Introduction to Hidden Markov
Models

Slides Borrowed From Venu Govindaraju



Markov Models

+ Set of states: 1515525+ >y |

* Process moves from one state to another generating a
sequence of states : ;1580505855

« Markov chain property: probability of each subsequent state

depends only on what was the previous state:

P(Sy [ 8:158i00e008y) =P8y [ 54_1)

 To define Markov model, the following probabilities have to be
specified: transition probabilities @; = P(s; |s,) and initial
probabilities 7T, = P(s;)



Example of Markov Model
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» Two states : ‘Rain’ and ‘Dry’.

* Transition probabilities: P(‘Rain’|‘Rain’)=O.3 :
P(‘Dry’|‘Rain’)=0.7 : P(‘Rain’|‘Dry’)=0.2, P(‘Dry’|‘Dry’)=O.8
« Initial probabilities: say P(‘Rain’)=0.4 , P(‘Dry’)=0.6 .



Calculation of sequence probability

* By Markov chain property, probability of state sequence can be
found by the formula:

P(S;158050585) = P(Sy 8115810500585 JP(S115 810500585 1)
= P8y [ S5 P(Si15800,0 5 85) =
= P8y | Sy ) P(Syy | Syun) . P(syy | $:)P(s,)

* Suppose we want to calculate a probability of a sequence of
states 1n our example, {‘Dry’,’Dry’,’Rain’,Rain’}.

P({‘Dry’,’Dry’,’Rain’,Rain’} ) —
P(‘Rain’ ’Rain’) P(‘Rain’ ’Dry’) P(‘Dry’
=0.3*0.2%0.8*0.6

'Dry’) P(‘Dry’)=



Hidden Markov models.

» Set of states: 1515525+ +> Sy

*Process moves from one state to another generating a
sequence of states : S;15805c s Sjgse--

« Markov chain property: probability of each subsequent state

depends only on what was the previous state:
P(sy 18,5805 0085) = P(sy Isy )

« States are not visible, but each state randomly generates one of M
observations (or visible states) {V1 s Voseees VM}

* To define hidden Markov model, the following probabilities

have to be specified: matrix of transition probabilities A=(aij),
a;= P(s; | S;) , matrix of observation probabilities B=(b;(v.)),
bi(Vi )= P(V.| S:) and a vector of initial probabilities TT=(7T;),
7, = P(S;) . Model is represented by M=(A, B, ).



Example of Hidden Markov Model
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Example of Hidden Markov Model

» Two states : ‘Low’ and ‘High’ atmospheric pressure.
e Two observations : ‘Rain’ and ‘Dry’.

» Transition probabilities: P(‘Low’|‘Low’)=0.3 ,
P(“High’|'Low’)=0.7 , P(‘Low’|‘High’)=0.2,
P(“High’|‘High’)=0.8

» Observation probabilities : P(‘Rain’|'Low’)=0.6,
P(‘Dry’|‘Low’)=O.4 : P(‘Rain’|‘High’)=O.4 :
P(‘Dry’|‘High’)=0.3 .

« Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 .



Calculation of observation sequence probability

*Suppose we want to calculate a probability of a sequence of
observations 1n our example, {‘Dry’,’Rain’}.
*Consider all possible hidden state sequences:

P({Dry’,’Rain’} ) = P({‘Dry’,’Rain’} , {*Low’,’Low’}) +
P({‘Dry’,’Rain’} , {‘Low’,’High’}) + P({‘Dry’,’Rain’} ,
{‘High’,’Low’}) + P({‘Dry’,’Rain’} , {‘High’,"High’})

where first term 1s :

P({‘Dry’,’Rain’} : {‘Low’,’Low’}):

P({‘Dry’,’Rain’} | {‘Low’,’Low’}) P({‘Low’,’Low’}) =
P(‘Dry’’Low’)P(‘Rain’"Low’) P(‘Low’)P(‘Low’|’Low)
=0.4%0.4*%0.6*0.4*0.3



Main 1ssues using HMMs :

Evaluation problem. Given the HMM M:(A, B, J'IZ) and the
observation sequence 0=0,0,... Ok, calculate the probability that
model M has generated sequence O .

» Decoding problem. Given the HMM M=(A, B, 1) and the
observation sequence (0=0,0,... O, calculate the most likely

sequence of hidden states S; that produced this observation sequence

O.

* Learning problem. Given some training observation sequences
0=0,0,... Ok and general structure of HMM (numbers of hidden

and visible states), determine HMM parameters MZ(A, B, JT,)
that best fit training data.

O=0,...0xdenotes a sequence of observations 0,&{V,, ..., V,}.



Word recognition example(1).

» Typed word recognition, assume all characters are separated.

Aiherst

 Character recognizer outputs probability of the image being
particular character, P(image|character).
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Word recognition example(2).

* Hidden states of HMM = characters.

 Observations = typed 1images of characters segmented from the
image V, . Note that there is an infinite number of
observations

» Observation probabilities = character recognizer scores.

B={b,,))=(P,|s))

*Transition probabilities will be defined differently in two
subsequent models.



Word recognition example(3).

« [f lexicon 1s given, we can construct separate HMM models
for each lexicon word.

amberst (& )= m )=~ )~ e ) )~ )~
Butile ((0)H(v ) 000 (DO~

0.5 | 0.03\lo4

A m

» Here recognition of word image 1s equivalent to the problem
of evaluating few HMM models.
*This 1s an application of Evaluation problem.



Word recognition example(4).

* We can construct a single HMM for all words.

« Hidden states = all characters in the alphabet.

* Transition probabilities and initial probabilities are calculated
from language model.

» Observations and observation probabilities are as before.

« Here we have to determine the best sequence of hidden states,
the one that most likely produced word image.
* This 1s an application of Decoding problem.



Character recognition with HMM example.

* The structure of hidden states is chosen.

OO 000

 Observations are feature vectors extracted from vertical slices.

* Probabilistic mapping from hidden state to feature vectors:
1. use mixture of Gaussian models
2. Quantize feature vector space.



Exercise: character recognition with HMM(1)
AN ATA

 The structure of hidden states: @ @ @

e Observation = number of islands in the vertical slice.
*HMM for character ‘A’ :

8
Transition probabilities: {8;;}=| 0 .
0

Observation probabilities: {b; k} |

*HMM for character ‘B’ :

8 )
Transition probabilities: {8;;}=| 0 . |
0 /

Observation probabilities: {b. k} |



Exercise: character recognition with HMM(2)

» Suppose that after character image segmentation the following

sequence of 1sland numbers in 4 slices was observed:
{1,3,2,1}

 What HMM 1s more likely to generate this observation
sequence , HMM for ‘A’ or HMM for ‘B’ ?



Exercise: character recognition with HMM(3)

Consider likelihood of generating given observation for each
possible sequence of hidden states:

« HMM for character ‘A’:

Hidden state sequence Transition probabilities Observation probabilities
S$;—> $;—> S,—>S; 8*¥2 %2 ¥ 9¥(Q* 8*¥9 =
$;—> S,—> S,—>$; 2%8%2 ¥ 9% 1 * 8*9 = 00020736
S;—> S,—> $;—>$; 2%2% 1 % 9% 1% 1 %9 =0.000324

Total = 0.0023976
« HMM for character ‘B’:

Hidden state sequence Transition probabilities Observation probabilities
S;—> §;—> S,—>S, 8*¥2 %2 ¥ 9F(Q* 2%6 = 0
S$;—> S,—> $,—>S, 2% 8 %2 F 9% 8 ¥ 2 ¥ 6 = (0027648
S$;—> S,—> $;—>S, 2%2 %1 % 9% g ¥ 4%6 =0.006912

Total = 0.0096768



Evaluation Problem.

*Evaluation problem. Given the HMM M=(A, B, 7t) and the
observation sequence =0, 0,... Ok, calculate the probability that
model M has generated sequence O .

» Trying to find probability of observations O=0, 0, ... Ok by
means of considering all hidden state sequences (as was done in
example) 1s impractical:

NK hidden state sequences - exponential complexity.

* Use Forward-Backward HMM algorithms for efficient
calculations.

* Define the forward variable Qt, (1) as the joint probability of the
partial observation sequence O; O, ... Oy and that the hidden state at
time k is S; : O ()= P(0,0,... Oy Qi=5;)



Trellis representation of an HMM
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Forward recursion for HMM

 Initialization:
o,(i)=P(0, q=si) =m; b;(0,) , 1<=i<=N.

* Forward recursion;
Q. (1)= P(Ol Oy... Owr1, Q1= Sj) =
2 P(0,0;... Oy Qi=Si Q1= ;) =
2 P(0,0,... 0, Qi=5;) a; b; (011 ) =

[Zi ak(l) aij ] bj (OkH) o 1<:j<:N, 1<=k<=K-1.
 Termination:

P(01 02 cos OK) — Zi P(01 02 coo OK,qK: Sl) — Zi aK(l)

« Complexity :
N2K operations.



Backward recursion for HMM
 Define the forward variable ﬁk(i) as the joint probability of the

partial observation sequence Oy Oyx1r ... Og given that the hidden
state at time k 1s S; : Bk(i)= P(Okﬂ Oy ... O |qk= Si)
e Initialization:
BG)=1 , 1<=i<=N.
e Backward recursion:
Bi()=P(0i1 Oz ... Ok | Q=) =
Zi P(Ok+1 Ok+2 ... Ok, Qu+1= 55 | Ji= Sj) =
Zi P(Ok+2 Ox+3... Ok | Ji+1= Si) dii b; (Ok+1 ) =
2 Py @i bi(0r ),  1<=j<=N, I<=k<=K-I.
e Termination:

P(0,0;... 0x) =2, P(0,0,... 0k q;=5;) =
2. P(0,0,... ok |qi=5s)) P(q=s)) = 2, B,(0) b;(0,) m;




Decoding problem

*Decoding problem. Given the HMM M=(A, B, 7t) and the
observation sequence (0=0,0,... Ok, calculate the most likely
sequence of hidden states S; that produced this observation sequence.

» We want to find the state sequence Q= (.. .(x which maximizes

P(Q | 0,0,... OK) , or equivalently P(Q , 0,0;... OK) .
 Brute force consideration of all paths takes exponential time. Use
efficient Viterbi algorithm instead.

 Define variable 6k(i) as the maximum probability of producing
observation sequence O; O, ... O, when moving along any hidden
state sequence (];... (i and getting into = S; .

0, (i) =max P(q;... Qu.1, q=Si, 0, 0;... Oy)

where max 1s taken over all possible paths ;... (k..



Viterbi algorithm (1)

* General 1dea:
if best path ending in = S; goes through (.= S; then it
should coincide with best path ending 1n Ji.;= S;.

+ 0, () =max P(qy... Qi q=8j,010;... 0)) =
max; [ aij bj (Ok) max P(q1 coe qk_1= S; ° 0,0;... Ok-l) ]

* To backtrack best path keep info that predecessor of S; was S;.



Viterbi algorithm (2)

e Initialization:
0,(i) = max P(q,=s;, 0,) =7; b;(0,) , 1<=i<=N.
*Forward recursion:
0,() = max P(q;... Qi, Q=Si, 0,0;... O) =
max; [ &; b; (0 ) max P(Qi... qu.i=8i,0,0;... 0i1) 1 =
max; [ &; b;(0,) O,,(1)],  1<=j<=N, 2<=k<=K.

*Termination: choose best path ending at time K

max; [ O(i) ]
 Backtrack best path.

This algorithm is similar to the forward recursion of evaluation

problem, with 2 replaced by max and additional backtracking.



Learning problem (1)

*Learning problem. Given some training observation sequences
0201 0, ... Ok and general structure of HMM (numbers of

hidden and visible states), determine HMM parameters MZ(A,
B, J'E) that best fit training data, that 1s maximizes P(O |M) :

 There 1s no algorithm producing optimal parameter values.

 Use 1terative expectation-maximization algorithm to find local
maximum of P(O |M) - Baum-Welch algorithm.



Learning problem (2)

e [f training data has information about sequence of hidden states
(as 1n word recognition example), then use maximum likelithood
estimation of parameters:

Number of transitions from state S; to state S;

a;= P(si| s;) =

Number of transitions out of state S;

Number of times observation V,,, occurs in state S;

bi(V )= P(V.| 8)=

Number of times in state S;



Baum-Welch algorithm
General 1dea:

Expected number of transitions from state S; to state S;

;= P(si| 5) =

Expected number of transitions out of state S;

Expected number of times observation V, occurs in state S;

bi(V)=P(va]| 8)=

Expected number of times in state S;

IV, — P(Si) = Expected frequency in state S; at time k=1.



Baum-Welch algorithm: expectation step(1)

 Define variable %k(i,j) as the probability of being in state S; at
time k and 1n state S; at time k+1, given the observation

sequence O; O, ... Ok.

E(id)=P(q=Si , quri= 5[0, 0, ... OK)

. P(gi=s; , =8 ,0(07...0
E (ij)- (9= Si , Ger1=8),0102...0)

P(0; 0, ... Oy)

P(qx= si , 010, ... 0x) &; D; (011 ) P(Os2 - Ok | Q1= Sj)
P(0; 0, ... Oy)
(D) a5 b (011 ) Pri()
Zizj ak(i) dijj bj (Okﬂ) ﬁkﬂ(j)




Baum-Welch algorithm: expectation step(2)

* Define variable Y, (1) as the probability of being in state S; at

time k, given the observation sequence O O, ... Ok.

Yk(i): P(qk: Si | 01 02 oo OK)

v D@csi000) 0 Pl
: P(0;0;... 0) - 2o () B




Baum-Welch algorithm: expectation step(3)

*We calculated Ek(i,j) = P(qk= Si » Q1= S; | 0,0,... OK)
and Yk(l): P(qk: Si | 01 02 cos OK)

* Expected number of transitions from state S; to state S; =

— Zk %k(laj)

» Expected number of transitions out of state §; = 2, Y, (i)

* Expected number of times observation V,, occurs in state S; =
= Zk V(1) , k 1s such that O,= Vi,
 Expected frequency 1n state S; at time k=1 : Y,(1) .



Baum-Welch algorithm: maximization step

- Expected number of transitions from state 8j to state S; Zk Ek(la_])
] Expected number of transitions out of state S; o Z " ’Y k(l)
b (V ) __ Expected number of times observation Vi, occurs in state §; Zk Ek(laj)
i\ Vm Expected number of times in state S; Zk,0k= v Yk(l)

T, — (Expected frequency in state S; at time k=1) = ¥,(1).



