
Descriptors
EECS 442 – David Fouhey and Justin Johnson

Winter 2021, University of Michigan
https://web.eecs.umich.edu/~justincj/teaching/eecs442/WI2021/



Recap: Motivation

1: find corners+features

Image credit: M. Brown



Last Time – Gradients

∇𝑓 =
𝜕𝑓

𝜕𝑥
, 0 ∇𝑓 = 0,

𝜕𝑓

𝜕𝑦
∇𝑓 =

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

Image gradients – treat image like function of 

x,y – gives edges, corners, etc. 

Figure credit: S. Seitz



Last Time – Corner Detection

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Can localize the location, or any shift →

big intensity change.

Diagram credit: S. Lazebnik



Last Time – Corner Detection

“Window”

At x, y

“Window” 

At x+u, y+v

Here: u=-2,v=-3

Window with and w/o OffsetZoom-In at x,y



Last Time – Corner Detection

Zoom-In at x,y Error (Sum Sqs) for u,v offset

𝐸 𝑢, 𝑣 =

෍

𝑥,𝑦 ∈𝑊

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 2

-( )2



Last Time –Corner Detection

TL;DR: Taylor expansion for error E(u,v). All terms in 

equation are sums of image gradients and in M

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

=

Can compute at 

each pixel

Ix = Ix at point (x,y), Iy = Iy at point (x,y)

Should know

Directions

Amounts 

Optional

𝑽−1
𝜆1 0
0 𝜆2

𝑽



Putting It Together

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 2

= 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2 “Corner”

R > 0

“Edge” 

R < 0

“Edge” 

R < 0

“Flat” 

region

|R| small

α: constant (0.04 to 0.06)

Slide credit: S. Lazebnik; Note: this refers to visualization ellipses, not original M ellipse. Other slides on the internet may vary

Calculating eigenvalues 

is usually slow!

Determinant, trace have 

closed form solution



In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑴 =

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑦
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

3. Compute response function R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 2

= 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Computing R

Slide credit: S. Lazebnik



Computing R

Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

3. Compute response function R

4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Thresholded R

Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

3. Compute response function R

4. Threshold R

5. Take only local maxima (called non-maxima 
suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Thresholded

Slide credit: S. Lazebnik



Final Results

Slide credit: S. Lazebnik



Desirable Properties

If our detectors are repeatable, they should be:

• Invariant to some things: image is transformed 
and corners remain the same

• Covariant/equivariant with some things: 
image is transformed and corners transform 
with it.

Slide credit: S. Lazebnik



Recall Motivating Problem

Images may be different in lighting and geometry



Affine Intensity Change

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik

𝐼𝑛𝑒𝑤 = 𝑎𝐼𝑜𝑙𝑑 + 𝑏

M only depends on derivatives, so b is irrelevant

R

x (image coordinate)

threshold

R

x (image coordinate)

But a scales derivatives and there’s a threshold



Image Translation

Slide credit: S. Lazebnik

All done with convolution. Convolution is 

translation equivariant. 

Equivariant with translation



Image Rotation

Rotations just cause the corner rotation matrix to 

change. Eigenvalues remain the same.

Equivariant with rotation

Slide credit: S. Lazebnik



Image Scaling

Corner

One pixel can become many pixels and 

vice-versa.

Not equivariant with scaling

How do we fix this?
Slide credit: S. Lazebnik



Recap: Motivation

1: find corners+features

2: match based on local image data

How? 
Image credit: M. Brown



Today

• Fixing scaling by making detectors in both 
location and scale

• Enabling matching between features by 
describing regions



Key Idea: Scale Space

1/2 1/2 1/2

Note: I’m also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)  

Left to right: each image is half-sized

Upsampled with big pixels below

https://en.wikipedia.org/wiki/Aliasing


Key Idea: Scale Space

1/2 1/2 1/2

Note: I’m also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)  

Left to right: each image is half-sized

If I apply a KxK filter, how much of the 

original image does it see in each image? 

A B C

https://en.wikipedia.org/wiki/Aliasing


Solution to Scales

Try them all! 

See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

Harris Detection Harris Detection Harris Detection Harris Detection



Blob Detection

Another detector (has some nice properties)

∗ =

Find maxima and minima of blob filter response in 

scale and space

Slide credit: N. Snavely

Minima

Maxima



Gaussian Derivatives

𝜕

𝜕𝑦
𝑔

𝜕

𝜕𝑥
𝑔

Gaussian

1st Deriv

𝜕2

𝜕2𝑦
𝑔

𝜕2

𝜕2𝑥
𝑔

2nd Deriv



Laplacian of Gaussian (LoG)

𝜕2

𝜕2𝑦
𝑔

𝜕2

𝜕2𝑥
𝑔

𝜕2

𝜕2𝑥
𝑔 +

𝜕2

𝜕2𝑦
𝑔

+

Slight detail: for technical reasons, you need to scale the Laplacian 

of Gaussian if you want to compare across sigmas. ∇𝑛𝑜𝑟𝑚
2 = 𝜎2

𝜕2

𝜕𝑥2
𝑔 +

𝜕2

𝜕2𝑦
𝑔



Edge Detection with LoG

𝑓 Edge

𝜕2

𝜕2𝑥
𝑔

Laplacian 

Of Gaussian

(LoG)

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Edge = 

Zero-crossing

Modern remake of classic S. Seitz slide 



Edges

Edges * 

LoG = 

Zero-crossings

𝑓

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Modern remake of classic S. Seitz slide 

Edge Detection with LoG



𝑓

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Modern remake of classic S. Seitz slide 

Edge Detection with LoG

What happens if 

we make input 1 

unit wide? 

Edges

Edges * 

LoG = 

Zero-crossings



Edge

Edge * 

LoG = 

Zero-crossing

𝑓

𝑓 ∗
𝜕2

𝜕2𝑥
𝑔

Modern remake of classic S. Seitz slide 

Edge Detection with LoG



Scale Selection

Given binary circle and Laplacian filter of scale σ, we 

can compute the response as a function of the scale.

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image



Characteristic Scale

Characteristic scale of a blob is the scale

that produces the maximum response 

Image Abs. Response

Slide credit: S. Lazebnik. For more, see: T. Lindeberg (1998). "Feature detection with automatic scale selection."

International Journal of Computer Vision 30 (2): pp 77--116. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Scale-space blob detector

1. Convolve image with scale-normalized 
Laplacian at several scales

Slide credit: S. Lazebnik



Scale-space blob detector: Example

Slide credit: S. Lazebnik



Scale-space blob detector: Example

Slide credit: S. Lazebnik



Scale-space blob detector

1. Convolve image with scale-normalized 
Laplacian at several scales

2. Find maxima of squared Laplacian response 
in scale-space

Slide credit: S. Lazebnik



Finding Maxima

Point i,j is maxima (minima if you flip sign) in 
image I if it’s bigger than all neighbors

for y=range(i-1,i+1+1):

for x in range(j-1,j+1+1):

if y == i and x== j: continue

#below has to be true

I[y,x] < I[i,j]   



Scale Space

Blue lines are image-space neighbors (should be just 

one pixel over but that’s impossible to draw)

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image



Scale Space

Red lines are the scale-space neighbors

𝜎 = 2
R: 0.02

𝜎 = 6
R: 2.9

𝜎 = 10
R: 1.8Radius: 8

Image



Finding Maxima

Suppose I[:,:,k] is image at scale k. Point i,j,k is 
maxima (minima if you flip sign) in image I if:

for y=range(i-1,i+1+1):

for x in range(j-1,j+1+1):

for c in range(k-1,k+1+1):

if y == i and x== j and c==k: 
continue

#below has to be true

I[y,x,c] < I[i,j,k]   



Scale-space blob detector: 
Example

Slide credit: S. Lazebnik



• Approximating the Laplacian with a difference 
of Gaussians:

( )2 ( , , ) ( , , )xx yyL G x y G x y  = +

( , , ) ( , , )DoG G x y k G x y = −

(Laplacian)

(Difference of Gaussians)

Efficient implementation

Slide credit: S. Lazebnik



Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant 

keypoints.” IJCV 60 (2), pp. 91-110, 2004. 
Slide credit: S. Lazebnik

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Problem 1 Solved

• How do we deal with scales: try them all

• Why is this efficient?

1 +
1

4
+

1

16
+

1

64
+
1

4𝑖
… =

4

3

Vast majority of effort is in the first and second scales



Problem 2 – Describing Features

Image – 40

Full

Image

1/2 size, rot. 45°

Lightened+40

100x100 crop 

at Glasses



Problem 2 – Describing Features

Once we’ve found a corner/blobs, we can’t just 
use the image nearby. What about:

1. Scale?

2. Rotation?

3. Additive light?



Handling Scale

Given characteristic scale (maximum Laplacian 

response), we can just rescale image

Slide credit: S. Lazebnik



Handling Rotation

0 2 p

Given window, can compute “dominant orientation” 

and then rotate image

Slide credit: S. Lazebnik

“y”

“x”



Scale and Rotation

SIFT features at characteristic scales and 

dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV

60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Scale and Rotation

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV

60 (2), pp. 91-110, 2004. 

Rotate and set to 

common scale

j

Rotate and set to 

common scale

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


SIFT Descriptors

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 

2004. 

j

1. Compute gradients

2. Build histogram (2x2 here, 4x4 in practice)

Gradients ignore global illumination changes

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


SIFT Descriptors

• In principle: build a histogram of the gradients

• In reality: quite complicated
• Gaussian weighting: smooth response

• Normalization: reduces illumination effects

• Clamping

• Tons of more stuff



Properties of SIFT

• Can handle: up to ~60 degree out-of-plane rotation, 

changes of illumination

• Fast, efficient, code available (but was patented)

Slide credit: N. Snavely



Feature Descriptors

128D 

vector x

Think of feature as some non-linear filter that maps 

pixels to 128D feature

Photo credit: N. Snavely



Instance Matching

Example credit: J. Hays

𝒙1

𝒙2

𝒙1 − 𝒙2 = 0.61

𝒙3

𝒙1 − 𝒙3 = 1.22



Instance Matching

Example credit: J. Hays

𝒙4

𝒙5 𝒙6 𝒙7

𝒙4 − 𝒙5 = 0.34

𝒙4 − 𝒙6 = 0.30

𝒙4 − 𝒙6 = 0.40



2nd Nearest Neighbor Trick 

• Given a feature xq, nearest neighbor to x is a good 

match, but distances can’t be thresholded.

• Instead, find nearest neighbor (x1NN) and second 

nearest neighbor (x2NN). This ratio is a good test for 

matches:

𝑟 =
𝒙𝑞 − 𝒙1𝑁𝑁

𝒙𝑞 − 𝒙2𝑁𝑁



2nd Nearest Neighbor Trick 

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 

2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


So Far; What’s Next?

1: find corners+features

2: match based on local image data

3: next time: compute offsets from matches





Extra Reading for the Curious



Aside: This Trick is Common

Given a 50x16 person detector, how do I detect:

(a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

Sample people from image



Aside: This Trick is Common

Detecting all the people

The red box is a fixed size

Sample people from image



Aside: This Trick is Common

Sample people from image

Detecting all the people

The red box is a fixed size



Aside: This Trick is Common

Sample people from image

Detecting all the people

The red box is a fixed size



Affine adaptation

RR
III

III
yxwM

yyx

yxx

yx









=












= −

2

11

2

2

, 0

0
),(





direction of 

the slowest 

change

direction of the 

fastest change

(max)
-1/2

(min)
-1/2

Consider the second moment matrix of the window 

containing the blob:

const][ =








v

u
Mvu

Recall:

This ellipse visualizes the “characteristic shape” of the 

window Slide: S. Lazebnik



Affine adaptation example

Scale-invariant regions (blobs)

Slide: S. Lazebnik



Affine adaptation example

Affine-adapted blobs

Slide: S. Lazebnik


