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Introduction to Non-Metric Methods

Introduction to Non-Metric Methods

We cover such problems involving nominal data in this
chapter—that is, data that are discrete and without any natural
notion of similarity or even ordering.

For example (DHS), some teeth are small and fine (as in baleen
whales) for straining tiny prey from the sea; others (as in sharks) come
in multiple rows; other sea creatures have tusks (as in walruses), yet
others lack teeth altogether (as in squid). There is no clear notion of
similarity for this information about teeth.

Most of the other methods we study will involve real-valued feature
vectors with clear metrics.

We may also consider problems involving data tuples and data strings.
And for recognition of these, decision trees and string grammars,
respectively.
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Decision Trees

20 Questions

I am thinking of a person. Ask me up to 20 yes/no questions to
determine who this person is that I am thinking about.

Consider your questions wisely...

How did you ask the questions?

What underlying measure led you the questions, if any?

Most importantly, iterative yes/no questions of this sort require no
metric and are well suited for nominal data.
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Decision Trees

These sequence of questions are a decision tree...

Color?
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FIGURE 8.1. Classification in a basic decision tree proceeds from top to bottom. The questions asked at
each node concern a particular property of the pattern, and the downward links correspond to the possible
values. Successive nodes are visited until a terminal or leaf node is reached, where the category label is read.
Note that the same question, Size?, appears in different places in the tree and that different questions can
have different numbers of branches. Moreover, different leaf nodes, shown in pink, can be labeled by the
same category (e.g., Apple). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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Decision Trees

Decision Trees 101

The root node of the tree, displayed at the top, is connected to
successive branches to the other nodes.

The connections continue until the leaf nodes are reached, implying
a decision.

The classification of a particular pattern begins at the root node,
which queries a particular property (selected during tree learning).

The links off of the root node correspond to different possible values
of the property.

We follow the link corresponding to the appropriate value of the
pattern and continue to a new node, at which we check the next
property. And so on.

Decision trees have a particularly high degree of interpretability.
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Decision Trees

When to Consider Decision Trees

Instances are wholly or partly described by attribute-value pairs.

Target function is discrete valued.

Disjunctive hypothesis may be required.

Possibly noisy training data.

Examples

Equipment or medical diagnosis.
Credit risk analysis.
Modeling calendar scheduling preferences.
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Decision Trees CART

CART for Decision Tree Learning

Assume we have a set of D labeled training data and we have decided
on a set of properties that can be used to discriminate patterns.

Now, we want to learn how to organize these properties into a
decision tree to maximize accuracy.

Any decision tree will progressively split the data into subsets.

If at any point all of the elements of a particular subset are of the
same category, then we say this node is pure and we can stop
splitting.

Unfortunately, this rarely happens and we have to decide between
whether to stop splitting and accept an imperfect decision or instead
to select another property and grow the tree further.
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Decision Trees CART

The basic CART strategy to recursively defining the tree is the
following: Given the data represented at a node, either declare
that node to be a leaf or find another property to use to split
the data into subsets.

There are 6 general kinds of questions that arise:

1 How many branches will be selected from a node?
2 Which property should be tested at a node?
3 When should a node be declared a leaf?
4 How can we prune a tree once it has become too large?
5 If a leaf node is impure, how should the category be assigned?
6 How should missing data be handled?
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Decision Trees CART

Number of Splits

The number of splits at a node, or its branching factor B, is
generally set by the designer (as a function of the way the test is
selected) and can vary throughout the tree.

Note that any split with a factor greater than 2 can easily be
converted into a sequence of binary splits.

So, DHS focuses on only binary tree learning.

But, we note that in certain circumstances for learning and inference,
the selection of a test at a node or its inference may be
computationally expensive and a 3- or 4-way split may be more
desirable for computational reasons.
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Decision Trees CART

Query Selection and Node Impurity

The fundamental principle underlying tree creation is that of
simplicity: we prefer decisions that lead to a simple, compact
tree with few nodes.

We seek a property query T at each node N that makes the data
reaching the immediate descendant nodes as “pure” as possible.

Let i(N) denote the impurity of a node N .

In all cases, we want i(N) to be 0 if all of the patterns that reach the
node bear the same category, and to be large if the categories are
equally represented.

Entropy impurity is the most popular measure:

i(N) = −
∑
j

P (ωj) logP (ωj) . (1)

It will be minimized for a node that has elements of only one class
(pure).
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Decision Trees CART

For the two-category case, a useful definition of impurity is that
variance impurity:

i(N) = P (ω1)P (ω2) (2)

Its generalization to the multi-class is the Gini impurity:

i(N) =
∑
i 6=j

P (ωi)P (ωj) =
1

2

1−
∑
j

P 2(ωj)

 (3)

which is the expected error rate at node N if the category is selected
randomly from the class distribution present at the node.

The misclassification impurity measures the minimum probability
that a training pattern would be misclassified at N :

i(N) = 1−max
j
P (ωj) (4)
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Decision Trees CART
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FIGURE 8.4. For the two-category case, the impurity functions peak at equal class fre-
quencies and the variance and the Gini impurity functions are identical. The entropy,
variance, Gini, and misclassification impurities (given by Eqs. 1–4, respectively) have
been adjusted in scale and offset to facilitate comparison here; such scale and offset do
not directly affect learning or classification. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

For the two-category case, the impurity functions peak at equal class
frequencies.
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Decision Trees CART

Query Selection

Key Question: Given a partial tree down to node N , what
feature s should we choose for the property test T?

The obvious heuristic is to choose the feature that yields as big a
decrease in the impurity as possible.

The impurity gradient is

∆i(N) = i(N)− PLi(NL)− (1− PL)i(NR) , (5)

where NL and NR are the left and right descendants, respectively, PL

is the fraction of data that will go to the left sub-tree when property
T is used.

The strategy is then to choose the feature that maximizes ∆i(N).

If the entropy impurity is used, this corresponds to choosing the
feature that yields the highest information gain.
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Decision Trees CART

What can we say about this strategy?

For the binary-case, it yields one-dimensional optimization problem
(which may have non-unique optima).

In the higher branching factor case, it would yield a
higher-dimensional optimization problem.

In multi-class binary tree creation, we would want to use the twoing
criterion. The goal is to find the split that best separates groups of
the c categories. A candidate “supercategory” C1 consists of all
patterns in some subset of the categories and C2 has the remainder.
When searching for the feature s, we also need to search over possible
category groupings.

This is a local, greedy optimization strategy.

Hence, there is no guarantee that we have either the global optimum
(in classification accuracy) or the smallest tree.

In practice, it has been observed that the particular choice of impurity
function rarely affects the final classifier and its accuracy.
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A Note About Multiway Splits

In the case of selecting a multiway split with branching factor B, the
following is the direct generalization of the impurity gradient function:

∆i(s) = i(N)−
B∑

k=1

Pki(Nk) (6)

This direct generalization is biased toward higher branching factors.

To see this, consider the uniform splitting case.

So, we need to normalize each:

∆iB(s) =
∆i(s)

−
∑B

k=1 Pk logPk

. (7)

And then we can again choose the feature that maximizes this
normalized criterion.
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When to Stop Splitting?

If we continue to grow the tree until each leaf node has its lowest
impurity (just one sample datum), then we will likely have
over-trained the data. This tree will most definitely not generalize
well.

Conversely, if we stop growing the tree too early, the error on the
training data will not be sufficiently low and performance will again
suffer.

So, how to stop splitting?

1 Cross-validation...

2 Threshold on the impurity gradient.

3 Incorporate a tree-complexity term and minimize.

4 Statistical significance of the impurity gradient.
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Stopping by Thresholding the Impurity Gradient

Splitting is stopped if the best candidate split at a node reduces the
impurity by less than the preset amount, β:

max
s

∆i(s) ≤ β . (8)

Benefit 1: Unlike cross-validation, the tree is trained on the complete
training data set.

Benefit 2: Leaf nodes can lie in different levels of the tree, which is
desirable whenver the complexity of the data varies throughout the
range of values.

Drawback: But, how do we set the value of the threshold β?

J. Corso (SUNY at Buffalo) Trees 17 / 1



Decision Trees CART

Stopping by Thresholding the Impurity Gradient

Splitting is stopped if the best candidate split at a node reduces the
impurity by less than the preset amount, β:

max
s

∆i(s) ≤ β . (8)

Benefit 1: Unlike cross-validation, the tree is trained on the complete
training data set.

Benefit 2: Leaf nodes can lie in different levels of the tree, which is
desirable whenver the complexity of the data varies throughout the
range of values.

Drawback: But, how do we set the value of the threshold β?

J. Corso (SUNY at Buffalo) Trees 17 / 1



Decision Trees CART

Stopping by Thresholding the Impurity Gradient

Splitting is stopped if the best candidate split at a node reduces the
impurity by less than the preset amount, β:

max
s

∆i(s) ≤ β . (8)

Benefit 1: Unlike cross-validation, the tree is trained on the complete
training data set.

Benefit 2: Leaf nodes can lie in different levels of the tree, which is
desirable whenver the complexity of the data varies throughout the
range of values.

Drawback: But, how do we set the value of the threshold β?

J. Corso (SUNY at Buffalo) Trees 17 / 1



Decision Trees CART

Stopping by Thresholding the Impurity Gradient

Splitting is stopped if the best candidate split at a node reduces the
impurity by less than the preset amount, β:

max
s

∆i(s) ≤ β . (8)

Benefit 1: Unlike cross-validation, the tree is trained on the complete
training data set.

Benefit 2: Leaf nodes can lie in different levels of the tree, which is
desirable whenver the complexity of the data varies throughout the
range of values.

Drawback: But, how do we set the value of the threshold β?

J. Corso (SUNY at Buffalo) Trees 17 / 1



Decision Trees CART

Stopping with a Complexity Term

Define a new global criterion function

α · size +
∑

leaf nodes

i(N) . (9)

which trades complexity for accuracy. Here, size could represent the
number of nodes or links and α is some positive constant.

The strategy is then to split until a minimum of this global criterion
function has been reached.

Given the entropy impurity, this global measure is related to the
minimum description length principle.

The sum of the impurities at the leaf nodes is a measure of uncertainty
in the training data given the model represented by the tree.

But, again, how do we set the constant α?
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Stopping by Testing the Statistical Significance

During construction, estimate the distribution of the impurity
gradients ∆i for the current collection of nodes.

For any candidate split, estimate if it is statistical different from zero.
One possibility is the chi-squared test.

More generally, we can consider a hypothesis testing approach to
stopping: we seek to determine whether a candidate split differs
significantly from a random split.

Suppose we have n samples at node N . A particular split s sends Pn
patterns to the left branch and (1− P )n patterns to the right branch.
A random split would place Pn1 of the ω1 samples to the left, Pn2 of
the ω2 samples to the left and corresponding amounts to the right.
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The chi-squared statistic calculates the deviation of a particular split s
from this random one:

χ2 =

2∑
i=1

(niL − nie)2

nie
(10)

where niL is the number of ω1 patterns sent to the left under s, and
nie = Pni is the number expected by the random rule.

The larger the chi-squared statistic, the more the candidate split
deviates from a random one.

When it is greater than a critical value (based on desired significance
bounds), we reject the null hypothesis (the random split) and proceed
with s.
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Pruning

Tree construction based on “when to stop splitting” biases the
learning algorithm toward trees in which the greatest impurity
reduction occurs near the root. It makes no attempt to look ahead at
what splits may occur in the leaf and beyond.

Pruning is the principal alternative strategy for tree construction.

In pruning, we exhaustively build the tree. Then, all pairs of
neighboring leafs nodes are considered for elimination.

Any pair that yields a satisfactory increase in impurity (a small one) is
eliminated and the common ancestor node is declared a leaf.

Unbalanced trees often result from this style of pruning/merging.

Pruning avoids the “local”-ness of the earlier methods and uses all of
the training data, but it does so at added computational cost during
the tree construction.
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Assignment of Leaf Node Labels

This part is easy...a particular leaf node should make the label
assignment based on the distribution of samples in it during training.
Take the label of the maximally represented class.

We will see clear justification for this in the next chapter on Decision
Theory.
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Instability of the Tree Construction
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Importance of Feature Choice

The selection of features will ultimately play a major role in accuracy,
generalization, and complexity.
This is an instance of the Ugly Duckling principle.
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FIGURE 8.5. If the class of node decisions does not match the form of the training data,
a very complicated decision tree will result, as shown at the top. Here decisions are
parallel to the axes while in fact the data is better split by boundaries along another
direction. If, however, “proper” decision forms are used (here, linear combinations of
the features), the tree can be quite simple, as shown at the bottom. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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Furthermore, the use of multiple variables in selecting a decision rule
may greatly improve the accuracy and generalization.
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FIGURE 8.6. One form of multivariate tree employs general linear decisions at each
node, giving splits along arbitrary directions in the feature space. In virtually all inter-
esting cases the training data are not linearly separable, and thus the LMS algorithm is
more useful than methods that require the data to be linearly separable, even though the
LMS need not yield a minimum in classification error (Chapter 5). The tree at the bottom
can be simplified by methods outlined in Section 8.4.2. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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ID3 Method

ID3 is another tree growing method.

It assumes nominal inputs.

Every split has a branching factor Bj , where Bj is the number of
discrete attribute bins of the variable j chosen for splitting.

These are, hence, seldom binary.

The number of levels in the trees are equal to the number of input
variables.

The algorithm continues until all nodes are pure or there are no more
variables on which to split.

One can follow this by pruning.
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Decision Trees C4.5

C4.5 Method (in brief)

This is a successor to the ID3 method.

It handles real valued variables like CART and uses the ID3 multiway
splits for nominal data.

Pruning is performed based on statistical significance tests.
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Decision Trees Example

Example from T. Mitchell Book: PlayTennis

Day Outlook Temperature Humidity Wind PlayTennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Decision Trees Example

Which attribute is the best classifier?

High Normal

Humidity

[3+,4-] [6+,1-]

Wind

Weak Strong

[6+,2-] [3+,3-]

  = .940 - (7/14).985 - (7/14).592
  = .151

  = .940 - (8/14).811 - (6/14)1.0
  = .048

Gain (S, Humidity ) Gain (S,          )Wind

=0.940E =0.940E

=0.811E=0.592E=0.985E =1.00E

[9+,5-]S:[9+,5-]S:
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Decision Trees Example

Outlook

Sunny Overcast Rain

[9+,5−]

{D1,D2,D8,D9,D11} {D3,D7,D12,D13} {D4,D5,D6,D10,D14}

[2+,3−] [4+,0−] [3+,2−]

Yes

{D1, D2, ..., D14}

? ?

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9,D11}

Gain (Ssunny , Humidity)

sunnyGain (S , Temperature) =  .970  −  (2/5) 0.0  −  (2/5) 1.0  −  (1/5) 0.0  =  .570

Gain (S sunny , Wind) =  .970  −  (2/5) 1.0  −  (3/5) .918  =  .019

 

=  .970  −  (3/5) 0.0  −  (2/5) 0.0  =  .970
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Decision Trees Example

Hypothesis Space Search by ID3

...

+ + +

A1

+ – + –

A2

A3
+

...

+ – + –

A2

A4
–

+ – + –

A2

+ – +

... ...

–
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Decision Trees Example

Learned Tree

Outlook

Overcast

Humidity

NormalHigh

No Yes

Wind

Strong Weak

No Yes

Yes

RainSunny
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Decision Trees Example

Overfitting Instance

Consider adding a new, noisy training example #15:

Sunny, Hot, Normal, Strong, P layTennis = No

What effect would it have on the earlier tree?
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