
Introduction to Hidden Markov
Models

Slides Borrowed From Venu Govindaraju

•  Set of states:
•  Process moves from one state to another generating a

 sequence of states :
•  Markov chain property: probability of each subsequent state
depends only on what was the previous state:

•  To define Markov model, the following probabilities have to be
specified: transition probabilities and initial
probabilities

Markov Models

Rain Dry

0.7 0.3

0.2 0.8

•  Two states : ‘Rain’ and ‘Dry’.
•  Transition probabilities: P(‘Rain’|‘Rain’)=0.3 ,
P(‘Dry’|‘Rain’)=0.7 , P(‘Rain’|‘Dry’)=0.2, P(‘Dry’|‘Dry’)=0.8
•  Initial probabilities: say P(‘Rain’)=0.4 , P(‘Dry’)=0.6 .

Example of Markov Model

•  By Markov chain property, probability of state sequence can be
found by the formula:

•  Suppose we want to calculate a probability of a sequence of
states in our example, {‘Dry’,’Dry’,’Rain’,Rain’}.
 P({‘Dry’,’Dry’,’Rain’,Rain’}) =
P(‘Rain’|’Rain’) P(‘Rain’|’Dry’) P(‘Dry’|’Dry’) P(‘Dry’)=
 = 0.3*0.2*0.8*0.6

Calculation of sequence probability

Hidden Markov models.
•  Set of states:
• Process moves from one state to another generating a

 sequence of states :
•  Markov chain property: probability of each subsequent state
depends only on what was the previous state:

•  States are not visible, but each state randomly generates one of M
observations (or visible states)

•  To define hidden Markov model, the following probabilities
have to be specified: matrix of transition probabilities A=(aij),
aij= P(si | sj) , matrix of observation probabilities B=(bi (vm)),
bi(vm) = P(vm | si) and a vector of initial probabilities π=(πi),
πi = P(si) . Model is represented by M=(A, B, π).

€

P(sik | si1,si2,…,sik−1) = P(sik | sik−1)

Low High

0.7 0.3

0.2 0.8

Dry Rain

0.6 0.6
0.4 0.4

Example of Hidden Markov Model

•  Two states : ‘Low’ and ‘High’ atmospheric pressure.
•  Two observations : ‘Rain’ and ‘Dry’.
•  Transition probabilities: P(‘Low’|‘Low’)=0.3 ,
P(‘High’|‘Low’)=0.7 , P(‘Low’|‘High’)=0.2,
P(‘High’|‘High’)=0.8
•  Observation probabilities : P(‘Rain’|‘Low’)=0.6 ,
P(‘Dry’|‘Low’)=0.4 , P(‘Rain’|‘High’)=0.4 ,
P(‘Dry’|‘High’)=0.3 .
•  Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 .

Example of Hidden Markov Model

• Suppose we want to calculate a probability of a sequence of
observations in our example, {‘Dry’,’Rain’}.
• Consider all possible hidden state sequences:
 P({‘Dry’,’Rain’}) = P({‘Dry’,’Rain’} , {‘Low’,’Low’}) +
P({‘Dry’,’Rain’} , {‘Low’,’High’}) + P({‘Dry’,’Rain’} ,
{‘High’,’Low’}) + P({‘Dry’,’Rain’} , {‘High’,’High’})

where first term is :
P({‘Dry’,’Rain’} , {‘Low’,’Low’})=
P({‘Dry’,’Rain’} | {‘Low’,’Low’}) P({‘Low’,’Low’}) =
P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low)
= 0.4*0.4*0.6*0.4*0.3

Calculation of observation sequence probability

Main issues using HMMs :

•  Typed word recognition, assume all characters are separated.

•  Character recognizer outputs probability of the image being
particular character, P(image|character).

0.5

0.03

0.005

0.31 z

c
b
a

Word recognition example(1).

Hidden state Observation

•  Hidden states of HMM = characters.

•  Observations = typed images of characters segmented from the
image . Note that there is an infinite number of
observations

•  Observation probabilities = character recognizer scores.

• Transition probabilities will be defined differently in two
subsequent models.

Word recognition example(2).

•  If lexicon is given, we can construct separate HMM models
for each lexicon word.

Amherst a m h e r s t

Buffalo b u f f a l o

0.5 0.03

•  Here recognition of word image is equivalent to the problem
of evaluating few HMM models.
• This is an application of Evaluation problem.

Word recognition example(3).

0.4 0.6

•  We can construct a single HMM for all words.
•  Hidden states = all characters in the alphabet.
•  Transition probabilities and initial probabilities are calculated
from language model.
•  Observations and observation probabilities are as before.

a m

h e

r

s

t

b v

f
o

•  Here we have to determine the best sequence of hidden states,
the one that most likely produced word image.
•  This is an application of Decoding problem.

Word recognition example(4).

•  The structure of hidden states is chosen.

•  Observations are feature vectors extracted from vertical slices.

•  Probabilistic mapping from hidden state to feature vectors:
 1. use mixture of Gaussian models
 2. Quantize feature vector space.

Character recognition with HMM example.

•  The structure of hidden states:

•  Observation = number of islands in the vertical slice.

s1 s2 s3

• HMM for character ‘A’ :

Transition probabilities: {aij}=

Observation probabilities: {bjk}=

  .8 .2 0 
 0 .8 .2 
  0 0 1 

  .9 .1 0 
 .1 .8 .1 
  .9 .1 0 

• HMM for character ‘B’ :

Transition probabilities: {aij}=

Observation probabilities: {bjk}=

  .8 .2 0 
 0 .8 .2 
  0 0 1 

  .9 .1 0 
 0 .2 .8 
  .6 .4 0 

Exercise: character recognition with HMM(1)

•  Suppose that after character image segmentation the following
sequence of island numbers in 4 slices was observed:
 { 1, 3, 2, 1}

•  What HMM is more likely to generate this observation
sequence , HMM for ‘A’ or HMM for ‘B’ ?

Exercise: character recognition with HMM(2)

 Consider likelihood of generating given observation for each
possible sequence of hidden states:

•  HMM for character ‘A’:
Hidden state sequence Transition probabilities Observation probabilities

 s1→ s1→ s2→s3 .8 * .2 * .2 * .9 * 0 * .8 * .9 = 0

 s1→ s2→ s2→s3 .2 * .8 * .2 * .9 * .1 * .8 * .9 = 0.0020736

 s1→ s2→ s3→s3 .2 * .2 * 1 * .9 * .1 * .1 * .9 = 0.000324

Total = 0.0023976
•  HMM for character ‘B’:

Hidden state sequence Transition probabilities Observation probabilities

 s1→ s1→ s2→s3 .8 * .2 * .2 * .9 * 0 * .2 * .6 = 0

 s1→ s2→ s2→s3 .2 * .8 * .2 * .9 * .8 * .2 * .6 = 0.0027648

 s1→ s2→ s3→s3 .2 * .2 * 1 * .9 * .8 * .4 * .6 = 0.006912

Total = 0.0096768

Exercise: character recognition with HMM(3)

• Evaluation problem. Given the HMM M=(A, B, π) and the
observation sequence O=o1 o2 ... oK , calculate the probability that
model M has generated sequence O .
•  Trying to find probability of observations O=o1 o2 ... oK by
means of considering all hidden state sequences (as was done in
example) is impractical:
 NK hidden state sequences - exponential complexity.

•  Use Forward-Backward HMM algorithms for efficient
calculations.

•  Define the forward variable αk(i) as the joint probability of the
partial observation sequence o1 o2 ... ok and that the hidden state at
time k is si : αk(i)= P(o1 o2 ... ok , qk= si)

Evaluation Problem.

s1

s2

si

sN

s1

s2

si

sN

s1

s2

sj

sN

s1

s2

si

sN

a1j

a2j

aij

aNj

Time= 1 k k+1 K

 o1 ok ok+1 oK = Observations

Trellis representation of an HMM

•  Initialization:
 α1(i)= P(o1 , q1= si) = πi bi (o1) , 1<=i<=N.

•  Forward recursion:
 αk+1(i)= P(o1 o2 ... ok+1 , qk+1= sj) =

 Σi P(o1 o2 ... ok+1 , qk= si , qk+1= sj) =
 Σi P(o1 o2 ... ok , qk= si) aij bj (ok+1) =
 [Σi αk(i) aij] bj (ok+1) , 1<=j<=N, 1<=k<=K-1.

•  Termination:
 P(o1 o2 ... oK) = Σi P(o1 o2 ... oK , qK= si) = Σi αK(i)

•  Complexity :
 N2K operations.

Forward recursion for HMM

•  Define the forward variable βk(i) as the joint probability of the
partial observation sequence ok+1 ok+2 ... oK given that the hidden
state at time k is si : βk(i)= P(ok+1 ok+2 ... oK |qk= si)
•  Initialization:
 βK(i)= 1 , 1<=i<=N.
•  Backward recursion:
 βk(j)= P(ok+1 ok+2 ... oK | qk= sj) =

 Σi P(ok+1 ok+2 ... oK , qk+1= si | qk= sj) =
 Σi P(ok+2 ok+3 ... oK | qk+1= si) aji bi (ok+1) =
 Σi βk+1(i) aji bi (ok+1) , 1<=j<=N, 1<=k<=K-1.

•  Termination:
 P(o1 o2 ... oK) = Σi P(o1 o2 ... oK , q1= si) =

 Σi P(o1 o2 ... oK |q1= si) P(q1= si) = Σi β1(i) bi (o1) πi

Backward recursion for HMM

• Decoding problem. Given the HMM M=(A, B, π) and the
observation sequence O=o1 o2 ... oK , calculate the most likely
sequence of hidden states si that produced this observation sequence.
•  We want to find the state sequence Q= q1…qK which maximizes
P(Q | o1 o2 ... oK) , or equivalently P(Q , o1 o2 ... oK) .
•  Brute force consideration of all paths takes exponential time. Use
efficient Viterbi algorithm instead.
•  Define variable δk(i) as the maximum probability of producing
observation sequence o1 o2 ... ok when moving along any hidden
state sequence q1… qk-1 and getting into qk= si .
 δk(i) = max P(q1… qk-1 , qk= si , o1 o2 ... ok)
 where max is taken over all possible paths q1… qk-1 .

Decoding problem

•  General idea:
 if best path ending in qk= sj goes through qk-1= si then it
 should coincide with best path ending in qk-1= si .

s1

si

sN

sj aij

aNj

a1j

 qk-1 qk

•  δk(i) = max P(q1… qk-1 , qk= sj , o1 o2 ... ok) =
maxi [aij bj (ok) max P(q1… qk-1= si , o1 o2 ... ok-1)]
•  To backtrack best path keep info that predecessor of sj was si.

Viterbi algorithm (1)

•  Initialization:
 δ1(i) = max P(q1= si , o1) = πi bi (o1) , 1<=i<=N.

• Forward recursion:
 δk(j) = max P(q1… qk-1 , qk= sj , o1 o2 ... ok) =
 maxi [aij bj (ok) max P(q1… qk-1= si , o1 o2 ... ok-1)] =
 maxi [aij bj (ok) δk-1(i)] , 1<=j<=N, 2<=k<=K.

• Termination: choose best path ending at time K
 maxi [δK(i)]
•  Backtrack best path.

 This algorithm is similar to the forward recursion of evaluation
problem, with Σ replaced by max and additional backtracking.

Viterbi algorithm (2)

• Learning problem. Given some training observation sequences
O=o1 o2 ... oK and general structure of HMM (numbers of
hidden and visible states), determine HMM parameters M=(A,
B, π) that best fit training data, that is maximizes P(O | M) .

•  There is no algorithm producing optimal parameter values.

•  Use iterative expectation-maximization algorithm to find local
maximum of P(O | M) - Baum-Welch algorithm.

Learning problem (1)

•  If training data has information about sequence of hidden states
(as in word recognition example), then use maximum likelihood
estimation of parameters:

 aij= P(si | sj) =
Number of transitions from state sj to state si

 Number of transitions out of state sj

bi(vm) = P(vm | si)=
Number of times observation vm occurs in state si

 Number of times in state si

Learning problem (2)

General idea:

aij= P(si | sj) =
Expected number of transitions from state sj to state si

 Expected number of transitions out of state sj

bi(vm) = P(vm | si)=
Expected number of times observation vm occurs in state si

 Expected number of times in state si

πi = P(si) = Expected frequency in state si at time k=1.

Baum-Welch algorithm

•  Define variable ξk(i,j) as the probability of being in state si at
time k and in state sj at time k+1, given the observation
sequence o1 o2 ... oK .
 ξk(i,j)= P(qk= si , qk+1= sj | o1 o2 ... oK)

ξk(i,j)=
P(qk= si , qk+1= sj , o1 o2 ... ok)
 P(o1 o2 ... ok) =

P(qk= si , o1 o2 ... ok) aij bj (ok+1) P(ok+2 ... oK | qk+1= sj)
 P(o1 o2 ... ok) =

 αk(i) aij bj (ok+1) βk+1(j)
Σi Σj αk(i) aij bj (ok+1) βk+1(j)

Baum-Welch algorithm: expectation step(1)

•  Define variable γk(i) as the probability of being in state si at
time k, given the observation sequence o1 o2 ... oK .
 γk(i)= P(qk= si | o1 o2 ... oK)

γk(i)=
P(qk= si , o1 o2 ... ok)
 P(o1 o2 ... ok) =

 αk(i) βk(i)
Σi αk(i) βk(i)

Baum-Welch algorithm: expectation step(2)

• We calculated ξk(i,j) = P(qk= si , qk+1= sj | o1 o2 ... oK)
 and γk(i)= P(qk= si | o1 o2 ... oK)

•  Expected number of transitions from state si to state sj =
 = Σk ξk(i,j)
•  Expected number of transitions out of state si = Σk γk(i)

•  Expected number of times observation vm occurs in state si =
 = Σk γk(i) , k is such that ok= vm
•  Expected frequency in state si at time k=1 : γ1(i) .

Baum-Welch algorithm: expectation step(3)

aij = Expected number of transitions from state sj to state si

 Expected number of transitions out of state sj

bi(vm) = Expected number of times observation vm occurs in state si
 Expected number of times in state si

πi = (Expected frequency in state si at time k=1) = γ1(i).

=
Σk ξk(i,j)
 Σk γk(i)

=
 Σk ξk(i,j)
Σk,ok= vm γk(i)

Baum-Welch algorithm: maximization step

