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Introduction

Now that we’ve built an intuition for some pattern classifiers, let’s
take a step back and look at some of the more foundational
underpinnings.

Algorithm-Independent means

those mathematical foundations that do not depend upon the
particular classifier or learning algorithm used;
techniques that can be used in conjunction with different learning
algorithms, or provide guidance in their use.

Specifically, we will cover

1 Lack of inherent superiority of any one particular classifier;
2 Some systematic ways for selecting a particular method over another

for a given scenario;
3 Methods for integrating component classifiers, including bagging, and

(in depth) boosting.
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Lack of Inherent Superiority No Free Lunch Theorem

No Free Lunch Theorem

The key question we inspect: If we are interested solely in the
generalization performance, are there any reasons to prefer one
classifier or learning algorithm over another?

Simply put, No!

If we find one particular algorithm outperforming another in a
particular situation, it is a consequence of its fit to the particular
pattern recognition problem, not the general superiority of the
algorithm.

NFLT should remind you that we need to focus on the particular
problem at hand, the assumptions, the priors, the data and the cost.
Recall the fish problem from earlier in the semester.

For more information, refer to http://www.no-free-lunch.org/.
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Lack of Inherent Superiority No Free Lunch Theorem

Judging Classifier Performance

We need to be more clear about how we judge classifier performance.

We’ve thus far considered the performance on an i.i.d. test data set.

But, this has drawbacks in some cases:

1 In discrete situations with large training and testing sets, they
necessarily overlap. We are hence testing on training patterns.

2 In these cases, most sufficiently powerful techniques (e.g., nearest
neighbor methods) can perfectly learn the training set.

3 For low-noise or low-Bayes error cases, if we use an algorithm powerful
enough to learn the training set, then the upper limit of the i.i.d. error
decreases as the training set size increases.

Thus, we will use the off-training set error, which is the error on
points not in the training set.

If the training set is very large, then the maximum size of the
off-training set is necessarily small.
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Lack of Inherent Superiority No Free Lunch Theorem

We need to tie things down with concrete notation.

Consider a two-class problem.

We have a training set D consisting of pairs (xi, yi) with xi being the
patterns and yi = ±1 being the classes for i = 1, . . . , n.

Assume the data is discrete.

We assume our data has been generated by some unknown target
function F (x) which we want to learn (i.e., yi = F (xi)).

Typically, we have some random component in the data giving a
non-zero Bayes error rate.

Let H denote the finite set of hypotheses or possible sets of
parameters to be learned. Each element in the set, h ∈ H, comprises
the necessary set of arguments to fully specify a classifier (e.g.,
parameters of a Gaussian).

P (h) is the prior that the algorithm will learn hypothesis h.

P (h|D) is the probability that the algorithm will yield hypothesis h
when trained on the data D.
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Lack of Inherent Superiority No Free Lunch Theorem

Let E be the error for our cost function (zero-one or for some general
loss function).

We cannot compute the error directly (i.e., based on distance of h to
the unknown target function F ).

So, what we can do is compute the expected value of the error given
our dataset, which will require us to marginalize over all possible
targets.

E [E|D] =
∑
h,F

∑
x/∈D

P (x) [1− δ(F (x), h(x))]P (h|D)P (F |D) (1)

We can view this as a weighted inner product between the
distributions P (h|D) and P (F |D).

It says that the expected error is related to
1 all possible inputs and their respective weights P (x);
2 the “match” between the hypothesis h and the target F .
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Lack of Inherent Superiority No Free Lunch Theorem

Cannot Prove Much About Generalization

The key point here, however, is that without prior knowledge of
the target distribution P (F |D), we can prove little about any
paricular learning algorithm P (h|D), including its generalization
performance.

The expected off-training set error when the true function is F (x)
and the probability for the kth candidate learning algorithm is
Pk(h(x)|D) follows:

Ek[E|F, n] =
∑
x/∈D

P (x) [1− δ(F (x), h(x))]Pk(h(x)|D) (2)
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Lack of Inherent Superiority No Free Lunch Theorem

No Free Lunch Theorem

For any two learning algorithms P1(h|D) and P2(h|D), the following are
true, independent of the sampling distribution P (x) and the number n of
training points:

1 Uniformly averaged over all target functions F ,

E1[E|F, n]− E2[E|F, n] = 0. (3)

No matter how clever we are at choosing a “good” learning algorithm
P1(h|D) and a “bad” algorithm P2(h|D), if all target functions are
equally likely, then the “good” algorithm will not outperform the “bad”
one.
There are no i and j such that for all F (x), Ei[E|F, n] > Ej [E|F, n].
Furthermore, there is at least one target function for which random
guessing is a better algorithm!
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Lack of Inherent Superiority No Free Lunch Theorem

1 For any fixed training set D, uniformly averaged over F ,

E1[E|F,D]− E2[E|F,D] = 0. (4)

2 Uniformly averaged over all priors P (F ),

E1[E|n]− E2[E|n] = 0. (5)

3 For any fixed training set D, uniformly averaged over P (F ),

E1[E|D]− E2[E|D] = 0. (6)
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Lack of Inherent Superiority No Free Lunch Theorem

An NFLT Example

x F h1 h2
000 1 1 1

D 001 -1 -1 -1
010 1 1 1

011 -1 1 -1
100 1 1 -1
101 -1 1 -1
110 1 1 -1
111 1 1 -1

Given 3 binary features.

Expected off-training set errors are
E1 = 0.4 and E2 = 0.6.

The fact that we do not know F (x)
beforehand means that all targets are
equally likely and we therefore must
average over all possible ones.

For each of the consistent 25 distinct
target functions, there is exactly one
other target function whose output is
inverted for each of the patterns outside
of the training set. Thus, they’re
behaviors are inverted and cancel.
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Lack of Inherent Superiority No Free Lunch Theorem

Illustration of Part 1: A Conservation Generalization
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FIGURE 9.1. The No Free Lunch Theorem shows the generalization performance on
the off-training set data that can be achieved (top row) and also shows the performance
that cannot be achieved (bottom row). Each square represents all possible classification
problems consistent with the training data—this is not the familiar feature space. A +
indicates that the classification algorithm has generalization higher than average, a −
indicates lower than average, and a 0 indicates average performance. The size of a
symbol indicates the amount by which the performance differs from the average. For
instance, part a shows that it is possible for an algorithm to have high accuracy on a
small set of problems so long as it has mildly poor performance on all other problems.
Likewise, part b shows that it is possible to have excellent performance throughout
a large range of problem, but this will be balanced by very poor performance on a
large range of other problems. It is impossible, however, to have good performance
throughout the full range of problems, shown in part d. It is also impossible to have
higher-than-average performance on some problems while having average performance
everywhere else, shown in part e. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

There is a conservation idea one can take from this: For every
possible learning algorithm for binary classification the sum of
performance over all possible target functions is exactly zero.
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Lack of Inherent Superiority No Free Lunch Theorem

NFLT Take Home Message

It is the assumptions about the learning algorithm and the particular
pattern recognition scenario that are relevant.

This is a particularly important issue in practical pattern recognition
scenarios when even strongly theoretically grounded methods may
behave poorly.
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Lack of Inherent Superiority Ugly Duckling Theorem

Ugly Duckling Theorem

Now, we turn our attention to a related question: is there any one
feature or pattern representation that will yield better classification
performance in the absence of assumptions?
No! – you guessed it!

The ugly duckling theorem states that in the absence of assumptions,
there is no privileged or “best” feature. Indeed, even the way we
compute similarity between patterns depends implicitly on the
assumptions.
And, of course, these assumptions may or may not be correct...
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Lack of Inherent Superiority Ugly Duckling Theorem

Feature Representation

We can use logical expressions or “predicates” to describe a pattern
(we will get to this later in non-metric methods).

Denote a binary feature attribute by fi, then a particular pattern
might be described by the predicate f1 ∧ f2.

We could also define such predicates on the data itself: x1 ∨ x2.

Define the rank of a predicate to be the number of elements it
contains.
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FIGURE 9.2. Patterns xi , represented as d-tuples of binary features fi , can be placed in
Venn diagram (here d = 3); the diagram itself depends upon the classification problem
and its constraints. For instance, suppose f1 is the binary feature attribute has legs, f2 is
has right arm and f3 the attribute has right hand. Thus in part a pattern x1 denotes
a person who has legs but neither arm nor hand; x2 a person who has legs and an
arm, but no hand; and so on. Notice that the Venn diagram expresses the biological
constraints associated with real people: it is impossible for someone to have a right hand
but no right arm. Part c expresses different constraints, such as the biological constraint
of mutually exclusive eye colors. Thus attributes f1, f2 and f3 might denote brown, green,
and blue, respectively, and a pattern xi describes a real person, whom we can assume
cannot have eyes that differ in color. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Lack of Inherent Superiority Ugly Duckling Theorem

Impact of Prior Assumptions on Features

In the absence of prior information, is there a principled reason to
judge any two distinct patterns as more or less similar than two other
distinct patterns?

A natural measure of similarity is the number of features shared by
the two patterns.

Can you think of any issues with such a similarity measure?

Suppose we have two features: f1 represents blind in right eye, and
f2 represents blind in left eye. Say person x1 = (1, 0) is blind in the
right eye only and person x2 = (0, 1) is blind only in the left eye. x1

and x2 are maximally different.

This is conceptually a problem: person x1 is more similar to a totally
blind person and a normally sighted person than to person x2.
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Lack of Inherent Superiority Ugly Duckling Theorem

Multiple Feature Representations

One can always find multiple ways of representing the same features.

For example, we might use f ′1 and f ′2 to represent blind in right eye
and same in both eyes, resp. Then we would have the following four
types of people (in both cases):

f1 f2 f ′1 f ′2
x1 0 0 0 1
x2 0 1 0 0
x3 1 0 1 0
x4 1 1 1 1
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Lack of Inherent Superiority Ugly Duckling Theorem

Back To Comparing Features/Patterns

The plausible similarity measure is thus the number of predicates the
two patterns share, rather than the number of shared features.
Consider two distinct patterns in some representation xi and xj ,
i 6= j.

There are no predicates of rank 1 that are shared by the two patterns.
There is but one predicate of rank 2, xi ∨ xj .
For predicates of rank 3, two of the patterns must be xi and xj . So,

with d patterns in total, there are
(
d−2
1

)
= d− 2. predicates of rank 3.

For arbitrary rank, the total number of predicates shared by the two
patterns is

d∑
r−2

(
d− 2

r − 2

)
= (1 + 1)d−2 = 2d−2 (7)

Key: This result is independent of the choice of xi and xj (as long as
they are distinct). Thus, the total number of predicates shared by two
distinct patterns is constant and independent of the patterns
themselves.
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Lack of Inherent Superiority Ugly Duckling Theorem

Ugly Duckling Theorem

Given that we use a finite set of predicates that enables us to
distinguish any two patterns under consideration, the number of
predicates shared by any two such patterns is constant and
independent of the choice of those patterns. Furthermore, if pattern
similarity is based on the total number of predicates shared by the
two patterns, then any two patterns are “equally similar.”

I.e., there is no problem-independent or privileged “best” set of
features or feature attributes.

The theorem forces us to acknowledge that even the apparently
simply notion of similarity between patterns is fundamentally based
on implicit assumptions about the problem domain.
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Bias and Variance

Bias and Variance Introduction

Bias and Variance are two measures of how well a learning algorithm
matches a classification problem.

Bias measures the accuracy or quality of the match: high bias is a
poor match.

Variance measures the precision or specificity of the match: a high
variance implies a weak match.

One can generally adjust the bias and the variance, but they are not
independent.
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Bias and Variance Regression

Bias and Variance in Terms of Regression

Suppose there is a true but unknown function F (x) (having
continuous valued output with noise).

We seek to estimate F (·) based on n samples in set D (assumed to
have been generated by the true F (x)).

The regression function estimated is denoted g(x;D).

How does this approximation depend on D?

The natural measure of effectiveness is the mean square error. And,
note we need to average over all training sets D of fixed size n:

ED
[
(g(x;D)− F (x))2

]
=

(ED [g(x;D)− F (x)])2︸ ︷︷ ︸
bias2

+ ED
[
(g(x;D)− ED[g(x;D)])2

]︸ ︷︷ ︸
variance

(8)
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Bias and Variance Regression

Bias is the difference between the expected value and the true
(generally unknown) value).

A low bias means that on average we will accurately estimate F from
D.

A low variance means that the estimate of F does not change much
as the training set varies.

Note, that even if an estimator is unbiased, there can nevertheless be
a large mean-square error arising from a large variance term.

The bias-variance dilemma describes the trade-off between the two
terms above: procedures with increased flexibility to adapt to the
training data tend to have lower bias but higher variance.
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Bias and Variance Regression
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FIGURE 9.4. The bias-variance dilemma can be illustrated in the domain of regression.
Each column represents a different model, and each row represents a different set of
n = 6 training points, Di , randomly sampled from the true function F(x) with noise.
Probability functions of the mean-square error of E = ED[(g(x) − F(x))2] of Eq. 11
are shown at the bottom. Column a shows a very poor model: a linear g(x) whose
parameters are held fixed, independent of the training data. This model has high bias
and zero variance. Column b shows a somewhat better model, though it too is held
fixed, independent of the training data. It has a lower bias than in column a and has the
same zero variance. Column c shows a cubic model, where the parameters are trained
to best fit the training samples in a mean-square-error sense. This model has low bias
and a moderate variance. Column d shows a linear model that is adjusted to fit each
training set; this model has intermediate bias and variance. If these models were instead
trained with a very large number n → ∞ of points, the bias in column c would approach
a small value (which depends upon the noise), while the bias in column d would not;
the variance of all models would approach zero. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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Bias and Variance Classification

Bias-Variance for Classification
How can we map the regression results to classification?

For a two-category classification problem, we can define the target
function as follows

F (x) = P (y = 1|x) = 1− P (y = 0|x) (9)

To recast classification in the framework of regression, define a
discriminant function

y = F (x) + ε (10)

where ε is a zero-mean r.v. assumed to be binomial with variance
F (x)(1− F (x)).

The target function can thus be expressed as

F (x) = E [y|x] (11)
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Bias and Variance Classification

We want to find an estimate g(x;D) that minimizes the mean-square
error:

ED
[
(g(x;D)− y)2

]
(12)

And thus the regression method ideas can translate here to
classification.

Assume equal priors P (ω1) = P (ω1) = 1/2 giving a Bayesian
discriminant yB with a threshold 1/2. The Bayesian decision
boundary is the set of points for which F (x) = 1/2.

For a given training set D, we have the lowest error if the classifier
error rate agrees with the Bayes error rate:

P (g(x;D) 6= y) = P (yB(x) 6= y) = min[F (x), 1− F (x)] (13)
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Bias and Variance Classification

If not, then we have some increase on the Bayes error

P (g(x;D)) = max[F (x), 1− F (x)] (14)

= |2F (x)− 1|+ P (yB(x) = y) . (15)

And averaging over all datasets of size n yields

P (g(x;D) 6= y) = |2F (x)− 1|P (g(x;D) 6= yB) + P (yB 6= y) (16)

Hence, the classification error rate is linearly proportional to the
boundary error P (g(x;D) 6= yb), the incorrect estimation of the
Bayes boundary, which is the “opposite” tail as we saw earlier in
lecture 2.

P (g(x;D) 6= yB) =

{∫∞
1/2 p(g(x;D))dg if F (x) < 1/2∫ 1/2
−∞ p(g(x;D))dg if F (x) ≥ 1/2

(17)
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Bias and Variance Classification

Bias-Variance Classification Boundary Error for
Gaussian Case

If we assume p(g(x;D)) is a Gaussian, we find

P (g(x;D) 6= yB) =

Φ

Sgn[F (x)− 1/2][ED[g(x;D)]− 1/2]︸ ︷︷ ︸
boundary bias

Var[g(x;D)]−1/2︸ ︷︷ ︸
variance

 (18)

where Φ(t) = 1√
2π

∫∞
t exp

[
−1/2u2

]
du.

You can visualize the boundary bias by imagining taking the spatial
average of decision boundaries obtained by running the learning
algorithm on all possible data sets.

Hence, the effect of the variance term on the boundary error is highly
nonlinear and depends on the value of the boundary bias.
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Bias and Variance Classification

With small variance, the sign of the boundary bias is increasingly a
player.

Whereas in regression the estimation error is additive in bias and
variance, in classification there is a non-linear and multiplicative
interaction.

In classification, the sign of the bounary bias affects the role of the
variance in the error. So, low variance is generally important for
accurate classification, while low boundary bias need not be.

Similarly, in classification, variance dominates bias.
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Bias and Variance Classification
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FIGURE 9.5. The (boundary) bias-variance trade-off in classification is illustrated with
a two-dimensional Gaussian problem. The figure at the top shows the true distributions
and the Bayes decision boundary. The nine figures in the middle show different learned
decision boundaries. Each row corresponds to a different training set of n = 8 points
selected randomly from the true distributions and labeled according to the true decision
boundary. Column a shows case of a Gaussian model with fully general covariance
matrices trained by maximum-likelihood. The learned boundaries differ significantly
from one data set to the next; this learning algorithm has high variance. Column b
shows the decision boundaries resulting from fitting a Gaussian model with diagonal
covariances; in this case the decision boundaries vary less from one row to another.
This learning algorithm has a lower variance than the one at the left. Finally, column c
shows decision boundaries learning by fitting a Gaussian model with unit covariances
(i.e., a linear model); notice that the decision boundaries are nearly identical from one
data set to the next. This algorithm has low variance. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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a two-dimensional Gaussian problem. The figure at the top shows the true distributions
and the Bayes decision boundary. The nine figures in the middle show different learned
decision boundaries. Each row corresponds to a different training set of n = 8 points
selected randomly from the true distributions and labeled according to the true decision
boundary. Column a shows case of a Gaussian model with fully general covariance
matrices trained by maximum-likelihood. The learned boundaries differ significantly
from one data set to the next; this learning algorithm has high variance. Column b
shows the decision boundaries resulting from fitting a Gaussian model with diagonal
covariances; in this case the decision boundaries vary less from one row to another.
This learning algorithm has a lower variance than the one at the left. Finally, column c
shows decision boundaries learning by fitting a Gaussian model with unit covariances
(i.e., a linear model); notice that the decision boundaries are nearly identical from one
data set to the next. This algorithm has low variance. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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Bias and Variance Resampling Statistics

How Can We Determine the Bias and Variance?

The results from the discussion in bias and variance suggest a way to
estimate these two values (and hence a way to quantify the match
between a method and a problem).

What is it?

Resampling. I.e., taking multiple datasets, perform the estimation
and evaluate the boundary distributions and error histograms.

Let’s make these ideas clear in presenting two methods for
resampling:

1 Jackknife
2 Bootstrap
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Bias and Variance Resampling Statistics

Jackknife

Let’s first attempt to demonstrate how resampling can be used to
yield a more informative estimate of a general statistic.

Suppose we have a set D of n points xi sampled from a
one-dimensional distribution.

The familiar estimate of the mean is

µ̂ =
1

n

n∑
i=1

xi (19)

And, the estimate of the accuracy of the mean is the sample variance,
given by

σ̂2 =
1

n− 1

n∑
i=1

(xi − µ̂)2 (20)
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Bias and Variance Resampling Statistics

Now, suppose we were instead interested in the median (the point for
which half the distribution is higher, half lower).

Of course, we can determine the median explicitly.
But, how can we compute the accuracy of the median, or a measure
of the error or spread of it? This problem would translate to many
other statistics that we could compute, such as the mode.
Resampling will help us here.
First, define some new notation for leave-one-out statistic in which
the statistic, such as the mean, is computed by leaving a particular
datum out of the estimate. For the mean, we have

µ(i) =
1

n− 1

∑
j 6=i

xj =
nµ̂− xi
n− 1

. (21)

Next, we can define the jackknife estimate of the mean, that is, the
mean of the leave-one-out means:

µ(·) =
1

n

n∑
i=1

µ(i) (22)
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Bias and Variance Resampling Statistics

And, we can show that the jackknife mean is the same of the
traditional mean.

The variance of the jacknife estimate is given by

Var[µ̂] =
n− 1

n

n∑
i=1

(µ(i) − µ(·))2 (23)

which is equivalent to the traditional variance (for the mean case).

The benefit of expressing the variance of a jackknife estimate in this
way is that it generalizes to any estimator θ̂, such as the median. To
do so, we would need to similarly compute the set of n leave-one-out
statistics, θ(i).

Var[θ̂] = E
[
[θ̂(x1, x2, . . . , xn)− E [θ̂]]2

]
(24)

Varjack[θ̂] =
n− 1

n

n∑
i=1

(θ(i) − θ(·))2 (25)
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Bias and Variance Resampling Statistics

Jackknife Bias Estimate

The general bias of an estimator θ is the difference between its true
value and its expected value:

bias[θ̂] = θ − E [θ̂] (26)

And, we can use the jackknife method to estimate such a bias.

biasjack[θ̂] = (n− 1)
(
θ̂(·) − θ̂

)
(27)

We can rearrange the terms to see that the jackknife estimate of θ̂ is

θ̃ = θ̂ − biasjack = nθ̂ − (n− 1)θ̂(·) (28)

The jacknife resampling technique often gives a more satisfactory
estimate of a statistic (because we can measure accuracy) than do
traditional methods, but it is more computationally expensive.
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Bias and Variance Resampling Statistics

Jackknife Estimation of Classification Accuracy

We are ultimately interested in computing the accuracy of a classifier.

We can again apply the Jackknife method, at, albeit, a very high
computational cost.

Train the classifier n times, each time using a training set D from
which a single training point has been deleted.

Then, each resulting classifier is tested on the single deleted point,
and the jackknife accuracy is the mean of the leave-one-out
accuracies.

Note the high computational complexity.

One can apply this method to estimate the statistical significance in
the comparison of two classifier designs.

Suppose we have two trained classifiers C1 with an accuracy of 80%
and C2 with an accuracy of 85% (both as estimated with the
jackknife procedure). Is C2 really better than C1?
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One can apply this method to estimate the statistical significance in
the comparison of two classifier designs.

Suppose we have two trained classifiers C1 with an accuracy of 80%
and C2 with an accuracy of 85% (both as estimated with the
jackknife procedure). Is C2 really better than C1?
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Bias and Variance Resampling Statistics

To answer this, calculate the jackknife estimate of the variance and
use traditional hypothesis testing to test statistical significance.
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FIGURE 9.11. Jackknife estimation can be used to compare the accuracies of classifiers.
The jackknife estimate of classifiers C1 and C2 are 80% and 85%, and full widths (twice
the square root of the jackknife estimate of the variances) are 12% and 15%, as shown
by the bars at the bottom. In this case, traditional hypothesis testing could show that
the difference is not statistically significant at some confidence level. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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Bias and Variance Resampling Statistics

Bootstrap

A bootstrap dataset is one created by randomly selecting n points
from the training set D with replacement.

Because D contains itself n points, there is nearly always duplication of
individual points in a bootstrap dataset.

We repeat this process B times to yield B bootstrap datasets, which
are treated as independent sets (although they are clearly not).

The bootstrap estimate of a statistic θ is denoted θ̂∗(·), and, again, it
is the mean of the B estimate on the individual bootstrap datasets.

θ̂∗(·) =
1

B

B∑
b=1

θ̂∗(b) (29)

where θ̂∗(b) is the estimate on bootstrap dataset b.
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Bias and Variance Resampling Statistics

Bootstrap Bias Estimate

The bootstrap estimate of the bias is

biasboot =
1

B

B∑
b=1

θ̂∗(b) − θ̂ = θ̂∗(·) − θ̂ (30)

To increase robustness to outliers, the bootstrap method is useful for
computing a trimmed statistic, such as the trimmed mean, in which
the statistic is computed with some portion of the highest and lowest
being deleted.
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Bias and Variance Resampling Statistics

Bootstrap Variance Estimate

The boostrap estimate of the variance is

Varboot[θ] =
1

B

B∑
b=1

[
θ̂∗(b) − θ̂∗(·)

]2
(31)

If the statistic θ is the mean, then in the limit of B →∞, the
bootstrap estimate of the variance is the traditional variance of the
mean.

In general, the higher B the better the estimates of the statistic and
its variance.

A benefit of boostrap (say over jackknife) is that one can adjust B
based on the available resources...
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Bias and Variance Resampling Statistics

Bootstrap Estimate of Classification Accuracy

The bootstrap method can also be applied to estimate the
classification accuracy.

Train B classifiers, each with a different bootstrap dataset and test
on the other bootstrap datasets.

The bootstrap estimate of the accuracy is then simply the mean of
these bootstrap accuracies.

But, the high computational complexity of bootstrapping rarely makes
this a worthwhile practice.
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Bias and Variance Resampling Statistics

Cross-Validation

The jackknife and bootstrap estimates of classification accuracy are
closely related (or special cases of in some instances) of the method
of cross-validation.

Simple Validation
Split the initial dataset into two parts a training part and a validation
part.
Train the classifier on the training part of the dataset.
But, to estimate generalization accuracy, test it on the validation part
during training and halt training when we reach a minimum of this
validation error.
It is imperative that the validation set not have points also in the
training set.
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Bias and Variance Resampling Statistics
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FIGURE 9.9. In validation, the data set D is split into two parts. The first (e.g., 90% of
the patterns) is used as a standard training set for setting free parameters in the classifier
model; the other (e.g., 10%) is the validation set and is meant to represent the full gen-
eralization task. For most problems, the training error decreases monotonically during
training, as shown in black. Typically, the error on the validation set decreases, but then
increases, an indication that the classifier may be overfitting the training data. In valida-
tion, training or parameter adjustment is stopped at the first minimum of the validation
error. In the more general method of cross-validation, the performance is based on mul-
tiple independently formed validation sets. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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Bias and Variance Resampling Statistics

A generalization of this method is m-fold cross-validation.

Divide the training set into m disjoint sets of equal size n/m where n
is the size of the initial set.

Then, train the classifier m times, each time with a different set held
out as a validation set.

The estimated performance is the mean of these m errors.

In what case is this a jackknife estimate of the accuracy?

When m = n.
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Resampling for Classifier Design

Resampling for Classifier Design

We just covered resampling for estimating statistics (even
classification accuracies).

Now, we want to see how resampling can help to directly improve
upone classifier design.

Arcing, adaptive reweighting and combing, refers to reusing or
selecting data in order to improve classification.

We will discuss two such methods

Bagging

Boosting (in some detail)
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Resampling for Classifier Design Bagging

Bagging gets its name from bootstrap aggregation.

We create B bootstrap datasets by drawing n′ < n samples from D
with replacement to create each bootstrap dataset.

Each of these datasets is used to learn a different component
classifier.

The final classification is based on the vote of each component
classifier.

The component classifier are typically of the same form, but they
need not be.
Bagging seems to improve recognition for unstable classifiers, but this
is not theoretically grounded.

An unstable classifier is one for which small changes in the training
data lead to significantly different classifiers and relatively large
changes in accuracy.

For regression, the bagged estimate is simply the average. For
classification, one can count the most popular classification, or
combine the classifiers in some other more sophisticated way (perhaps
with yet another classifier).
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