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Previously, we've assumed that the forms of the underlying densities
were of some particular known parametric form.

But, what if this is not the case?

Indeed, for most real-world pattern recognition scenarios this
assumption is suspect.

For example, most real-world entities have multimodal distributions
whereas classical parametric densities are primarily unimodal.



S
Nonparametric Methods Overview

@ Previously, we've assumed that the forms of the underlying densities
were of some particular known parametric form.

@ But, what if this is not the case?

@ Indeed, for most real-world pattern recognition scenarios this
assumption is suspect.

@ For example, most real-world entities have multimodal distributions
whereas classical parametric densities are primarily unimodal.

@ We will examine nonparametric procedures that can be used with
arbitrary distributions and without the assumption that the underlying
form of the densities are known.

e Histograms.

o Kernel Density Estimation / Parzen Windows.
o k-Nearest Neighbor Density Estimation.

o Real Example in Figure-Ground Segmentation
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o Consider a single continuous variable z and let's say we have a set D

of N of them {x1,...,2n}. Our goal is to model p(x) from D.
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o Consider a single continuous variable z and let's say we have a set D
of N of them {x1,...,2n}. Our goal is to model p(x) from D.
@ Standard histograms simply partition x into distinct bins of width A;

and then count the number n; of observations x falling into bin 3.
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o Consider a single continuous variable z and let's say we have a set D
of N of them {z1,...,zn}. Our goal is to model p(x) from D.

@ Standard histograms simply partition x into distinct bins of width A;
and then count the number n; of observations x falling into bin 3.

@ To turn this count into a normalized probability density, we simply
divide by the total number of observations N and by the width A; of
the bins.

o This gives us:

i = 1
i = NA, (1)



Histogram Density Representation

@ Consider a single continuous variable = and let's say we have a set D
of N of them {z1,...,znx}. Our goal is to model p(z) from D.

@ Standard histograms simply partition x into distinct bins of width A;
and then count the number n; of observations z falling into bin 3.

@ To turn this count into a normalized probability density, we simply
divide by the total number of observations N and by the width A; of
the bins.

@ This gives us:

1

pi = NA, (1)

@ Hence the model for the density p(z) is constant over the width of
each bin. (And often the bins are chosen to have the same width

A;=A)
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@ The green curve is the underlying true
density from which the samples were
drawn. It is a mixture of two Gaussians.




@ The green curve is the underlying true
density from which the samples were
drawn. It is a mixture of two Gaussians.

@ When A is very small (top), the
resulting density is quite spiky and
hallucinates a lot of structure not
present in p(x).
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@ The green curve is the underlying true s

A=0.04
density from which the samples were 2 ﬂ
drawn. It is a mixture of two Gaussians. 20 05 1
A =008
e When A is very small (top), the O—A—A
resulting density is quite spiky and T !
hallucinates a lot of structure not 0‘_&_‘i
present in p(x). 0 08 '

@ When A is very big (bottom), the resulting density is quite smooth
and consequently fails to capture the bimodality of p(x).



@ The green curve is the underlying true

A=0.04
density from which the samples were 2 ﬂ
drawn. It is a mixture of two Gaussians. 20 05 1

A =008
e When A is very small (top), the o——&—-d
resulting density is quite spiky and T !
hallucinates a lot of structure not 0‘_&_‘i
present in p(x). 0 08 '

@ When A is very big (bottom), the resulting density is quite smooth
and consequently fails to capture the bimodality of p(x).

@ It appears that the best results are obtained for some intermediate
value of A, which is given in the middle figure.
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@ The green curve is the underlying true

A=0.04
density from which the samples were 2 ﬂ
drawn. It is a mixture of two Gaussians. 20 05 1

A =008
e When A is very small (top), the o——&—-d
resulting density is quite spiky and T !
hallucinates a lot of structure not 0‘_&_‘i
present in p(x). 0 08 !

@ When A is very big (bottom), the resulting density is quite smooth
and consequently fails to capture the bimodality of p(x).

@ It appears that the best results are obtained for some intermediate
value of A, which is given in the middle figure.

@ In principle, a histogram density model is also dependent on the
choice of the edge location of each bin.
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estimator?

@ What are the advantages and disadvantages of the histogram density
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estimator?

@ What are the advantages and disadvantages of the histogram density
@ Advantages:

e Simple to evaluate and simple to use.

e One can throw away D once the histogram is computed.
e Can be computed sequentially if data continues to come in.
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@ What are the advantages and disadvantages of the histogram density
estimator?

@ Advantages:

e Simple to evaluate and simple to use.

e One can throw away D once the histogram is computed.

e Can be computed sequentially if data continues to come in.
@ Disadvantages:

o The estimated density has discontinuities due to the bin edges rather
than any property of the underlying density.

o Scales poorly (curse of dimensionality): we would have M bins if we
divided each variable in a D-dimensional space into M bins.
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@ Lesson 1: To estimate the probability density at a particular location,
we should consider the data points that lie within some local
neighborhood of that point.

e This requires we define some distance measure.

o There is a natural smoothness parameter describing the spatial extent
of the regions (this was the bin width for the histograms).
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@ Lesson 1: To estimate the probability density at a particular location,
we should consider the data points that lie within some local
neighborhood of that point.

e This requires we define some distance measure.

o There is a natural smoothness parameter describing the spatial extent
of the regions (this was the bin width for the histograms).

@ Lesson 2: The value of the smoothing parameter should neither be
too large or too small in order to obtain good results.
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@ Lesson 1: To estimate the probability density at a particular location,
we should consider the data points that lie within some local
neighborhood of that point.

e This requires we define some distance measure.
o There is a natural smoothness parameter describing the spatial extent
of the regions (this was the bin width for the histograms).
@ Lesson 2: The value of the smoothing parameter should neither be
too large or too small in order to obtain good results.

@ With these two lessons in mind, we proceed to kernel density
estimation and nearest neighbor density estimation, two closely
related methods for density estimation.

o F = = £ DA
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e Consider again samples x from underlying density p(x).
@ Let R denote a small region containing x.

Do
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e Consider again samples x from underlying density p(x).
@ Let R denote a small region containing x.

@ The probability mass associated with R is given by

P = /R p(x')dx’
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e Consider again samples x from underlying density p(x).
@ Let R denote a small region containing x.

@ The probability mass associated with R is given by

P = / p(x")dx’ (2)
R
@ Suppose we have n samples x € D. The probability of each sample
falling into R is P.

@ How will the total number of k points falling into R be distributed?
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e Consider again samples x from underlying density p(x).
@ Let R denote a small region containing x.

@ The probability mass associated with R is given by

P = / p(x")dx’ (2)
R
@ Suppose we have n samples x € D. The probability of each sample
falling into R is P.

@ How will the total number of k points falling into R be distributed?
@ This will be a binomial distribution:

P, = (’;) Pk — pynt (3)
o



@ The expected value for k is thus

E[k] =nP
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@ The expected value for k is thus

E[k] =nP

@ The binomial for k peaks very sharply about the mean. So, we expect

(4)
k/n to be a very good estimate for the probability P (and thus for
the space-averaged density).
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@ The expected value for k is thus

E[k] =nP (4)

@ The binomial for k peaks very sharply about the mean. So, we expect
k/n to be a very good estimate for the probability P (and thus for
the space-averaged density).

@ This estimate is increasingly accurate as n increases.

relative
probability
1

0.5




@ Assuming continuous p(x) and that R is so small that p(x) does not
appreciably vary within it, we can write:
/ p(x')dx’ ~ p(x)V
R

where x is a point within R and V is the volume enclosed by R.

(5)
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@ Assuming continuous p(x) and that R is so small that p(x) does not
appreciably vary within it, we can write:

/R p(x')dx’

where x is a point within R and V is the volume enclosed by R.

o After some rearranging, we get the following estimate for p(x)

~

~ p(x)V

(5)

p(x) i

v
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@ Simulated an example of example the density at 0.5 for an underlying

zero-mean, unit variance Gaussian.

@ Varied the volume used to estimate the density.
@ Red=1000, Green=2000, Blue=3000, Yellow=4000, Black=5000.

X is 0.500000 and p(x) is 0.352065

0.2

0.3

0.4

x is 0.500000 and p(x) is 0.352065

0.1 0.2 0.3 0.4 0.5



Practical Concerns

assumptions:

@ The validity of our estimate depends on two contradictory

@ The region R must be sufficiently small the the density is
approximately constant over the region.

@ The region R must be sufficiently large that the number & of points
falling inside it is sufficient to yield a sharply peaked binomial.
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Practical Concerns

@ The validity of our estimate depends on two contradictory
assumptions:
@ The region R must be sufficiently small the the density is
approximately constant over the region.
@ The region R must be sufficiently large that the number & of points
falling inside it is sufficient to yield a sharply peaked binomial.

@ Another way of looking it is to fix the volume V' and increase the
number of training samples. Then, the ratio k/n will converge as

desired. But, this will only yield an estimate of the space-averaged
density (P/V).



Practical Concerns

@ The validity of our estimate depends on two contradictory
assumptions:

© The region R must be sufficiently small the the density is
approximately constant over the region.

@ The region R must be sufficiently large that the number k of points
falling inside it is sufficient to yield a sharply peaked binomial.

@ Another way of looking it is to fix the volume V' and increase the
number of training samples. Then, the ratio k/n will converge as
desired. But, this will only yield an estimate of the space-averaged
density (P/V).

e We want p(x), so we need to let V approach 0. However, with a
fixed n, R will become so small, that no points will fall into it and
our estimate would be useless: p(x) ~ 0.

J. Corso (SUNY at Buffalo) Nonparametric Methods 14 / 49



Practical Concerns

@ The validity of our estimate depends on two contradictory
assumptions:

© The region R must be sufficiently small the the density is
approximately constant over the region.

@ The region R must be sufficiently large that the number k of points
falling inside it is sufficient to yield a sharply peaked binomial.

@ Another way of looking it is to fix the volume V' and increase the
number of training samples. Then, the ratio k/n will converge as
desired. But, this will only yield an estimate of the space-averaged
density (P/V).

e We want p(x), so we need to let V approach 0. However, with a
fixed n, R will become so small, that no points will fall into it and
our estimate would be useless: p(x) ~ 0.

o Note that in practice, we cannot let V' to become arbitrarily small
because the number of samples is always limited.
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Kernel Density Estimation Practical Concerns

How can we skirt these limitations when an unlimited number of samples
if available?

@ To estimate the density at x, form a sequence of regions R, Ro,...
containing x with the Ry having 1 sample (n; = 1), R2 having 2
samples (ny = 2) and so on.
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Kernel Density Estimation Practical Concerns
How can we skirt these limitations when an unlimited number of samples
if available?
@ To estimate the density at x, form a sequence of regions R, Ro,...
containing x with the Ry having 1 sample (n; = 1), R2 having 2
samples (ny = 2) and so on.

o Let V,, be the volume of R, k, be the number of samples falling in
Ry, and p,(x) be the nth estimate for p(x):

kn

(%) = 1o (7)
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Kernel Density Estimation Practical Concerns

How can we skirt these limitations when an unlimited number of samples
if available?

@ To estimate the density at x, form a sequence of regions R, Ro,...
containing x with the Ry having 1 sample (n; = 1), R2 having 2
samples (ny = 2) and so on.

o Let V,, be the volume of R, k, be the number of samples falling in
Ry, and p,(x) be the nth estimate for p(x):

kn

(%) = 1o (7)

@ If p,(x) is to converge to p(x) we need the following three conditions

nh_)IgOVn =0 (8)
n11—>120kn =00 9)
nh_)rglokn/n =0 (10)
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Kernel Density Estimation Practical Concerns

o lim,_ .~ V;, = 0 ensures that our space-averaged density will converge
to p(x).
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Kernel Density Estimation Practical Concerns

o lim,_ .~ V;, = 0 ensures that our space-averaged density will converge
to p(x).

@ lim,,_,oo k, = 0o basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
peaked).
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Kernel Density Estimation Practical Concerns

o lim,_ .~ V;, = 0 ensures that our space-averaged density will converge
to p(x).

@ lim,,_,oo k, = 0o basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
peaked).

@ lim, o k,/n = 0 is required for p,(x) to converge at all. It also says
that although a huge number of samples will fall within the region
Ry, they will form a negligibly small fraction of the total number of
samples.
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o lim,_ .~ V;, = 0 ensures that our space-averaged density will converge
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@ lim,,_,oo k, = 0o basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
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@ lim, o k,/n = 0 is required for p,(x) to converge at all. It also says
that although a huge number of samples will fall within the region
Ry, they will form a negligibly small fraction of the total number of
samples.

@ There are two common ways of obtaining regions that satisfy these
conditions:

J. Corso (SUNY at Buffalo) Nonparametric Methods 16 / 49



Kernel Density Estimation Practical Concerns

limy,,— o Vi, = 0 ensures that our space-averaged density will converge
to p(x).
lim,,_, 0 kn = 00 basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
peaked).
lim,, 00 kn/n = 0 is required for p,(x) to converge at all. It also says
that although a huge number of samples will fall within the region
Ry, they will form a negligibly small fraction of the total number of
samples.
There are two common ways of obtaining regions that satisfy these
conditions:

© Shrink an initial region by specifying the volume V,, as some function

of n such as V;, = 1/y/n. Then, we need to show that p, (x) converges
to p(x). (This is like the Parzen window we'll talk about next.)
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Kernel Density Estimation Practical Concerns

limy,,— o Vi, = 0 ensures that our space-averaged density will converge
to p(x).
lim,,_, 0 kn = 00 basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
peaked).
lim,, 00 kn/n = 0 is required for p,(x) to converge at all. It also says
that although a huge number of samples will fall within the region
Ry, they will form a negligibly small fraction of the total number of
samples.
There are two common ways of obtaining regions that satisfy these
conditions:
© Shrink an initial region by specifying the volume V,, as some function
of n such as V;, = 1/y/n. Then, we need to show that p, (x) converges
to p(x). (This is like the Parzen window we'll talk about next.)
@ Specify k,, as some function of n such as k,, = v/n. Then, we grow the

volume V,, until it encloses k,, neighbors of x. (This is the
k-nearest-neighbor).
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Kernel Density Estimation Practical Concerns

o lim,_ .~ V;, = 0 ensures that our space-averaged density will converge
to p(x).

@ lim,,_,oo k, = 0o basically ensures that the frequency ratio will
converge to the probability P (the binomial will be sufficiently
peaked).

@ lim, o k,/n = 0 is required for p,(x) to converge at all. It also says
that although a huge number of samples will fall within the region
Ry, they will form a negligibly small fraction of the total number of
samples.

@ There are two common ways of obtaining regions that satisfy these
conditions:

© Shrink an initial region by specifying the volume V,, as some function
of n such as V;, = 1/y/n. Then, we need to show that p, (x) converges
to p(x). (This is like the Parzen window we'll talk about next.)

@ Specify k,, as some function of n such as k,, = v/n. Then, we grow the

volume V,, until it encloses k,, neighbors of x. (This is the
k-nearest-neighbor).

Both of these methods converge...
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Kernel Density Estimation Practical Concerns

n=1 n=4 n=9 n=16
V=1 (O m o) -
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Parzen Windows

@ Let's temporarily assume the region R is a d-dimensional hypercube
with h,, being the length of an edge.
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Parzen Windows

o Let’s temporarily assume the region R is a d-dimensional hypercube
with h,, being the length of an edge.
@ The volume of the hypercube is given by

Vo =he .

(11)
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Parzen Windows

o Let’s temporarily assume the region R is a d-dimensional hypercube
with h,, being the length of an edge.

@ The volume of the hypercube is given by

V, =ht . (11)

@ We can derive an analytic expression for k,:
o Define a windowing function:

1 |u;| <1/2 j=1,...,d
plwy =4 Tl=Y (12)
0 otherwise

e This windowing function ¢ defines a unit hypercube centered at the
origin.

o Hence, p((x —x;)/hy,) is equal to unity if x; falls within the hypercube
of volume V,, centered at x, and is zero otherwise.

=] 5



Kernel Density Estimation Parzen Windows

@ The number of samples in this hypercube is therefore given by

ke = izn;go (Xh_nX> . (13)
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Kernel Density Estimation Parzen Windows

@ The number of samples in this hypercube is therefore given by
n
kn:;¢<xf:nxi> . (13)
@ Substituting in equation (7), p(x) = ky/(nV,,) yields the estimate

=23 e (5 (19
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Kernel Density Estimation Parzen Windows

@ The number of samples in this hypercube is therefore given by
" X —X;
kn:Zg0< - ) : (13)
i=1 "
@ Substituting in equation (7), p(x) = ky/(nV,,) yields the estimate
1o~ 1 X —X;
W(x)= -3 — . 14
mi0 =13y (=) (14)

@ Hence, the windowing function ¢, in this context called a Parzen
window, tells us how to weight all of the samples in D to determine
p(x) at a particular x.
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Parzen Windows

5 h = 0.005
0 0 A/H—AﬂJL A/A" U AW%
5 : 50 05 1
A =0.08 h=0.07
—— /\
0 0
50 0.5 1 50 0.5 1
A =025 h =02
o — - i . /36%
0 0.5 1 0 0.5 1
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Parzen Windows

h = 0.005

o

5

1
@ But, what undesirable traits from histograms are inherited by Parzen
window density estimates of the form we've just defined?



Parzen Windows

5 A =0.04 5 h = 0.005 ﬂ " E ?
0 0
0 0.5 1 0 0.5 1
5 5
A =0.08 h=0.07
—— /\
0 0
5O 0.5 1 50 0.5 1
A =025 h =02
o o /36%
0 0.5 1 0 0.5 1

@ But, what undesirable traits from histograms are inherited by Parzen
window density estimates of the form we've just defined?

@ Discontinuities...

@ Dependence on the bandwidth.

o F = = £ DA
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Parzen Windows

o What if we allow a more general class of windowing functions rather
than the hypercube?

o If we think of the windowing function as an interpolator, rather than
considering the window function about x only, we can visualize it as a
kernel sitting on each data sample x; in D.
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Generalizing the Kernel Function

o What if we allow a more general class of windowing functions rather
than the hypercube?

o If we think of the windowing function as an interpolator, rather than
considering the window function about x only, we can visualize it as a
kernel sitting on each data sample x; in D.

@ And, if we require the following two conditions on the kernel function
¢, then we can be assured that the resulting density p,(x) will be
proper: non-negative and integrate to 1.

p(x) =0 (15)
/go(u)du =1 (16)

@ For our previous case of V;, = h¢, then it follows p,(x) will also
satisfy these conditions.
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Parzen Windows

@ A popular choice of the kernel is the Gaussian kernel

() = = |50
p(u) = ——exp |[—=u
4 V2T 2
e~ -
-y N N
/7 / \\\\/< \
= VNN N
// /7 7 7 N\ AN \\
///// // \\\\\\ N
= =.= == X
1 2 3 4 5 6 7
@ The resulting density is given by:
1< 1 2]
T)=— ———exp | =5 (x — x;
o) = 230 e | g (x- x)

i=1

o It will give us smoother estimates without the discontinuites from the

=] 5

hypercube kernel.
). Corso (SUNY at Buffalo) | N T e v e V ey
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Parzen Windows

on p,(x)?

@ An important question is what effect does the window width h,, have
o Define d0,(x) as

(19)

(20)
=] 5
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Parzen Windows

@ hy, clearly affects both the amplitude and the width of §,,(x).
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Parzen Windows

@ hy, clearly affects both the amplitude and the width of §,,(x).




Parzen Windows

@ But, for any value of h,, the distribution is normalized:
1 X —X;
/6(X—Xi)dX:/Vngp( hn v

) dx — /go(u)du 1
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Parzen Windows

@ But, for any value of h,, the distribution is normalized:
1 _ .
/6(x— X;)dx = / — %) gx = /go(u)du =1 (21)
Vi hn,

o If V,, is too large, the estimate will suffer from too little resolution.
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Parzen Windows

@ But, for any value of h,, the distribution is normalized:
1 _ .
/6(x— X;)dx = / o () ax = /go(u)du =1 (21)
Vn b,

o If V,, is too large, the estimate will suffer from too little resolution.

@ If V, is too small, the estimate will suffer from too much variability.
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Parzen Windows

But, for any value of h,,, the distribution is normalized:

/5x deX—/ (X Xz)dxz/go(u)duzl (21)

If V,, is too large, the estimate will suffer from too little resolution.

If V,, is too small, the estimate will suffer from too much variability.

In theory (with an unlimited number of samples), we can let V,, slowly
approach zero as n increases and then p,(x) will converge to the
unknown p(x). But, in practice, we can, at best, seek some
compromise.

u]
)
I
il
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)
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Parzen Windows

hy =1 hy =05 hy =01
n=1
\
2 0 2 2 0 2 2 0 2
n=10
2 0 2 2 0 2 2 0 2
n=100
2 0 2 2 0 2 2 0 2
n=oo
2 0 2 2 0 2 2 0 2
=} 5 = E £ DA
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Parzen Windows

h=0.5

h=0.2

n=16

0
1
n=256

0
1
n=oco

Q>
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Parzen Windows

o Estimate the densities for each category.

o Classify a query point by the label corresponding to the maximum
posterior (i.e., one can include priors).

Do
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Parzen Windows

o Estimate the densities for each category.

o Classify a query point by the label corresponding to the maximum
posterior (i.e., one can include priors).

@ As you guessed it, the decision regions for a Parzen window-based
classifier depend upon the kernel function.

X2




Parzen Windows

(which is our ultimate need).

@ During training, we can make the error arbitrarily low by making the
window sufficiently small, but this will have an ill-effect during testing

@ Think of any possibilities for system rules of choosing the kernel?
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Parzen Windows

@ During training, we can make the error arbitrarily low by making the
window sufficiently small, but this will have an ill-effect during testing
(which is our ultimate need).

@ Think of any possibilities for system rules of choosing the kernel?

@ One possibility is to use cross-validation. Break up the data into a
training set and a validation set. Then, perform training on the
training set with varying bandwidths. Select the bandwidth that
minimizes the error on the validation set.

u]
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Parzen Window-Based Classifiers

@ During training, we can make the error arbitrarily low by making the
window sufficiently small, but this will have an ill-effect during testing
(which is our ultimate need).

@ Think of any possibilities for system rules of choosing the kernel?

@ One possibility is to use cross-validation. Break up the data into a
training set and a validation set. Then, perform training on the
training set with varying bandwidths. Select the bandwidth that
minimizes the error on the validation set.

@ There is little theoretical justification for choosing one window width
over another.
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k Nearest Neighbors

Parzen window estimators.

@ Selecting the best window / bandwidth is a severe limiting factor for

@ ky,-NN methods circumvent this problem by making the window size a
function of the actual training data.

DA

30 / 49



k Nearest Neighbors

@ Selecting the best window / bandwidth is a severe limiting factor for
Parzen window estimators.

@ ky,-NN methods circumvent this problem by making the window size a
function of the actual training data.

@ The basic idea here is to center our window around x and let it grow
until it captures k,, samples, where k,, is a function of n.
e These samples are the k,, nearest neighbors of x.
o If the density is high near x then the window will be relatively small
leading to good resolution.
o If the density is low near x, the window will grow large, but it will stop
soon after it enters regions of higher density.
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k, Nearest Neighbor Methods

@ Selecting the best window / bandwidth is a severe limiting factor for
Parzen window estimators.

@ k,-NN methods circumvent this problem by making the window size a
function of the actual training data.

@ The basic idea here is to center our window around x and let it grow
until it captures k,, samples, where k,, is a function of n.

e These samples are the k,, nearest neighbors of x.

o If the density is high near x then the window will be relatively small
leading to good resolution.

o If the density is low near x, the window will grow large, but it will stop
soon after it enters regions of higher density.

o In either case, we estimate p,(x) according to

pn(x) = (22)
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Kernel Density Estimation k Nearest Neighbors

o We want k, to go to infinity as n goes to infinity thereby assuring us
that &, /n will be a good estimate of the probability that a point will
fall in the window of volume V/,.
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Kernel Density Estimation k Nearest Neighbors

o We want k, to go to infinity as n goes to infinity thereby assuring us
that &, /n will be a good estimate of the probability that a point will
fall in the window of volume V/,.

@ But, we also want k, to grow sufficiently slowly so that the size of
our window will go to zero.

@ Thus, we want &, /n to go to zero.

@ Recall these conditions from the earlier discussion; these will ensure
that p,(x) converges to p(x) as n approaches infinity.
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k Nearest Neighbors

@ Notice the discontinuities in the slopes of the estimate.

px)

p(x)




k Nearest Neighbors

@ We don't expect the density estimate from 1 sample to be very good,
but in the case of k-NN it will diverge!
e With n =1 and k, = /n = 1, the estimate for p,(x) is

1
Pal®) = 2|z — x|

(23)
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But, as we increase the number of samples, the estimate will improve.
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k Nearest Neighbors

@ The k,-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?
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k Nearest Neighbors

@ The k,-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?

@ How do we specify the k,,7

@ We saw earlier that the specification of k,, can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).

o F = = £ DA
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choose different values of k.

But, like the Parzen window size, one choice is as good as another
absent any additional information.



k Nearest Neighbors

@ The k,-NN Estimator suffers from an analogous flaw from which the
Parzen window methods suffer. What is it?

@ How do we specify the k,,7

@ We saw earlier that the specification of k,, can lead to radically
different density estimates (in practical situations where the number
of training samples is limited).

@ One could obtain a sequence of estimates by taking k,, = k11/n and
choose different values of k.

@ But, like the Parzen window size, one choice is as good as another
absent any additional information.

@ Similarly, in classification scenarios, we can base our judgement on
classification error.

[m] = =

B WSSV Noupometric Methods 217



Kernel Density-Based Classification

@ We can directly apply the k&-NN methods to estimate the posterior
probabilities P(w;|x) from a set of n labeled samples.
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@ Place a window of volume V around x and capture k samples, with
k; turning out to be of label w;.
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Kernel Density-Based Classification

@ We can directly apply the k&-NN methods to estimate the posterior
probabilities P(w;|x) from a set of n labeled samples.

@ Place a window of volume V around x and capture k samples, with
k; turning out to be of label w;.

@ The estimate for the joint probability is thus

k.
paxoi) = (24)

@ A reasonable estimate for the posterior is thus

Zcpn(x7 wc) k

@ Hence, the posterior probability for w; is simply the fraction of
samples within the window that are labeled w;. This is a simple and
intuitive result. L

B WSSV Noupaometric Methods YT
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Example: Figure-Ground Discrimination

Example: Figure-Ground Discrimination
Source: Zhao and Davis. lterative Figure-Ground Discrimination. ICPR 2004.

o Figure-ground discrimination is an important low-level vision task.

@ Want to separate the pixels that contain some foreground object
(specified in some meaningful way) from the background.

infut step=1 step=2 step=3
step=4 step=h step=h

b e
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@ This paper presents a method for figure-ground discrimination based
on non-parametric densities for the foreground and background.

@ They use a subset of the pixels from each of the two regions.

@ They propose an algorithm called iterative sampling-expectation
for performing the actual segmentation.

@ The required input is simply a region of interest (mostly) containing
the object.

DA
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vector.

e Given a set of n samples S = {x;} where each x; is a d-dimensional

@ We know the kernel density estimate is defined as

d
R 1 - (Yj - Xij)
p = 2 B —
(y) noy...oq ;g gy
dimension.

(26)
where the same kernel ¢ with different bandwidth o is used in each

DA
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@ The representation used here is a function of RGB:

r=R/(R+G+DB) (27)
9=G/(R+G+ B) (28)
s=(R+G+B)/3 (29)

@ Separating the chromaticity from the brightness allows them to us a
wider bandwidth in the brightness dimension to account for variability
due to shading effects.

@ And, much narrower kernels can be used on the r and g chromaticity
channels to enable better discrimination.

o F = = £ DA
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@ Given a sample of pixels S = {x; = (r;, ¢, si) }, the color density
estimate is given by

~

P(x=(rg,s

ZKU'T ag(g 9i) Ko, (s —si) (30)
where we have simplified the kernel definition
1 t

K,(t)=—p | —

0=2¢(%)

@ They use Gaussian kernels

(31)

Kolt) = —

1/t\?
= e — | = 32
mxp[Q(o)] (32)
with a different bandwidth in each dimension.D -
). Corso (SUNY at Buffalo) | N T e v e V ey
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@ The bandwidth for each channel is calculated directly from the image
based on sample statistics.

o~ 1.066n"

1/5
here 62 is th I i
where 6 is the sample variance.

(33)
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e For initialization, they compute a distance between the foreground
and background distribution by varying the scale of a single Gaussian
kernel (on the foreground).

@ To evaluate the “significance” of a particular scale, they compute the
normalized KL-divergence:

— Y Prylxi) log 2=
Z?:l P fg (xi)

where Pfg and Pbg are the density estimates for the foreground and
background regions respectively. To compute each, they use about
6% of the pixels (using all of the pixels would lead to quite slow
performance).

nKL(Pygl| Pog) =

(34)

=] F = E £ DA
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Example: Figure-Ground Discrimination

o

.

nkL-divergence

1 15 2 25 3 35 4 45 5
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@ Given the initial segmentation, they need to refine the models and
labels to adapt better to the image.

@ However, this is a chicken-and-egg problem. If we know the labels, we
could compute the models, and if we knew the models, we could
compute the best labels.

o = E E = 9ace
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Given the initial segmentation, they need to refine the models and
labels to adapt better to the image.

However, this is a chicken-and-egg problem. If we know the labels, we
could compute the models, and if we knew the models, we could
compute the best labels.

They propose an EM algorithm for this. The basic idea is to alternate
between estimating the probability that each pixel is of the two
classes, and then given this probability to refine the underlying
models.

EM is guaranteed to converge (but only to a local minimum).



Example: Figure-Ground Discrimination

© Initialize using the normalized KL-divergence.
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Example: Figure-Ground Discrimination

Q Initialize using the normalized KL-divergence.

@ Uniformly sample a set of pixel from the image to use in the kernel
density estimation. This is essentially the ‘M’ step (because we have

a non-parametric density).
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@ Uniformly sample a set of pixel from the image to use in the kernel
density estimation. This is essentially the ‘M’ step (because we have
a non-parametric density).

© Update the pixel assignment based on maximum likelihood (the ‘E’
step).
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Example: Figure-Ground Discrimination

Initialize using the normalized KL-divergence.

Uniformly sample a set of pixel from the image to use in the kernel
density estimation. This is essentially the ‘M’ step (because we have
a non-parametric density).

Update the pixel assignment based on maximum likelihood (the ‘E’
step).

Repeat until stable.

One can use a hard assignment of the pixels and the kernel density
estimator we've discussed, or a soft assignment of the pixels and then
a weighted kernel density estimate (the weight is between the
different classes).
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Example: Figure-Ground Discrimination

Initialize using the normalized KL-divergence.

Uniformly sample a set of pixel from the image to use in the kernel
density estimation. This is essentially the ‘M’ step (because we have
a non-parametric density).

Update the pixel assignment based on maximum likelihood (the ‘E’
step).

Repeat until stable.

One can use a hard assignment of the pixels and the kernel density
estimator we've discussed, or a soft assignment of the pixels and then
a weighted kernel density estimate (the weight is between the
different classes).

The overall probability of a pixel belonging to the foreground class

Pry(y ZZPfg X;) f[ ( $”> (35)
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Example: Figure-Ground Discrimination

Results: Stability

Source: Zhao and Davis. Iterative Figure-Ground Discrimination. ICPR 2004.

wiwlwlwle
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Results

Source: Zhao and Davis. lterative Figure-Ground Discrimination. ICPR 2004.
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Example: Figure-Ground Discrimination

Results

Source: Zhao and Davis. lterative Figure-Ground Discrimination. ICPR 2004.
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