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Abstract. We consider image transformation problems, where an input
image is transformed into an output image. Recent methods for such
problems typically train feed-forward convolutional neural networks us-
ing a per-pixel loss between the output and ground-truth images. Parallel
work has shown that high-quality images can be generated by defining
and optimizing perceptual loss functions based on high-level features ex-
tracted from pretrained networks. We combine the benefits of both ap-
proaches, and propose the use of perceptual loss functions for training
feed-forward networks for image transformation tasks. We show results
on image style transfer, where a feed-forward network is trained to solve
the optimization problem proposed by Gatys et al. in real-time. Com-
pared to the optimization-based method, our network gives similar quali-
tative results but is three orders of magnitude faster. We also experiment
with single-image super-resolution, where replacing a per-pixel loss with
a perceptual loss gives visually pleasing results.

Keywords: Style transfer, super-resolution, deep learning

1 Introduction

Many classic problems can be framed as image transformation tasks, where a
system receives some input image and transforms it into an output image. Exam-
ples from image processing include denoising, super-resolution, and colorization,
where the input is a degraded image (noisy, low-resolution, or grayscale) and the
output is a high-quality color image. Examples from computer vision include se-
mantic segmentation and depth estimation, where the input is a color image and
the output image encodes semantic or geometric information about the scene.

One approach for solving image transformation tasks is to train a feed-
forward convolutional neural network in a supervised manner, using a per-pixel
loss function to measure the difference between output and ground-truth images.
This approach has been used for example by Dong et al. for super-resolution [1],
by Cheng et al. for colorization [2, 3], by Long et al. for segmentation [4], and by
Eigen et al. for depth and surface normal prediction [5, 6]. Such approaches are
efficient at test-time, requiring only a forward pass through the trained network.

However, the per-pixel losses used by these methods do not capture perceptual
differences between output and ground-truth images. For example, consider two
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Fig. 1. Example results for style transfer (top) and ×4 super-resolution (bottom). For
style transfer, we achieve similar results as Gatys et al. [11] but are three orders of
magnitude faster. For super-resolution our method trained with a perceptual loss is
able to better reconstruct fine details compared to methods trained with per-pixel loss.

identical images offset from each other by one pixel; despite their perceptual
similarity they would be very different as measured by per-pixel losses.

In parallel, recent work has shown that high-quality images can be generated
using perceptual loss functions based not on differences between pixels but in-
stead on differences between high-level image feature representations extracted
from pretrained convolutional neural networks. Images are generated by mini-
mizing a loss function. This strategy has been applied to feature inversion [7] by
Mahendran et al., to feature visualization by Simonyan et al. [8] and Yosinski et
al. [9], and to texture synthesis and style transfer by Gatys et al. [10–12]. These
approaches produce high-quality images, but are slow since inference requires
solving an optimization problem.

In this paper we combine the benefits of these two approaches. We train feed-
forward transformation networks for image transformation tasks, but rather than
using per-pixel loss functions depending only on low-level pixel information, we
train our networks using perceptual loss functions that depend on high-level
features from a pretrained loss network. During training, perceptual losses mea-
sure image similarities more robustly than per-pixel losses, and at test-time the
transformation networks run in real-time.

We experiment on two tasks: style transfer and single-image super-resolution.
Both are inherently ill-posed; for style transfer there is no single correct output,
and for super-resolution there are many high-resolution images that could have
generated the same low-resolution input. Success in either task requires semantic
reasoning about the input image. For style transfer the output must be semanti-
cally similar to the input despite drastic changes in color and texture; for super-
resolution fine details must be inferred from visually ambiguous low-resolution
inputs. In principle a high-capacity neural network trained for either task could
implicitly learn to reason about the relevant semantics; however, in practice we
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need not learn from scratch: the use of perceptual loss functions allows the trans-
fer of semantic knowledge from the loss network to the transformation network.

For style transfer our feed-forward networks are trained to solve the opti-
mization problem from [11]; our results are similar to [11] both qualitatively and
as measured by objective function value, but are three orders of magnitude faster
to generate. For super-resolution we show that replacing the per-pixel loss with
a perceptual loss gives visually pleasing results for ×4 and ×8 super-resolution.

2 Related Work

Feed-forward image transformation. In recent years, a wide variety of image
transformation tasks have been trained with per-pixel loss functions.

Semantic segmentation methods [4, 6, 14–17] produce dense scene labels by
running networks in a fully-convolutional manner over input images, training
with a per-pixel classification loss. Recent methods for depth [6, 5, 18] and sur-
face normal estimation [6, 19] are similar, transforming color input images into
geometrically meaningful output images using a feed-forward convolutional net-
work trained with per-pixel regression [5, 6] or classification [19] losses. Some
methods move beyond per-pixel losses by penalizing image gradients [6], fram-
ing CRF inference as a recurrent layer trained jointly with the rest of the network
[17], or using a CRF loss layer [18] to enforce local consistency in the output.

The architecture of our transformation networks are inspired by [4] and [16],
which use in-network downsampling to reduce the spatial extent of feature maps
followed by in-network upsampling to produce the final output image.

Perceptual optimization. A number of recent papers have used optimiza-
tion to generate images where the objective is perceptual, depending on high-
level features extracted from a convolutional network. Images can be generated
to maximize class prediction scores [8, 9] or individual features [9] in order to
understand the functions encoded in trained networks. Similar optimization tech-
niques can also be used to generate high-confidence fooling images [20, 21].

Mahendran and Vedaldi [7] invert features from convolutional networks by
minimizing a feature reconstruction loss in order to understand the image in-
formation retained by different network layers; similar methods had previously
been used to invert local binary descriptors [22, 23] and HOG features [24].

The work of Dosovitskiy and Brox [25] is particularly relevant to ours, as they
train a feed-forward neural network to invert convolutional features, quickly
approximating a solution to the optimization problem posed by [7]. However,
their feed-forward network is trained with a per-pixel reconstruction loss, while
our networks directly optimize the feature reconstruction loss of [7].

Style Transfer. Gatys et al. [11] perform artistic style transfer, combin-
ing the content of one image with the style of another by jointly minimizing
the feature reconstruction loss of [7] and a style reconstruction loss also based
on features extracted from a pretrained convolutional network; a similar method
had previously been used for texture synthesis [10]. Their method produces high-
quality results, but is computationally expensive since each step of the optimiza-
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Fig. 2. System overview. We train an image transformation network to transform input
images into output images. We use a loss network pretrained for image classification
to define perceptual loss functions that measure perceptual differences in content and
style between images. The loss network remains fixed during the training process.

tion problem requires a forward and backward pass through the pretrained net-
work. To overcome this computational burden, we train a feed-forward network
to quickly approximate solutions to their optimization problem. Concurrent with
our work, [26, 27] also propose feed-forward approaches for fast style transfer.

Image super-resolution. Image super-resolution is a classic problem for
which a variety of techniques have been developed. Yang et al. [28] provide an ex-
haustive evaluation of the prevailing techniques prior to the widespread adoption
of convolutional neural networks. They group super-resolution techniques into
prediction-based methods (bilinear, bicubic, Lanczos, [29]), edge-based meth-
ods [30, 31], statistical methods [32–34], patch-based methods [30, 35–41], and
sparse dictionary methods [42, 43]. Recently [1] achieved excellent performance
on single-image super-resolution using a three-layer convolutional neural network
with a per-pixel Euclidean loss. Other recent methods include [44–46].

3 Method

As shown in Figure 2, our system consists of two components: an image trans-
formation network fW and a loss network φ that is used to define several loss
functions `1, . . . , `k. The image transformation network is a deep residual convo-
lutional neural network parameterized by weights W ; it transforms input images
x into output images ŷ via the mapping ŷ = fW (x). Each loss function computes
a scalar value `i(ŷ, yi) measuring the difference between the output image ŷ and
a target image yi. The image transformation network is trained using stochastic
gradient descent to minimize a weighted combination of loss functions:

W ∗ = arg min
W

Ex,{yi}

[∑
i=1

λi`i(fW (x), yi)

]
(1)
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To address the shortcomings of per-pixel losses and allow our loss functions
to better measure perceptual and semantic differences between images, we draw
inspiration from recent work that generates images via optimization [7–11]. The
key insight of these methods is that convolutional neural networks pretrained for
image classification have already learned to encode the perceptual and semantic
information we would like to measure in our loss functions. We therefore make use
of a network φ pretrained for image classification as a fixed loss network in order
to define our loss functions. Our deep convolutional transformation network is
thus trained using loss functions that are also deep convolutional networks.

We use the loss network φ to define a feature reconstruction loss `φfeat and

style reconstruction loss `φstyle that measure differences in content and style be-
tween images. For each input image x we have a content target yc and a style
target ys. For style transfer the content target yc is the input image x and the
output image ŷ should combine the content of x = yc with the style of ys; we train
one network per style target. For super-resolution the input x is a low-resolution
input, the content target yc is the ground-truth high-resolution image, and style
reconstruction loss is not used; we train one network per super-resolution factor.

3.1 Image Transformation Networks

Our image transformation networks roughly follow the architectural guidelines
set forth by [47]. We eschew pooling layers, instead using strided and fractionally
strided convolutions for in-network downsampling and upsampling. Our network
body comprises five residual blocks [48] using the architecture of [49]. All non-
residual convolutional layers are followed by batch normalization [50] and ReLU
nonlinearities with the exception of the output layer, which instead uses a scaled
tanh to ensure that the output has pixels in the range [0, 255]. The first and last
layers use 9×9 kernels; all other convolutional layers use 3×3 kernels. The exact
architectures of our networks can be found in the supplementary material1.
Inputs and Outputs. For style transfer the input and output are color images
of shape 3×256×256. For super-resolution with upsampling factor f , the output
is a high-resolution patch of shape 3×288×288 and the input is a low-resolution
patch of shape 3× 288/f × 288/f . Since the image transformation networks are
fully-convolutional, at test-time they can be applied to images of any resolution.
Downsampling and Upsampling. For super-resolution with an upsampling
factor of f , we use several residual blocks followed by log2 f convolutional layers
with stride 1/2. This is different from [1] who use bicubic interpolation to up-
sample the low-resolution input before passing it to the network. Rather than
relying on a fixed upsampling function, fractionally-strided convolution allows
the upsampling function to be learned jointly with the rest of the network.

For style transfer our networks use two stride-2 convolutions to downsample
the input followed by several residual blocks and then two convolutional layers
with stride 1/2 to upsample. Although the input and output have the same size,
there are several benefits to networks that downsample and then upsample.

1 Available at the first author’s website.
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y relu2_2 relu3_3 relu4_3 relu5_1 relu5_3

Fig. 3. Similar to [7], we use optimization to find an image ŷ that minimizes the
feature reconstruction loss `φ,jfeat(ŷ, y) for several layers j from the pretrained VGG-16
loss network φ. As we reconstruct from higher layers, image content and overall spatial
structure are preserved, but color, texture, and exact shape are not.

The first is computational. With a naive implementation, a 3×3 convolution
with C filters on an input of size C ×H ×W requires 9HWC2 multiply-adds,
which is the same cost as a 3 × 3 convolution with DC filters on an input of
shape DC × H/D ×W/D. After downsampling, we can therefore use a larger
network for the same computational cost.

The second benefit has to do with effective receptive field sizes. High-quality
style transfer requires changing large parts of the image in a coherent way;
therefore it is advantageous for each pixel in the output to have a large effective
receptive field in the input. Without downsampling, each additional 3×3 convo-
lution increases the effective receptive field size by 2. After downsampling by a
factor of D, each 3× 3 convolution instead increases effective receptive field size
by 2D, giving larger effective receptive fields with the same number of layers.
Residual Connections. He et al. [48] use residual connections to train very
deep networks for image classification. They argue that residual connections
make the identity function easier to learn; this is an appealing property for
image transformation networks, since in most cases the output image should
share structure with the input image. The body of our network thus consists of
several residual blocks, each of which contains two 3 × 3 convolutional layers.
We use the residual block design of [49], shown in the supplementary material.

3.2 Perceptual Loss Functions

We define two perceptual loss functions that measure high-level perceptual and
semantic differences between images. They make use of a loss network φ pre-
trained for image classification, meaning that these perceptual loss functions are
themselves deep convolutional neural networks. In all our experiments, the loss
network φ is the 16-layer VGG network [51] pretrained on ImageNet [52].
Feature Reconstruction Loss. Rather than encouraging the pixels of the
output image ŷ = fW (x) to exactly match the pixels of the target image y, we
instead encourage them to have similar feature representations as computed by
the loss network φ. Let φj(x) be the activations of the jth layer of the network
φ when processing the image x; if j is a convolutional layer then φj(x) will be
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y relu1_2 relu2_2 relu3_3 relu4_3

Fig. 4. Similar to [11], we use optimization to find an image ŷ that minimizes the style
reconstruction loss `φ,jstyle(ŷ, y) for several layers j from the pretrained VGG-16 loss
network φ. The images ŷ preserve stylistic features but not spatial structure.

a feature map of shape Cj × Hj × Wj . The feature reconstruction loss is the
(squared, normalized) Euclidean distance between feature representations:

`φ,jfeat(ŷ, y) =
1

CjHjWj
‖φj(ŷ)− φj(y)‖22 (2)

As demonstrated in [7] and reproduced in Figure 3, finding an image ŷ that
minimizes the feature reconstruction loss for early layers tends to produce images
that are visually indistinguishable from y. As we reconstruct from higher layers,
image content and overall spatial structure are preserved but color, texture,
and exact shape are not. Using a feature reconstruction loss for training our
image transformation networks encourages the output image ŷ to be perceptually
similar to the target image y, but does not force them to match exactly.

Style Reconstruction Loss. The feature reconstruction loss penalizes the out-
put image ŷ when it deviates in content from the target y. We also wish to
penalize differences in style: colors, textures, common patterns, etc. To achieve
this effect, Gatys et al. [10, 11] propose the following style reconstruction loss.

As above, let φj(x) be the activations at the jth layer of the network φ for
the input x, which is a feature map of shape Cj × Hj ×Wj . Define the Gram

matrix Gφj (x) to be the Cj × Cj matrix whose elements are given by

Gφj (x)c,c′ =
1

CjHjWj

Hj∑
h=1

Wj∑
w=1

φj(x)h,w,cφj(x)h,w,c′ . (3)

If we interpret φj(x) as giving Cj-dimensional features for each point on a

Hj ×Wj grid, then Gφj (x) is proportional to the uncentered covariance of the
Cj-dimensional features, treating each grid location as an independent sample.
It thus captures information about which features tend to activate together. The
Gram matrix can be computed efficiently by reshaping φj(x) into a matrix ψ of

shape Cj ×HjWj ; then Gφj (x) = ψψT /CjHjWj .
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The style reconstruction loss is then the squared Frobenius norm of the dif-
ference between the Gram matrices of the output and target images:

`φ,jstyle(ŷ, y) = ‖Gφj (ŷ)−Gφj (y)‖2F . (4)

The style reconstruction loss is well-defined even when ŷ and y have different
sizes, since their Gram matrices will both have the same shape.

As demonstrated in [11] and reproduced in Figure 5, generating an image ŷ
that minimizes the style reconstruction loss preserves stylistic features from the
target image, but does not preserve its spatial structure. Reconstructing from
higher layers transfers larger-scale structure from the target image.

To perform style reconstruction from a set of layers J rather than a single
layer j, we define `φ,Jstyle(ŷ, y) to be the sum of losses for each layer j ∈ J .

3.3 Simple Loss Functions

In addition to the perceptual losses defined above, we also define two simple loss
functions that depend only on low-level pixel information.
Pixel Loss. The pixel loss is the (normalized) Euclidean distance between the
output image ŷ and the target y. If both have shape C ×H ×W , then the pixel
loss is defined as `pixel(ŷ, y) = ‖ŷ − y‖22/CHW . This can only be used when
when we have a ground-truth target y that the network is expected to match.
Total Variation Regularization. To encourage spatial smoothness in the
output image ŷ, we follow prior work on feature inversion [7, 22] and super-
resolution [53, 54] and make use of total variation regularizer `TV (ŷ).

4 Experiments

We perform experiments on two image transformation tasks: style transfer and
single-image super-resolution. Prior work on style transfer has used optimization
to generate images; our feed-forward networks give similar qualitative results but
are up to three orders of magnitude faster. Prior work on single-image super-
resolution with convolutional neural networks has used a per-pixel loss; we show
encouraging qualitative results by using a perceptual loss instead.

4.1 Style Transfer

The goal of style transfer is to generate an image ŷ that combines the content of
a target content image yc with the the style of a target style image ys. We train
one image transformation network per style target for several hand-picked style
targets and compare our results with the baseline approach of Gatys et al. [11].
Baseline. As a baseline, we reimplement the method of Gatys et al. [11]. Given
style and content targets ys and yc and layers j and J at which to perform
feature and style reconstruction, an image ŷ is generated by solving the problem

ŷ = arg min
y
λc`

φ,j
feat(y, yc) + λs`

φ,J
style(y, ys) + λTV `TV (y) (5)
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Fig. 5. Our style transfer networks and [11] minimize the same objective. We compare
their objective values on 50 images; dashed lines and error bars show standard devia-
tions. Our networks are trained on 256× 256 images but generalize to larger images.

where λc, λs, and λTV are scalars, y is initialized with white noise, and opti-
mization is performed using L-BFGS. Unconstrained optimization of Equation 5
often results in images with pixels outside the range [0, 255]. For a more fair
comparison with our method whose output is constrained to this range, for the
baseline we minimize Equation 5 using projected L-BFGS by clipping the image
y to the range [0, 255] at each iteration. Optimization usually converges to satis-
factory results within 500 iterations. This method is slow because each iteration
requires a forward and backward pass through the VGG-16 loss network φ.

Training Details. We train style transfer networks on the MS-COCO dataset [55].
We resize each of the 80k training images to 256 × 256 and train with a batch
size of 4 for 40k iterations, giving roughly two epochs over the training data.
We use Adam [56] with learning rate 1× 10−3. The output images are regular-
ized with total variation regularization with a strength of between 1× 10−6 and
1×10−4, chosen via cross-validation per style target. We do not use weight decay
or dropout, as the model does not overfit within two epochs. For all style transfer
experiments we compute feature reconstruction loss at layer relu3_3 and style
reconstruction loss at layers relu1_2, relu2_2, relu3_3, and relu4_3 of the
VGG-16 loss network φ. Our implementation uses Torch [57] and cuDNN [58];
training takes roughly 4 hours on a single GTX Titan X GPU.

Qualitative Results. In Figure 6 we show qualitative examples comparing our
results with the baseline for a variety of style and content images. In all cases
the hyperparameters λc, λs, and λTV are exactly the same between the two
methods; all content images come from the MS-COCO 2014 validation set.

Although our models are trained with 256× 256 images, they can be applied
in a fully-convolutional manner to images of any size at test-time. In Figure 7
we show examples of style transfer using our models on 512× 512 images.

Overall our results are qualitatively similar to the baseline, but in some
cases our method produces images with more repetitive patterns. For example
in the Starry Night images in Figure 6, our method produces repetitive (but
not identical) yellow splotches; the effect can become more obvious at higher
resolutions, as seen in Figure 7.
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Style
The Starry Night,
Vincent van Gogh,

1889

Style
The Muse,

Pablo Picasso,
1935

Style
Composition VII,

Wassily
Kandinsky, 1913

Style
The Great Wave off
Kanagawa, Hokusai,

1829-1832

Style
Sketch

Style
The Simpsons

Content [11] Ours Content [11] Ours

Fig. 6. Example results of style transfer using our image transformation networks. Our
results are qualitatively similar to Gatys et al. [11] but are much faster to generate (see
Table 1). All generated images are 256× 256 pixels.
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Fig. 7. Example results for style transfer on 512 × 512 images by applying models
trained on 256× 256 images. The style images are the same as Figure 6.

Quantitative Results. The baseline and our method both minimize Equa-
tion 5. The baseline performs explicit optimization over the output image, while
our method is trained to find a solution for any content image yc in a single
forward pass. We may therefore quantitatively compare the two methods by
measuring the degree to which they successfully minimize Equation 5.

We run our method and the baseline on 50 images from the MS-COCO
validation set, using The Muse as a style image. For the baseline we record the
value of the objective function at each iteration of optimization, and for our
method we record the value of Equation 5 for each image; we also compute the
value of Equation 5 when y is equal to the content image yc. Results are shown
in Figure 5. The content image yc achieves a very high loss, and our method
achieves a loss comparable to 50 to 100 iterations of explicit optimization.

Although our networks are trained to minimize Equation 5 for 256 × 256
images, they also succeed at minimizing the objective when applied to larger
images. We repeat the same quantitative evaluation for 50 images at 512× 512
and 1024 × 1024; results are shown in Figure 5. Even at higher resolutions our
model achieves a loss comparable to 50 to 100 iterations of the baseline method.
Speed. Table 1 compares the runtime of our method and the baseline for several
image sizes; for the baseline we report times for varying numbers of optimization
iterations. Across all image sizes, our method takes about half the time of a single
iteration of the baseline. Compared to 500 iterations of the baseline method, our
method is three orders of magnitude faster. Our method processes 512 × 512
images at 20 FPS, making it feasible to run in real-time or on video.

4.2 Single-Image Super-Resolution

In single-image super-resolution, the task is to generate a high-resolution out-
put image from a low-resolution input. This is an inherently ill-posed prob-
lem, since for each low-resolution image there exist multiple high-resolution im-
ages that could have generated it. The ambiguity becomes more extreme as the
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Gatys et al. [11] Speedup
Image Size 100 300 500 Ours 100 300 500

256× 256 3.17 9.52s 15.86s 0.015s 212x 636x 1060x
512× 512 10.97 32.91s 54.85s 0.05s 205x 615x 1026x

1024× 1024 42.89 128.66s 214.44s 0.21s 208x 625x 1042x
Table 1. Speed (in seconds) for our style transfer networks vs the baseline for various
iterations and resolutions. We achieve similar qualitative results (Figure 6) in less time
than a single optimization step of the baseline. All benchmarks use a Titan X GPU.

super-resolution factor grows; for large factors (×4, ×8), fine details of the high-
resolution image may have little or no evidence in its low-resolution version.

To overcome this problem, we train super-resolution networks not with the
per-pixel loss typically used [1] but instead with a feature reconstruction loss
(see Section 3) to allow transfer of semantic knowledge from the pretrained
loss network to the super-resolution network. We focus on ×4 and ×8 super-
resolution since larger factors require more semantic reasoning about the input.

The traditional metrics used to evaluate super-resolution are PSNR and
SSIM [59], both of which have been found to correlate poorly with human as-
sessment of visual quality [60–62]. PSNR and SSIM rely on low-level differences
between pixels, and PSNR operates under the assumption of additive Gaussian
noise. In addition, PSNR is equivalent to the per-pixel loss `pixel, so as measured
by PSNR a model trained to minimize per-pixel loss should always outperform
a model trained to minimize feature reconstruction loss. We therefore emphasize
that the goal of these experiments is not to achieve state-of-the-art PSNR or
SSIM results, but instead to showcase the qualitative difference between models
trained with per-pixel and feature reconstruction losses.

Model Details. We train models to perform ×4 and ×8 super-resolution by
minimizing feature reconstruction loss at layer relu2_2 from the VGG-16 loss
network φ. We train with 288×288 patches from 10k images from the MS-COCO
training set, and prepare low-resolution inputs by blurring with a Gaussian kernel
of width σ = 1.0 and downsampling with bicubic interpolation. We train with
a batch size of 4 for 200k iterations using Adam [56] with a learning rate of
1×10−3 without weight decay or dropout. As a post-processing step, we perform
histogram matching between our network output and the low-resolution input.

Baselines. As a baseline model we use SRCNN [1] for its state-of-the-art per-
formance. SRCNN is a three-layer convolutional network trained to minimize
per-pixel loss on 33× 33 patches from the ILSVRC 2013 detection dataset. SR-
CNN is not trained for ×8 super-resolution, so we can only evaluate it on ×4.

SRCNN is trained for more than 109 iterations, which is not computation-
ally feasible for our models. To account for differences between SRCNN and our
model in data, training, and architecture, we train image transformation net-
works for ×4 and ×8 super-resolution using `pixel; these networks use identical
data, architecture, and training as the networks trained to minimize `feat.
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Ground Truth
This image
Set5 mean

Bicubic
31.78 / 0.8577
28.43 / 0.8114

Ours (`pixel)
31.47 / 0.8573
28.40 / 0.8205

SRCNN [13]
32.99 / 0.8784
30.48 / 0.8628

Ours (`feat)
29.24 / 0.7841
27.09 / 0.7680

Ground Truth
This Image
Set14 mean

BSD100 mean

Bicubic
21.69 / 0.5840
25.99 / 0.7301
25.96 / 0.682

Ours (`pixel)
21.66 / 0.5881
25.75 / 0.6994
25.91 / 0.6680

SRCNN [13]
22.53 / 0.6524
27.49 / 0.7503
26.90 / 0.7101

Ours (`feat)
21.04 / 0.6116
24.99 / 0.6731
24.95 / 63.17

Fig. 8. Results for ×4 super-resolution on images from Set5 (top) and Set14 (bottom).
We report PSNR / SSIM for each example and the mean for each dataset. More results
(including FSIM [63] and VIF [64] metrics) are shown in the supplementary material.

Evaluation. We evaluate all models on the standard Set5 [65], Set14 [66], and
BSD100 [46] datasets. We report PSNR and SSIM [59], computing both only on
the Y channel after converting to the YCbCr colorspace, following [1, 44].
Results. We show results for ×4 super-resolution in Figure 8. Compared to the
other methods, our model trained for feature reconstruction does a very good
job at reconstructing sharp edges and fine details, such as the eyelashes in the
first image and the individual elements of the hat in the second image.

In addition to the automated metrics shown in Figure 8, we also ran a user
study on Amazon Mechanical Turk to evaluate our ×4 results on the BSD100
dataset. In each trial workers were shown a nearest-neighbor upsampling of an
image and results from two methods, and were asked to pick the result they
preferred. All trials were randomized and five workers evaluated each image
pair. Between SRCNN and `feat, a majority of workers preferred `feat on 96%
of images. More details of this study can be found in the supplementary material.

Results for ×8 super-resolution are shown in Figure 9. Again we see that our
`feat model does a good job at edges and fine details compared to other models,
such as the horse’s legs and hooves. The `feat model does not sharpen edges
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Ground Truth
This image
Set5 mean
Set14 mean

BSD100 mean

Bicubic
22.75 / 0.5946
23.80 / 0.6455
22.37 / 0.5518
22.11 / 0.5322

Ours (`pixel)
23.42 / 0.6168
24.77 / 0.6864
23.02 / 0.5787
22.54 / 0.5526

Ours (`feat)
21.90 / 0.6083
23.26 / 0.7058
21.64 / 0.5837
21.35 / 0.5474

Fig. 9. Results for ×8 super-resolution results on an image from the BSD100 dataset.
We report PSNR / SSIM for the example image and the mean for each dataset. More
results (including FSIM [63] and VIF [64]) are shown in the supplementary material.

indiscriminately; compared to the `pixel model, the `feat model sharpens the
boundary edges of the horse and rider but the background trees remain diffuse,
suggesting that the `feat model may be more aware of image semantics.

Many of the results from our `feat models have grid-like artifacts at the pixel
level which harm their PSNR and SSIM compared to baseline methods. Similar
artifacts are visible in Figure 3 upon magnification, suggesting that they are a
result of the feature reconstruction loss and not the architecture of the image
transformation network. Figure 3 shows more pronounced distortions as images
are reconstructed from higher-level features, motivating the use of the relu2_2

features used for training our `feat super-resolution models.
Since our `pixel and our `feat models share the same architecture, data, and

training procedure, all differences between them are due to the difference between
the `pixel and `feat losses. The `pixel loss gives fewer visual artifacts and higher
PSNR values but the `feat loss does a better job at reconstructing fine details,
leading to pleasing visual results.

5 Conclusion

In this paper we have combined the benefits of feed-forward image transfor-
mation tasks and optimization-based methods for image generation by training
feed-forward transformation networks with perceptual loss functions. We have
applied this method to style transfer where we achieve comparable performance
and drastically improved speed compared to existing methods, and to single-
image super-resolution where training with a perceptual loss allows the model
to better reconstruct fine details and edges. In future work we hope to explore
the use of perceptual loss functions for other image transformation tasks.
Acknowledgments Our work is supported by an ONR MURI grant, Yahoo!
Labs, and a hardware donation from NVIDIA.
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