Descriptors

EECS 442 — David Fouhey and Justin Johnson
Winter 2021, University of Michigan

https://web.eecs.umich.edu/~justincj/teaching/eecs442/WI12021/

Recap: Motivation

1: find corners+features

Image credit: M. Brown

Vf =

Last Time — Gradients

Image gradients — treat image like function of
X,y — gives edges, corners, etc.

of O_

0x’

Figure credit: S. Seitz

vf

vf

o of

Jx’ 0y

Last Time — Corner Detection

Can localize the location, or any shift —
big intensity change.

“flat” region: “‘edge’: ‘corner”:
no change in no change significant
all directions along the edge change in all

direction directions

Diagram credit: S. Lazebnik

Last Time — Corner Detection

Zoom-In at x,y Window with and w/o Offset

“Window”
At x+u, y+v
Here: u=-2,v=-3

“Window”
Atx,y

Last Time — Corner Detection

Zoom-In at x,y Error (Sum Sqs) for u,v offset
E(u,v) =

2 (I[x +u,y +v] —I[x,y])?

(x,y)EW

(EEE

Last Time —Corner Detection

TL;DR: Taylor expansion for error E(u,v). All terms in
equation are sums of image gradients and in M

Should know Optional
Can compute at Directions
each pixel

~

i Amounts

z I,% z Iny
M = X, yEW X, yEW _ y-1 A 0]V
5 0 A,
z Iny z Iy

X, yEW X, YEW

Ix = Ix at point (x,y), ly = ly at point (x,y)

Putting It Together

R = det(M) — a trace(M)?
= Ay — a(Ay + 2,)?

a: constant (0.04 to 0.06)

Calculating eigenvalues
IS usually slow!

Determinant, trace have
closed form solution

Slide credit: S. Lazebnik; Note: this refers to visualization ellipses, not original M ellipse. Other slides on the internet may vary

In Practice

1. Compute partial derivatives Ix, ly per pixel
2. Compute M at each pixel, using Gaussian

weighting w
> wanE) wayL,
M = xX,yeW x,yeW
Z w(x,) LI, z w(x, y)I;
X, YEW xX,yeW i

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

In Practice

1. Compute partial derivatives Ix, ly per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

R = det(M) — a trace(M)*?
— Allz — a(;{l + /’{2)2

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Computing R

Slide credit: S. Lazebnik

Computing R

Slide credit: S. Lazebnik

In Practice

1. Compute partial derivatives Ix, ly per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

14
e,
)
O
O
C
0
O
-
C
T

Slide credit: S. Lazebnik

In Practice

1. Compute partial derivatives Ix, ly per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R
Threshold R

5. Take only local maxima (called non-maxima
suppression)

B

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

e,
)
O
O
C
N
O
-
C
T

Slide credit: S. Lazebnik

Final Results

Slide credit: S. Lazebnik

Desirable Properties

If our detectors are repeatable, they should be:

* Invariant to some things: image is transformed
and corners remain the same

« Covariant/equivariant with some things:
image is transformed and corners transform
with it.

Slide credit: S. Lazebnik

Recall Motivating Problem

Images may be different in lighting and geometry

r

Affine Intensity Change
Lew = alpig + b
M only depends on derivatives, so b is irrelevant

But a scales derivatives and there’s a threshold

threshold/ AWV \/\/ \/\/ \

X (image coordinaté) X (image coordinaté)

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik

Image Translation

-

™

All done with convolution. Convolution is
translation equivariant.

Equivariant with translation

Slide credit: S. Lazebnik

Image Rotation
il
57 =

Rotations just cause the corner rotation matrix to
change. Eigenvalues remain the same.

Equivariant with rotation

Slide credit: S. Lazebnik

Image Scaling

))

Corner

One pixel can become many pixels and
vice-versa.

Not equivariant with scaling
How do we fix this?

Slide credit: S. Lazebnik

ecap: Motivation

1: find corners+features
2: match based on local image data

How?

Image credit: M. Brown

Today

 Fixing scaling by making detectors in both
location and scale

* Enabling matching between features by
describing regions

Key ldea: Scale Space

Left to right: each image is half-sized
Upsampled with big pixels below

—1/2 — —1/2 — —1/2 —

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

https://en.wikipedia.org/wiki/Aliasing

Key ldea: Scale Space
Left to right: each image is half-sized

If | apply a KxK filter, how much of the
original image does it see in each image?

—1/2 — —1/2 — —1/2 —

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

https://en.wikipedia.org/wiki/Aliasing

Solution to Scales

Try them all!

Harris Detection

Harris Detection

Harris Detection

Harris Detection

¢

¢

See: Multi-lmage Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

¢

Blob Detection

Another detector (has some nice properties)

Find maxima and minima of blob filter response in
scale and space

Slide credit: N. Snavely

Gaussian Derivatives

1st Deriv 2" Deriv

Gaussian

Laplacian of Gaussian (LoG)

0% 0%
02 . %g | azyg

L]

2 2
Slight detail: for technical reasons, you need to scale the Laplacian V2) 0 + 0
of Gaussian if you want to compare across sigmas. norm= 0 dx2 9 azy g

Edge Detection with LoG

f °] Edge
62 0..0000- Laplacian
5-9 oo Of Gaussian
X" il (LoG)
az O:OOO: - Edge —
" 52 ~0.0051 Zero-crossing
04x

0 250 500 750 1000 1250 1500 1750 2000
Modern remake of classic S. Seitz slide

Edge Detection with LoG -/\\//K

1_
f > € Edges
. —15 _'5 5 1-5
g2 00 H Edges *
f* Y LoG =
02x |
o Zero-crossings

-0 -0 0 10 20

Modern remake of classic S. Seitz slide

Edge Detection with LoG —/\\/f\—

1_

! Edges

What happens if
we make input 1 |-5 5 T

unit wide?
0% /\/\/\ Edges *
f* LoG =

2.9 |
TE Zero-crossings

-0 -0 0 10 20

Modern remake of classic S. Seitz slide

Edge Detection with LoG

1- I
0- . . .
~15 -5 15
62 0.0 /\
f* g
2
0°x ~0.1- U
—-20 ~10 0 10 20

Modern remake of classic S. Seitz slide

AWAN

V

Edge

Edge *
LoG =
Zero-crossing

Scale Selection

Given binary circle and Laplacian filter of scale o, we
can compute the response as a function of the scale.

Image g =2 og=26 =10
Radius: 8 R: 0.02 R: 2.9 R: 1.8

Characteristic Scale

Characteristic scale of a blob is the scale
that produces the maximum response

Abs. Response

2000

Slide credit: S. Lazebnik. For more, see: T. Lindeberg (1998). "Feature detection with automatic scale selection."

International Journal of Computer Vision 30 (2): pp 77--116.

http://www.nada.kth.se/cvap/abstracts/cvap198.html

Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales

Slide credit: S. Lazebnik

Scale-space blob detector: Example

Slide credit: S. Lazebnik

Scale-space blob detector: Example

sigma = 11.9912

Slide credit: S. Lazebnik

Scale-space blob detector

1. Convolve image with scale-normalized
Laplacian at several scales

2. Find maxima of squared Laplacian response
In scale-space

A A A I

Slide credit: S. Lazebnik

Finding Maxima

Point i,j is maxima (minima if you flip sign) in
image | if it's bigger than all neighbors

for y=range(i-1,i+1+1):
for x in range(j-1,j+1+1):
If y ==1and x==j: continue
#below has to be true
Ily,x] < I[i]]

Scale Space

Blue lines are image-space neighbors (should be just
one pixel over but that's impossible to draw)

Image g =2 og=26 =10
Radius: 8 R: 0.02 R: 2.9 R: 1.8

® - i

Scale Space

Red lines are the scale-space neighbors

Image g =2 og=26 =10
Radius: 8 R: 0.02 R: 2.9 R: 1.8

& .]

Finding Maxima

Suppose I[:,:,k] is image at scale k. Point i,j,k is
maxima (minima if you flip sign) in image | if:

for y=range(i-1,i+1+1):
for x in range(j-1,j+1+1):
for c in range(k-1,k+1+1):

if y ==1and x==j and c==k:
continue

#below has to be true
Ily,x,c] < I[i,},K]

Scale-space blob detector:

Example

(T
.

o ..w._..._".n.

\\ _..._...T__......._, e
._\%_ﬂq._]

L2

0.2

o
i

Slide credit: S. Lazebnik

Efficient implementation

« Approximating the Laplacian with a difference
of Gaussians:

L=06%(G.(x,y,0)+G,,(x,y,0))

(Laplacian)

DoG = G(xayako-)_G(xayao-)

(Difference of Gaussians)

Slide credit: S. Lazebnik

Efficient implementation

Difference of
Gaussian Gaussian (DOG)

David G. Lowe. "Distinctive imaqge features from scale-invariant
keypoints.” [JCV 60 (2), pp. 91-110, 2004.

Slide credit: S. Lazebnik

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Problem 1 Solved

* How do we deal with scales: try them all
* Why is this efficient?

Vast majority of effort is in the first and second scales

1+1+1+1+1 o
4 16 64 417 3

Problem 2 — Describing Features

Image — 40 1/2 size, rot. 45°
Lightened+40

100x100 crop
at Glasses

Problem 2 — Describing Features

Once we've found a corner/blobs, we can't just
use the image nearby. What about:

1. Scale?
2. Rotation?
3. Additive light?

Handling Scale

Given characteristic scale (maximum Laplacian
response), we can just rescale image

Slide credit: S. Lazebnik

Handling Rotation

Given window, can compute “dominant orientation”
and then rotate image

Slide credit: S. Lazebnik

Scale and Rotation

SIFT features at characteristic scales and
dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” /JCV
60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Scale and Rotation

Rotate and set to
common scale

_ -2 Rotate and set to
[l ~ s %4 common scale

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” /JCV
60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptors

'S

A / X N T ._.)\
1/ L) r
% TN

1
)

\

1

TR

T

¥
/

J
r

N\
A
N
h
4/
re

- T

Q \

1 A~
lé//fk
\
¥
-

1. Compute gradients
2. Build histogram (2x2 here, 4x4 in practice)

Gradients ignore global illumination changes

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” /JCV 60 (2), pp. 91-110,
2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

SIFT Descriptors

* In principle: build a histogram of the gradients

* |[n reality: quite complicated
» Gaussian weighting: smooth response
« Normalization: reduces illumination effects
» Clamping
* Tons of more stuff

Properties of SIFT

« Can handle: up to ~60 degree out-of-plane rotation,
changes of illumination
Fast, efficient, code available (but was patented)

_ T | el 5? T &
e L
N v o B

Slide credit: N. Snavely

Feature Descriptors

Think of feature as some non-linear filter that maps
pixels to 128D feature

128D
vector x

Photo credit: N. Snavely

Instance Matching

i<
RIETTLLASA S

Example credit: J. Hays

Instance Matching

X, — Xs|| = 0.34
— Xl = 0.30
v
= 0. 40

X4

Example credit: J. Hays

2"d Nearest Neighbor Trick

 Given a feature X4, Nearest neighbor to x is a good
match, but distances can’t be thresholded.

» Instead, find nearest neighbor (x,y\) @and second
nearest neighbor (x,\y)- This ratio is a good test for
matches:

Xg — X1NN

Xg — X2NN

2"d Nearest Neighbor Trick

0.8
0.7
0.6 PDF for correct matches +
PDF for incorrect matches 5
0.5
L
0 0.4
e
0.3 o
— N i
0.2 /. \\
i x
0.1 7 -
f'*'}f I “‘H;__"_ i
0 ¥ 4= X = —+

0 01 02 03 04 05 06 07 08 09 1
Ratio of distances (closest/next closest)

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” /JCV 60 (2), pp. 91-110,
2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

So Far; What’s Next?

1: find corners+features
2: match based on local image data
3: next time: compute offsets from matches

Extra Reading for the Curious

Aside: This Trick is Common

Given a 50x16 person detector, how do | detect:
(a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

Sample people from image

I - ‘

Aside: This Trick is Common

Detecting all the people
The red box is a fixed size

Sample people from image

Aside: This Trick is Common

Detecting all the people
The red box is a fixed size

Sample people from image

I - ‘

Aside: This Trick is Common

Detecting all the people
The red box is a fixed size

Sample people from image

Affine adaptation

Consider the second moment matrix of the window
containing the blob:

7> 1] 2 0]
M=Zw(x,y) ’ “71=R" A
X,y

2
]x]y [y 0 A,

direction of the
fastest change

Recall: direction of
the slowest
U change
lu vl M = const

V

This ellipse visualizes the “characteristic shape” of the
W|ndOW Slide: S. Lazebnik

Affine adaptation example

o’

Scale-invariant regions (blobs)

Slide: S. Lazebnik

Affine adaptation example

Affine-adapted blobs

Slide: S. Lazebnik

