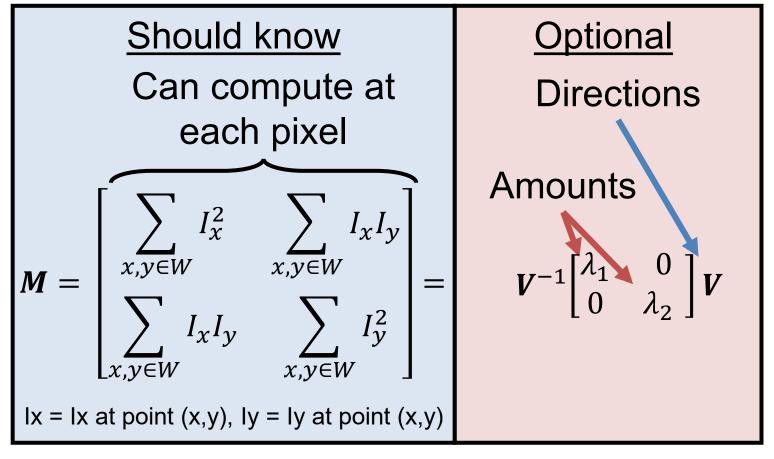


Error (Sum Sqs) for u,v offset

$$E(u,v) = \sum_{(x,y)\in W} (I[x+u,y+v] - I[x,y])^{2}$$

Last Time —Corner Detection

TL;DR: Taylor expansion for error E(u,v). All terms in equation are sums of image gradients and in **M**



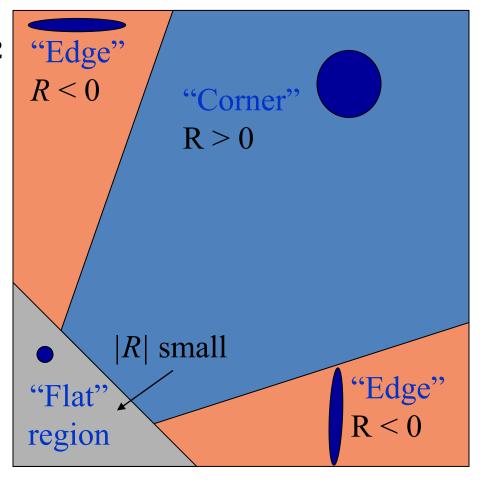
Putting It Together

$$R = \det(\mathbf{M}) - \alpha \operatorname{trace}(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

α: constant (0.04 to 0.06)

Calculating eigenvalues is usually slow!

Determinant, trace have closed form solution



In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w

$$\mathbf{M} = \begin{bmatrix} \sum_{x,y \in W} w(x,y)I_x^2 & \sum_{x,y \in W} w(x,y)I_xI_y \\ \sum_{x,y \in W} w(x,y)I_xI_y & \sum_{x,y \in W} w(x,y)I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R

$$R = \det(\mathbf{M}) - \alpha \operatorname{trace}(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

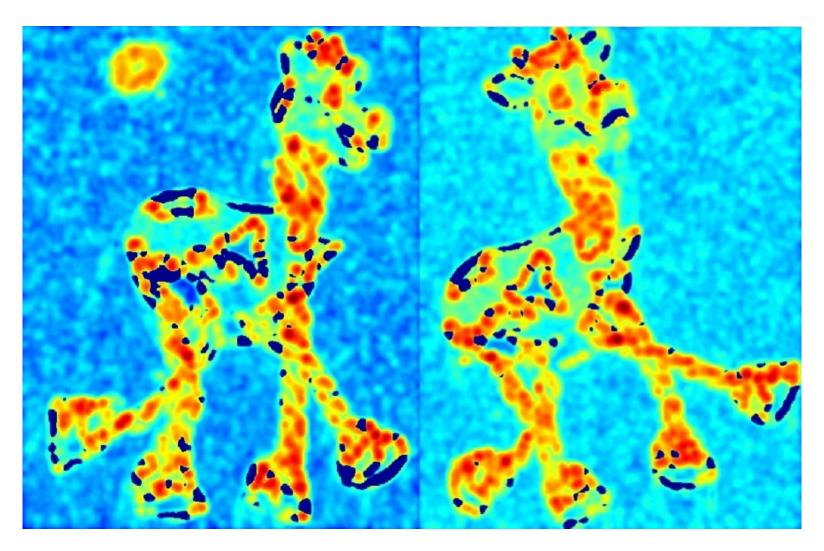
C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Computing R

Slide credit: S. Lazebnik

Computing R



In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Thresholded R

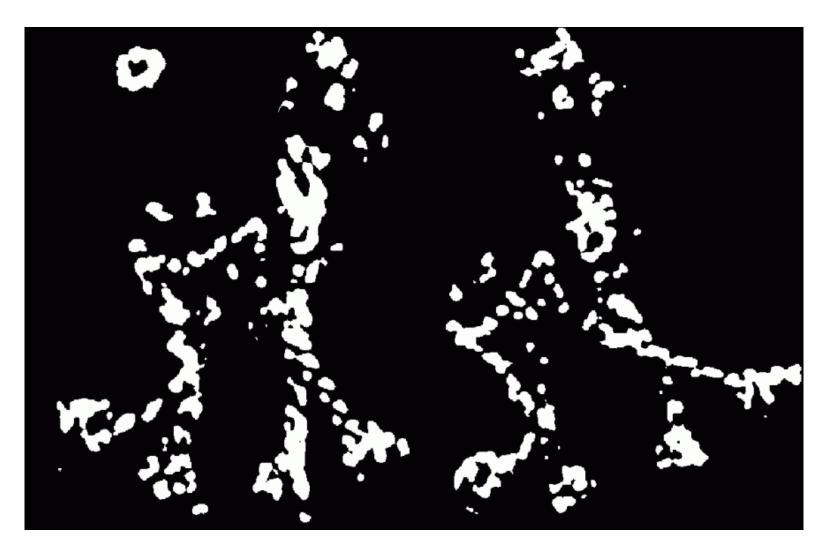
In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R
- 5. Take only local maxima (called non-maxima suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Thresholded



Final Results

Desirable Properties

If our detectors are repeatable, they should be:

- Invariant to some things: image is transformed and corners remain the same
- Covariant/equivariant with some things: image is transformed and corners transform with it.

Slide credit: S. Lazebnik

Recall Motivating Problem

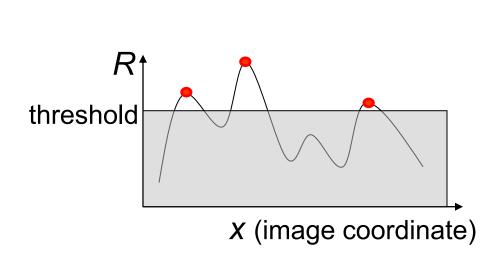
Images may be different in lighting and geometry

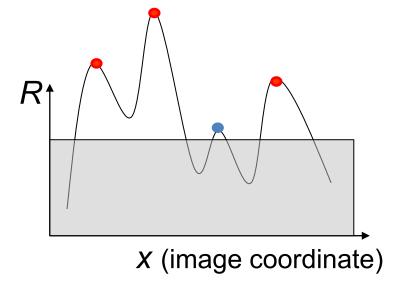
Affine Intensity Change

$$I_{new} = aI_{old} + b$$

M only depends on derivatives, so b is irrelevant

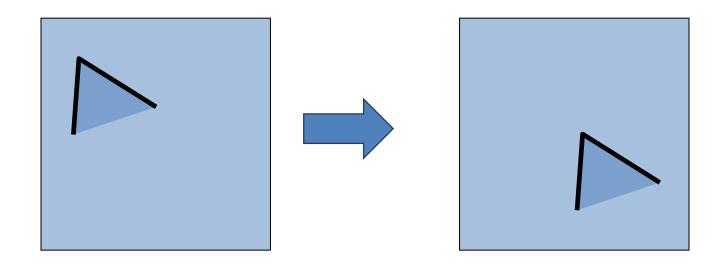
But a scales derivatives and there's a threshold





Partially invariant to affine intensity changes

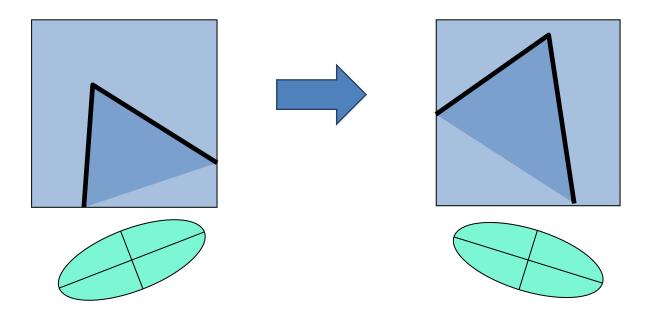
Image Translation



All done with convolution. Convolution is translation equivariant.

Equivariant with translation

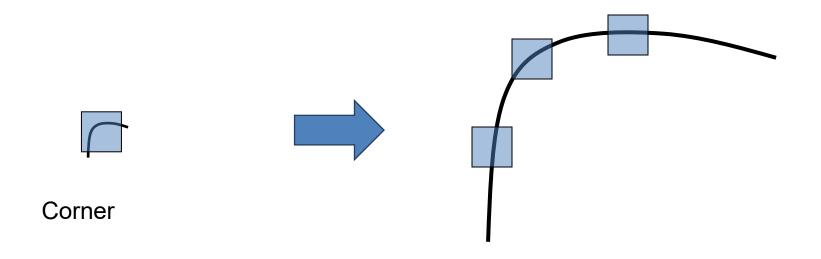
Image Rotation



Rotations just cause the corner rotation matrix to change. Eigenvalues remain the same.

Equivariant with rotation

Image Scaling

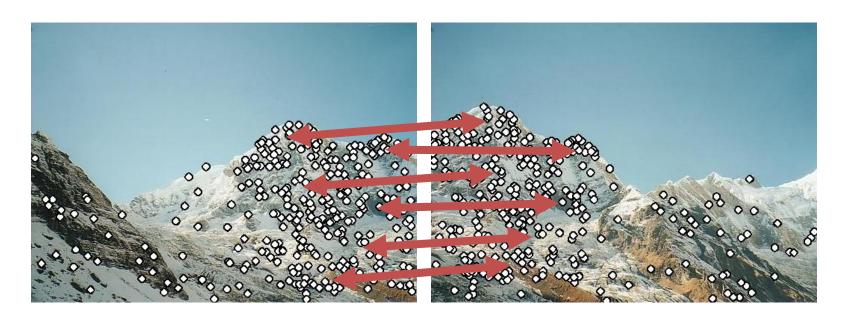


One pixel can become many pixels and vice-versa.

Not equivariant with scaling

How do we fix this?

Recap: Motivation



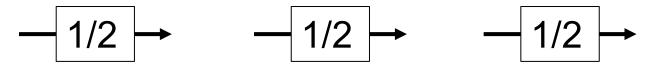
- 1: find corners+features
- 2: match based on local image data

Today

- Fixing scaling by making detectors in both location and scale
- Enabling matching between features by describing regions

Key Idea: Scale Space

Left to right: each image is half-sized Upsampled with big pixels below





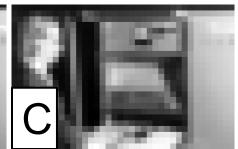
Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

Key Idea: Scale Space

Left to right: each image is half-sized

If I apply a KxK filter, how much of the original image does it see in each image?

$$-1/2 \rightarrow -1/2 \rightarrow -1/2 \rightarrow$$



Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

Solution to Scales

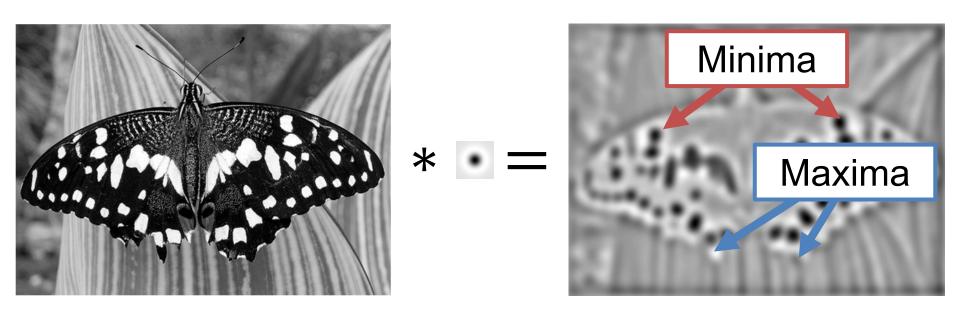
Try them all!

Harris Detection Harris Detection Harris Detection Harris Detection

See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

Blob Detection

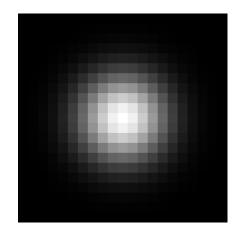
Another detector (has some nice properties)



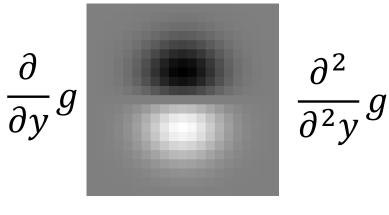
Find maxima *and minima* of blob filter response in scale *and space*

Gaussian Derivatives

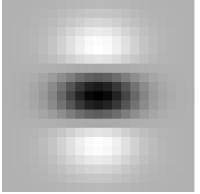
Gaussian



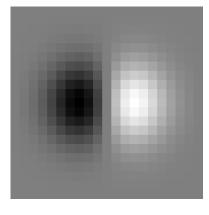
1st Deriv



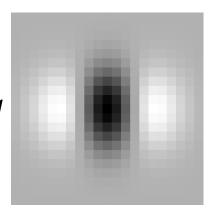
2nd Deriv



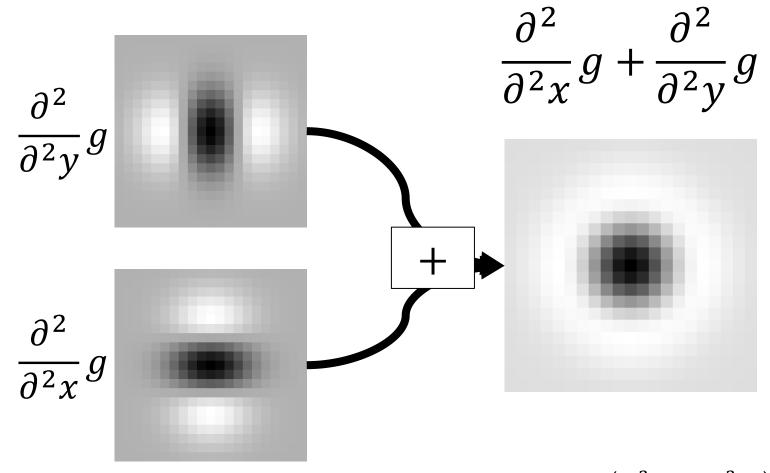
$$\frac{\partial}{\partial x}g$$



$$\frac{\partial^2}{\partial^2 x}g$$

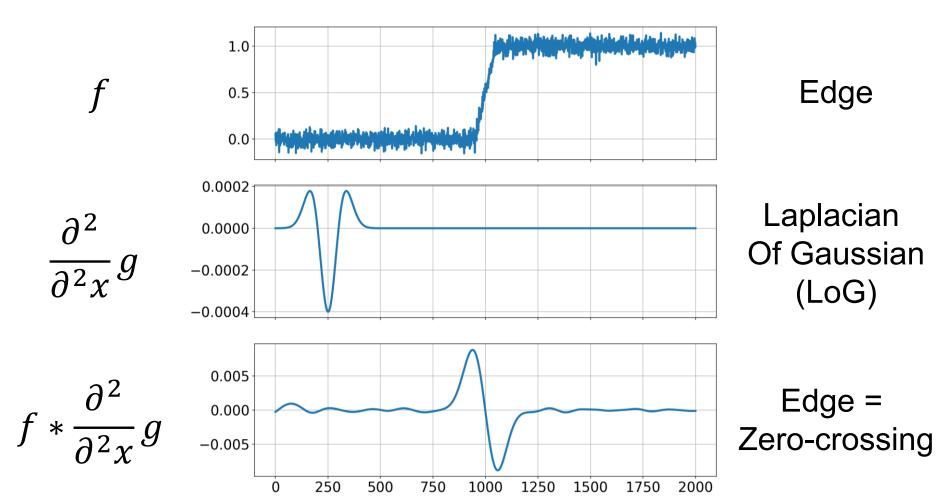


Laplacian of Gaussian (LoG)

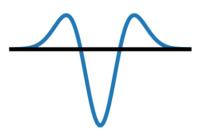


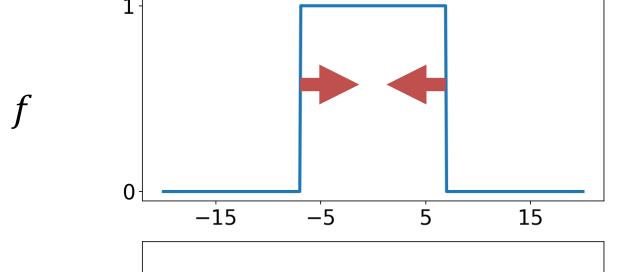
Slight detail: for technical reasons, you need to scale the Laplacian of Gaussian if you want to compare across sigmas.

$$\nabla_{norm}^2 = \sigma^2 \left(\frac{\partial^2}{\partial x^2} g + \frac{\partial^2}{\partial y^2} g \right)$$

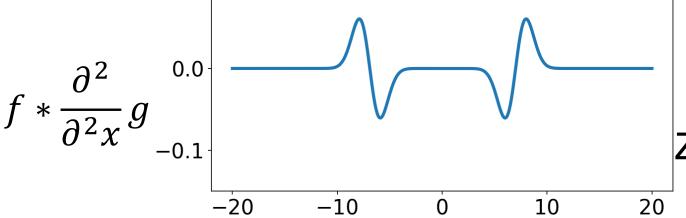


Modern remake of classic S. Seitz slide

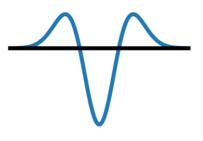


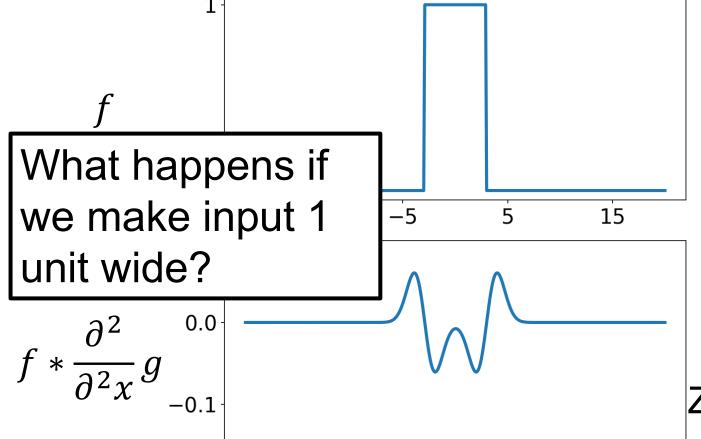


Edges



Edges *
LoG =
Zero-crossings





-10

0

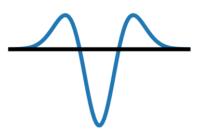
10

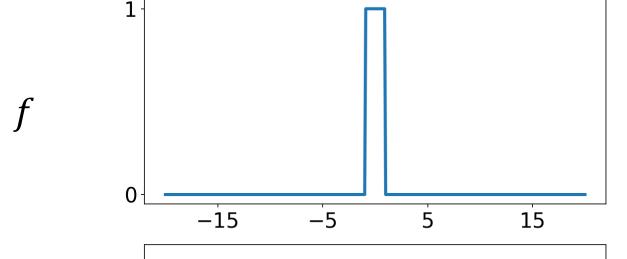
20

Edges

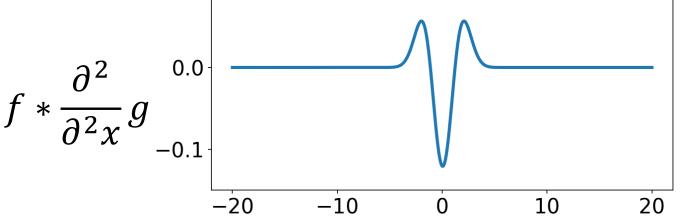
Edges *
LoG =
Zero-crossings

-20





Edge



Edge *
LoG =
Zero-crossing

Scale Selection

Given binary circle and Laplacian filter of scale σ , we can compute the response as a function of the scale.

Image

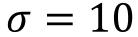
Radius: 8

 $\sigma = 2$

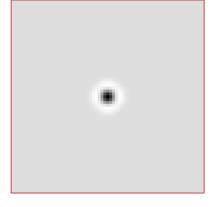
R: 0.02

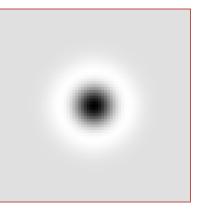
 $\sigma = 6$

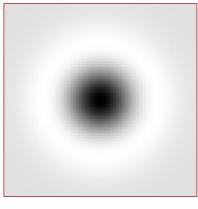
R: 2.9



R: 1.8

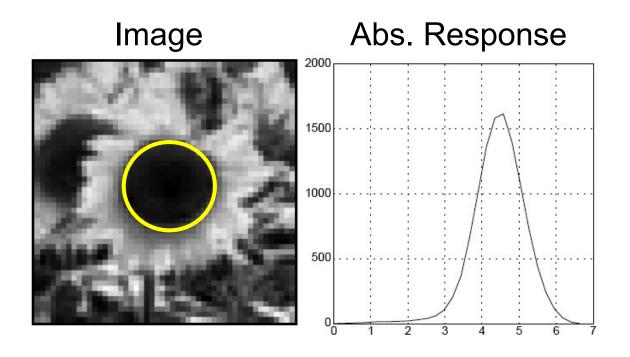






Characteristic Scale

Characteristic scale of a blob is the scale that produces the maximum response



Scale-space blob detector

 Convolve image with scale-normalized Laplacian at several scales

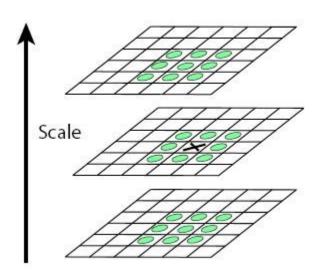
Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector

- Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space



Finding Maxima

Point i,j is maxima (minima if you flip sign) in image I if it's bigger than all neighbors

```
for y=range(i-1,i+1+1):

for x in range(j-1,j+1+1):

if y == i and x== j: continue

#below has to be true

I[y,x] < I[i,j]
```

Scale Space

Blue lines are image-space neighbors (should be just one pixel over but that's impossible to draw)

Image

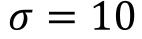
Radius: 8

 $\sigma = 2$

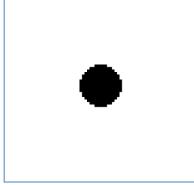
R: 0.02

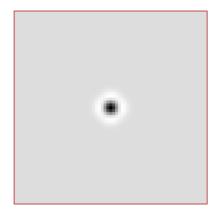
 $\sigma = 6$

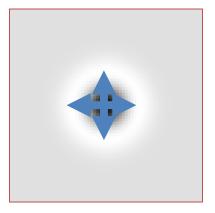
R: 2.9

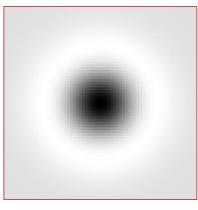


R: 1.8



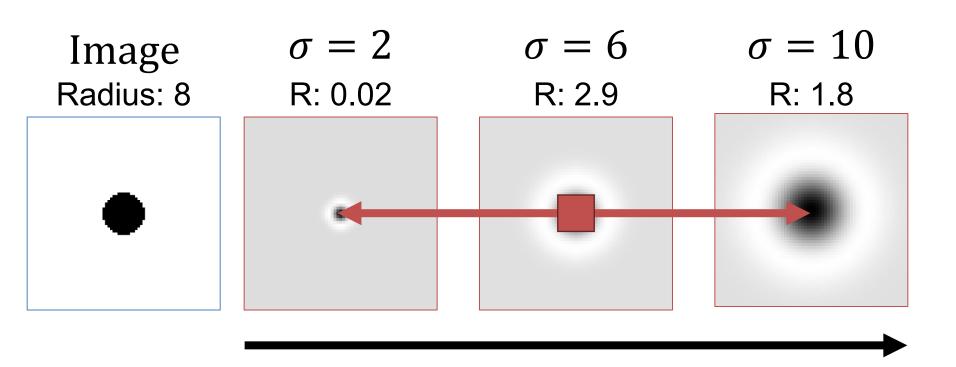






Scale Space

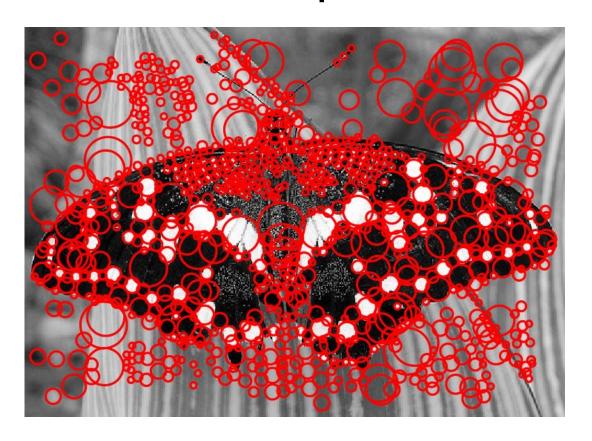
Red lines are the scale-space neighbors



Finding Maxima

```
Suppose I[:,:,k] is image at scale k. Point i,i,k is
maxima (minima if you flip sign) in image I if:
for y=range(i-1,i+1+1):
      for x in range(j-1,j+1+1):
            for c in range(k-1,k+1+1):
                   if y == i and x == j and c == k:
                         continue
            #below has to be true
            I[y,x,c] < I[i,i,k]
```

Scale-space blob detector: Example

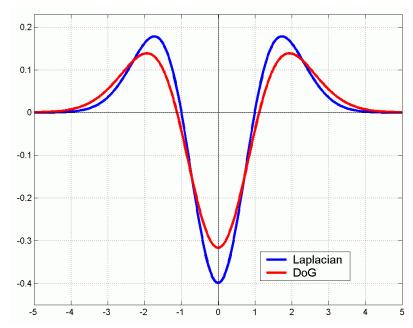


Efficient implementation

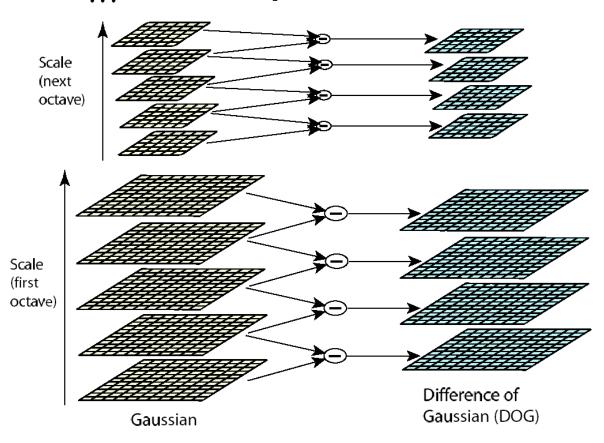
Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)



Efficient implementation



David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Slide credit: S. Lazebnik

Problem 1 Solved

- How do we deal with scales: try them all
- Why is this efficient?

Vast majority of effort is in the first and second scales

$$1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{4^i} \dots = \frac{4}{3}$$

Problem 2 – Describing Features

Image - 40

1/2 size, rot. 45° Lightened+40

Full Image

100x100 crop at Glasses

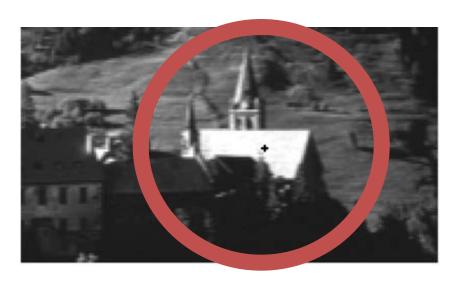
Problem 2 – Describing Features

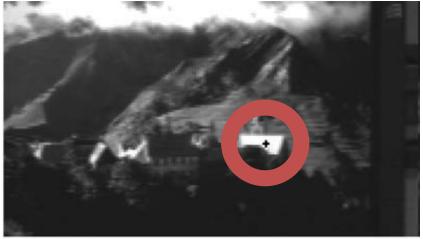
Once we've found a corner/blobs, we can't just use the image nearby. What about:

- 1. Scale?
- 2. Rotation?
- 3. Additive light?

Handling Scale

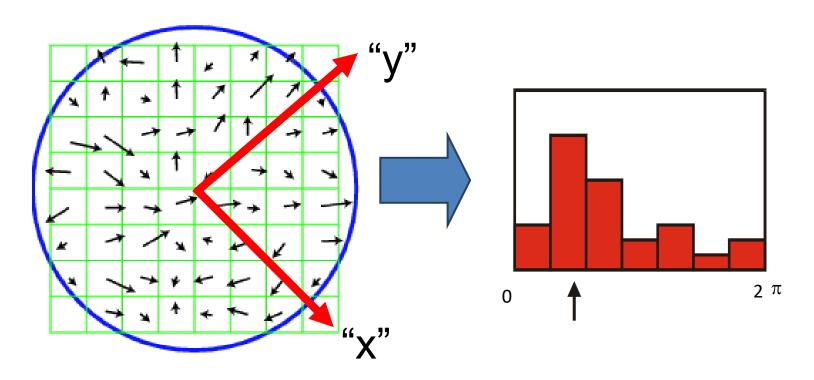
Given characteristic scale (maximum Laplacian response), we can just rescale image





Handling Rotation

Given window, can compute "dominant orientation" and then rotate image

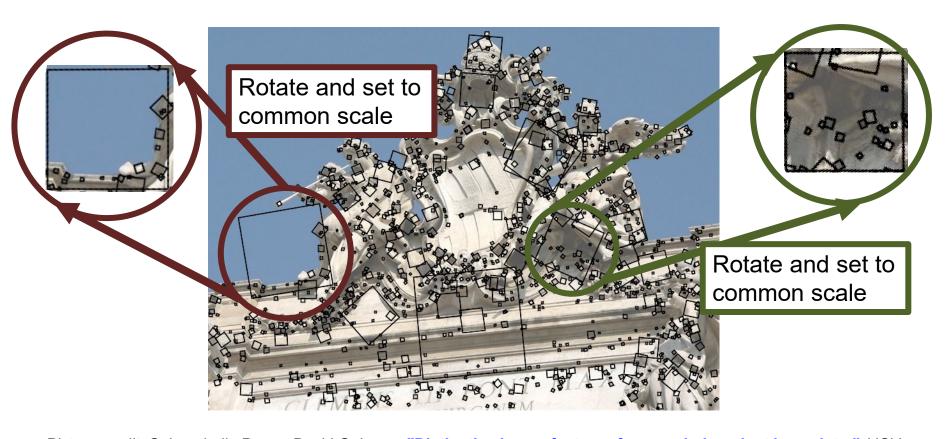


Scale and Rotation

SIFT features at characteristic scales and dominant orientations

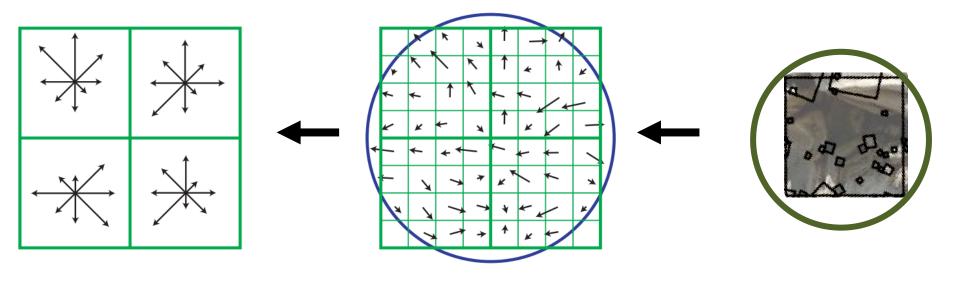
Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Scale and Rotation



Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

SIFT Descriptors



- 1. Compute gradients
- 2. Build histogram (2x2 here, 4x4 in practice) Gradients ignore global illumination changes

SIFT Descriptors

- In principle: build a histogram of the gradients
- In reality: quite complicated
 - Gaussian weighting: smooth response
 - Normalization: reduces illumination effects
 - Clamping
 - Tons of more stuff

Properties of SIFT

- Can handle: up to ~60 degree out-of-plane rotation, changes of illumination
- Fast, efficient, code available (but was patented)

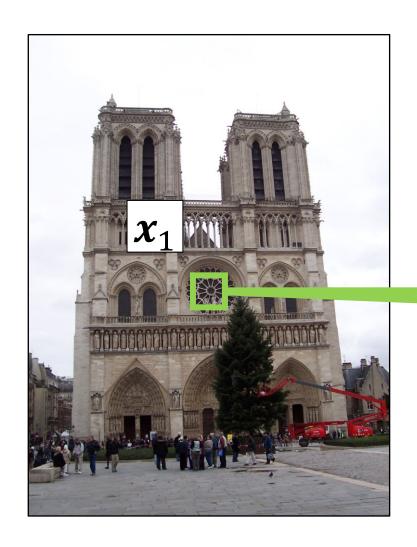
Feature Descriptors

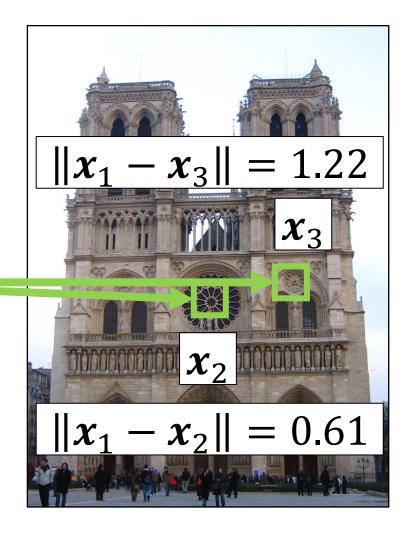
Think of feature as some non-linear filter that maps pixels to 128D feature

128D vector **x**

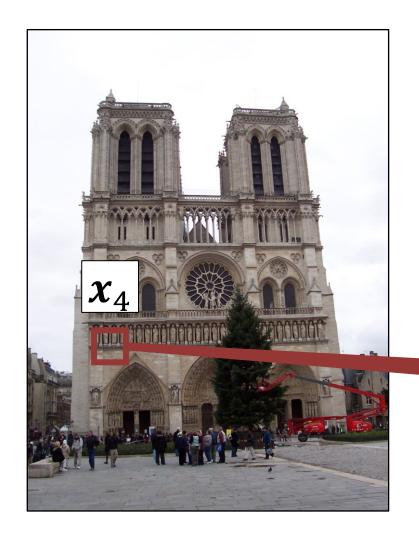
Photo credit: N. Snavely

Instance Matching





Instance Matching



$$||x_4 - x_5|| = 0.34$$

$$||x_4 - x_6|| = 0.40$$

$$||x_4 - x_6|| = 0.40$$

2nd Nearest Neighbor Trick

- Given a feature x_q , nearest neighbor to x is a good match, but distances can't be thresholded.
- Instead, find nearest neighbor (x_{1NN}) and second nearest neighbor (x_{2NN}). This ratio is a good test for matches:

$$r = \frac{\|x_q - x_{1NN}\|}{\|x_q - x_{2NN}\|}$$

2nd Nearest Neighbor Trick

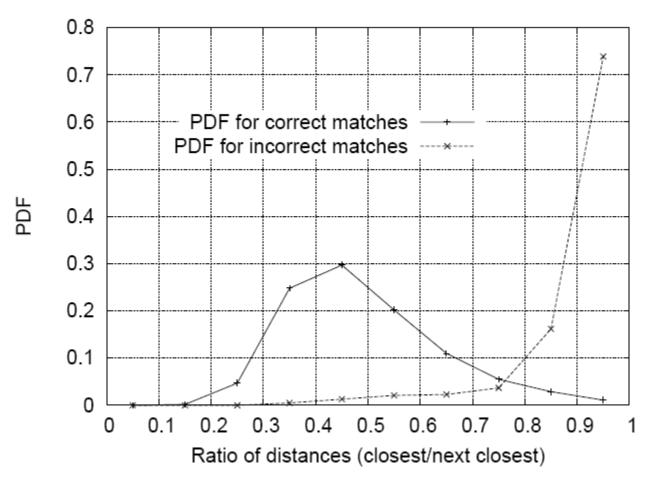
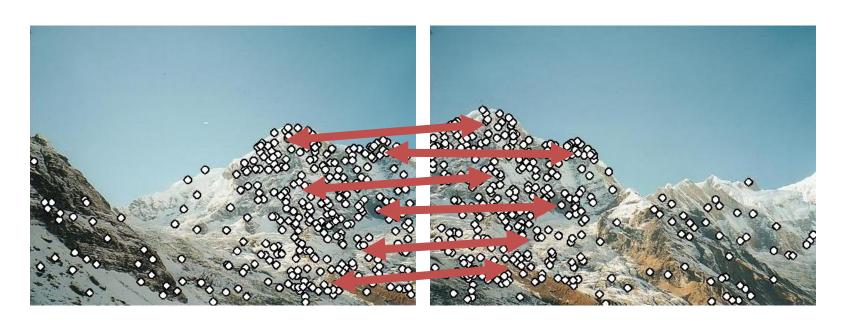


Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

So Far; What's Next?



1: find corners+features

2: match based on local image data

3: next time: compute offsets from matches

Extra Reading for the Curious

Given a 50x16 person detector, how do I detect: (a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

Detecting all the people The red box is a fixed size

Detecting all the people The red box is a fixed size

Detecting all the people The red box is a fixed size

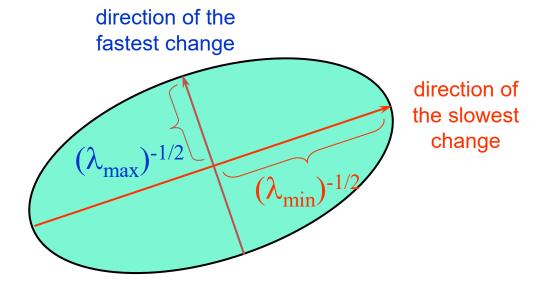
Affine adaptation

Consider the second moment matrix of the window containing the blob:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Recall:

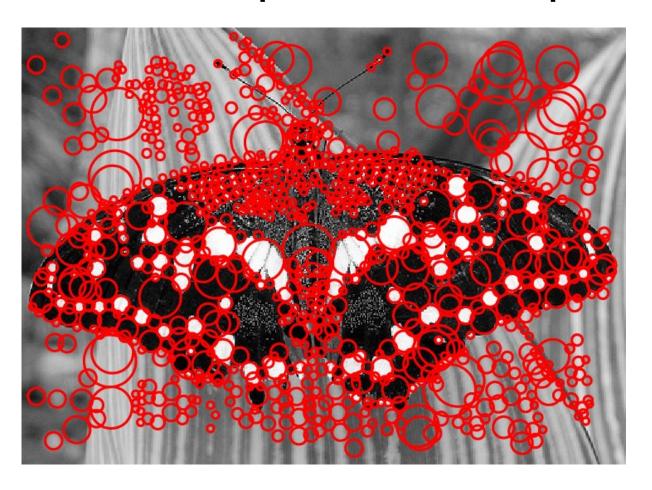
$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const} \qquad (\lambda_{\text{max}})^{-1/2}$$



This ellipse visualizes the "characteristic shape" of the window

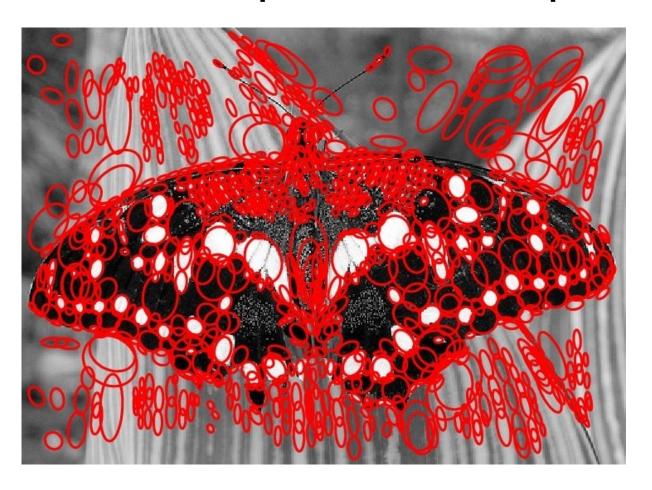
Slide: S. Lazebnik

Affine adaptation example



Scale-invariant regions (blobs)

Affine adaptation example



Affine-adapted blobs