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1 Network Architectures

Our style transfer networks use the architecture shown in Table 1 and our super-
resolution networks use the architecture shown in Table 2. In these tables “C ×
H ×W conv” denotes a convolutional layer with C filters size H ×W which is
immediately followed by spatial batch normalization [1] and a ReLU nonlinearity.

Our residual blocks each contain two 3×3 convolutional layers with the same
number of filters on both layer. We use the residual block design of Gross and
Wilber [2] (shown in Figure 1), which differs from that of He et al [3] in that the
ReLU nonlinearity following the addition is removed; this modified design was
found in [2] to perform slightly better for image classification.

For style transfer, we found that standard zero-padded convolutions resulted
in severe artifacts around the borders of the generated image. We therefore
remove padding from the convolutions in residual blocks. A 3 × 3 convolution
with no padding reduces the size of a feature map by 1 pixel on each side, so in
this case the identity connection of the residual block performs a center crop on
the input feature map. We also add spatial reflection padding to the beginning
of the network so that the input and output of the network have the same size.

Layer Activation size

Input 3× 256× 256
Reflection Padding (40× 40) 3× 336× 336

32× 9× 9 conv, stride 1 32× 336× 336
64× 3× 3 conv, stride 2 64× 168× 168
128× 3× 3 conv, stride 2 128× 84× 84
Residual block, 128 filters 128× 80× 80
Residual block, 128 filters 128× 76× 76
Residual block, 128 filters 128× 72× 72
Residual block, 128 filters 128× 68× 68
Residual block, 128 filters 128× 64× 64
64× 3× 3 conv, stride 1/2 64× 128× 128
32× 3× 3 conv, stride 1/2 32× 256× 256

3× 9× 9 conv, stride 1 3× 256× 256

Table 1. Network architecture used for style transfer networks.
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×4 ×8
Layer Activation size Layer Activation size

Input 3× 72× 72 Input 3× 36× 36
64× 9× 9 conv, stride 1 64× 72× 72 64× 9× 9 conv, stride 1 64× 36× 36
Residual block, 64 filters 64× 72× 72 Residual block, 64 filters 64× 36× 36
Residual block, 64 filters 64× 72× 72 Residual block, 64 filters 64× 36× 36
Residual block, 64 filters 64× 72× 72 Residual block, 64 filters 64× 36× 36
Residual block, 64 filters 64× 72× 72 Residual block, 64 filters 64× 36× 36

64× 3× 3 conv, stride 1/2 64× 144× 144 64× 3× 3 conv, stride 1/2 64× 72× 72
64× 3× 3 conv, stride 1/2 64× 288× 288 64× 3× 3 conv, stride 1/2 64× 144× 144

3× 9× 9 conv, stride 1 3× 288× 288 64× 3× 3 conv, stride 1/2 64× 288× 288
- - 3× 9× 9 conv, stride 1 3× 288× 288

Table 2. Network architectures used for ×4 and ×8 super-resolution.
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Fig. 1. Residual block used in our networks and an equivalent convolutional block.

2 Residual vs non-Residual Connections

We performed preliminary experiments comparing residual networks for style
transfer with non-residual networks. We trained a style transfer network using
The Great Wave Off Kanagawa as a style image, replacing each residual block
in Table 1 with an equivalent non-residual block consisting of a pair of 3 × 3
convolutional layers with the same number of filters as shown in Figure 1.

Figure 2 shows the training losses for a residual and non-residual network,
both trained using Adam [4] for 40,000 iterations with a learning rate of 1×10−3.
We see that the residual network trains faster, but that both networks eventually
achieve similar training losses. Figure 2 also shows a style transfer example
from the trained residual and non-residual networks; both learn similar to apply
similar transformations to input images.

Our style transfer networks are only 16 layers deep, which is relatively shallow
compared to the networks in [3]. We hypothesize that residual connections may
be more crucial for training deeper networks.
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Fig. 2. A comparison of residual vs non-residual networks for style transfer.

3 Super-Resolution Metrics

In Table 3 we show quantitative results for single-image super-resolution using
the FSIM [5] and VIF [6] metrics.

FSIM [5] VIF [6]
Bicubic `pixel SRCNN [7] `feat Bicubic `pixel SRCNN [7] `feat

×4
Set5 [8] 0.85 0.86 0.89 0.87 0.31 0.30 0.38 0.34
Set14 [9] 0.85 0.85 0.89 0.88 0.26 0.24 0.31 0.28

BSD100 [10] 0.76 0.76 0.80 0.82 0.22 0.21 0.26 0.24

×8
Set5 [8] 0.74 0.76 - 0.79 0.11 0.13 - 0.15
Set14 [9] 0.72 0.74 - 0.76 0.09 0.11 - 0.12

BSD100 [10] 0.63 0.64 - 0.70 0.08 0.09 - 0.10

Table 3. Quantitative results for super-resolution using FSIM [5] and VIF [6].

4 Super-Resolution User Study

In addition to using automated metrics, we performed a user study on Amazon
Mechanical Turk to evaluate our ×4 super-resolution results on the BSD100 [10]
dataset. In each trial a worker was shown a nearest-neighbor upsampling as
well as the results from two different methods. Workers were told that we are
“evaluating different methods for enhancing details in images” and were asked
to “pick the enhanced version that you prefer”. All trials were randomized, and
five workers scored each image pair.

In Table 4 we show the results of the user study. For each pair of methods,
we collected 5 votes for each of the 100 images in the BSD100 dataset. Table 4
shows both the raw number of votes cast for each method and the number of
images for which a majority of users preferred one method over another. Between
`feat and SRCNN, a majority of workers preferred the results of `feat on 96 /
100 images, and that between these two method workers cast 445 total votes for
the results of `feat and just 55 votes for the results of SRCNN. These results
support our claim that `feat results in visually pleasing super-resolution results.
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Majority Wins Raw Votes
`pixel SRCNN `feat `pixel SRCNN `feat

`pixel - 0 / 100 0 / 100 - 14 / 486 21 / 479
SRCNN 100 / 0 - 4 / 96 486 / 14 - 55 / 445
`feat 100 / 0 96 / 4 100 / 0 479 / 21 445 / 55 -

Table 4. Results of the user study on Amazon Mechanical Turk comparing ×4 super-
resolution results on the BSD100 dataset.

5 Super-Resolution Examples

We show additional examples of ×4 single-image super-resolution in Figure 4
and additional examples of ×8 single-image super-resolution in Figure 3.

Ground Truth
PSNR / SSIM

Bicubic
24.92 / 0.6694

Ours (`pixel)
25.48 / 0.6810

Ours (`feat)
24.70 / 0.6757

Ground Truth
PSNR / SSIM

Bicubic
24.37 / 0.5718

Ours (`pixel)
24.97 / 0.5889

Ours (`feat)
23.34 / 0.5879

Fig. 3. Additional examples of ×8 single-image super-resolution on the BSD100
dataset.
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Ground Truth
PSNR / SSIM

Bicubic
30.18 / 0.8737

Ours (`pixel)
29.96 / 0.8760

SRCNN [7]
32.00 / 0.9026

Ours (`feat)
27.80 / 0.8053

Ground Truth
PSNR / SSIM

Bicubic 29.84
/ 0.8144

Ours (`pixel)
29.69 / 0.8113

SRCNN [7]
31.20 / 0.8394

Ours (`feat)
28.18 / 0.7757

Ground Truth
PSNR / SSIM

Bicubic
32.48 / 0.8575

Ours (`pixel)
32.30 / 0.8568

SRCNN [7]
33.49 / 0.8741

Ours (`feat)
30.85 / 0.8125

Fig. 4. Additional examples of ×4 single-image super-resolution on examples from the
Set5 (top), Set14 (middle) and BSD100 (bottom) datasets.
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