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•  Set of states:  
•  Process moves from one state to another generating a          

 sequence of states :     
•  Markov chain property:  probability of each subsequent state 
depends only on what was the previous state: 

•  To define Markov model, the following probabilities have to be 
specified: transition probabilities                               and initial 
probabilities 

Markov Models 
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•  Two states : ‘Rain’ and ‘Dry’. 
•  Transition probabilities: P(‘Rain’|‘Rain’)=0.3 , 
P(‘Dry’|‘Rain’)=0.7 , P(‘Rain’|‘Dry’)=0.2, P(‘Dry’|‘Dry’)=0.8 
•  Initial probabilities: say P(‘Rain’)=0.4 , P(‘Dry’)=0.6 . 

Example of Markov Model 



•  By Markov chain property, probability of state sequence can be 
found by the formula: 

•  Suppose we want to calculate a probability of a sequence of 
states in our example,  {‘Dry’,’Dry’,’Rain’,Rain’}.  
        P({‘Dry’,’Dry’,’Rain’,Rain’} ) = 
P(‘Rain’|’Rain’) P(‘Rain’|’Dry’) P(‘Dry’|’Dry’) P(‘Dry’)= 
           = 0.3*0.2*0.8*0.6 

Calculation of sequence probability 



Hidden Markov models. 
•  Set of states:  
• Process moves from one state to another generating a          

 sequence of states : 
•  Markov chain property:  probability of each subsequent state 
depends only on what was the previous state: 

•  States are not visible, but each state randomly generates one of M 
observations (or visible states) 

•  To define hidden Markov model, the following probabilities  
have to be specified: matrix of transition probabilities A=(aij), 
aij= P(si | sj) , matrix of observation probabilities B=(bi (vm )), 
bi(vm ) = P(vm | si) and a vector of initial probabilities  π=(πi),  
πi = P(si) . Model is represented by M=(A, B, π). 
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P(sik | si1,si2,…,sik−1) = P(sik | sik−1)
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Example of Hidden Markov Model 



•  Two states : ‘Low’ and ‘High’ atmospheric pressure. 
•  Two observations : ‘Rain’ and ‘Dry’. 
•  Transition probabilities: P(‘Low’|‘Low’)=0.3 , 
P(‘High’|‘Low’)=0.7 , P(‘Low’|‘High’)=0.2, 
P(‘High’|‘High’)=0.8 
•  Observation probabilities : P(‘Rain’|‘Low’)=0.6 , 
P(‘Dry’|‘Low’)=0.4 , P(‘Rain’|‘High’)=0.4 , 
P(‘Dry’|‘High’)=0.3 . 
•  Initial probabilities: say P(‘Low’)=0.4 , P(‘High’)=0.6 . 

Example of Hidden Markov Model 



• Suppose we want to calculate a probability of a sequence of 
observations in our example,  {‘Dry’,’Rain’}. 
• Consider all possible hidden state sequences:  
 P({‘Dry’,’Rain’} ) = P({‘Dry’,’Rain’} , {‘Low’,’Low’}) + 
P({‘Dry’,’Rain’} , {‘Low’,’High’}) + P({‘Dry’,’Rain’} , 
{‘High’,’Low’}) + P({‘Dry’,’Rain’} , {‘High’,’High’})  

where first term is :  
P({‘Dry’,’Rain’} , {‘Low’,’Low’})=  
P({‘Dry’,’Rain’} | {‘Low’,’Low’})  P({‘Low’,’Low’}) =  
P(‘Dry’|’Low’)P(‘Rain’|’Low’) P(‘Low’)P(‘Low’|’Low) 
= 0.4*0.4*0.6*0.4*0.3 

Calculation of observation sequence probability 



Main issues using HMMs : 



•  Typed word recognition, assume all characters are separated. 

•  Character recognizer outputs probability of the image being 
particular character, P(image|character). 
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Word recognition example(1). 

Hidden state                   Observation 



•  Hidden states of HMM = characters. 

•  Observations = typed images of characters segmented from the 
image         . Note that there is an infinite number of 
observations 

•  Observation probabilities = character recognizer scores.      

• Transition probabilities will be defined differently in two 
subsequent models.  

Word recognition example(2). 



•  If  lexicon is given, we can construct separate HMM models 
for each lexicon word. 
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•  Here recognition of word image is equivalent to the problem 
of evaluating few HMM models. 
• This is an application of Evaluation problem. 

Word recognition example(3). 
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•  We can construct a single HMM for all words. 
•  Hidden states = all characters in the alphabet. 
•  Transition probabilities and initial probabilities are calculated 
from language model. 
•  Observations and observation probabilities are as before. 
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•  Here we have to determine the best sequence of hidden states, 
the one that most likely produced word image. 
•  This is an application of Decoding problem. 

Word recognition example(4). 



•  The structure of hidden states is chosen. 

•  Observations are feature vectors extracted from vertical slices. 

•  Probabilistic mapping from hidden state to feature vectors: 
 1. use mixture of Gaussian models 
 2. Quantize feature vector space. 

Character recognition with HMM example. 



•  The structure of hidden states: 

•  Observation = number of islands in the vertical slice. 

s1 s2 s3 

• HMM for character ‘A’ : 

Transition probabilities: {aij}= 

Observation probabilities: {bjk}= 

  .8  .2   0   
  0  .8   .2  
   0   0    1  

  .9  .1   0   
 .1  .8   .1  
  .9  .1   0   

• HMM for character ‘B’ : 

Transition probabilities: {aij}= 

Observation probabilities: {bjk}= 

  .8  .2   0   
  0  .8   .2  
   0   0    1  

  .9  .1   0   
  0  .2   .8  
  .6  .4   0   

Exercise: character recognition with HMM(1) 



•  Suppose that after character image segmentation the following 
sequence of island numbers in 4 slices was observed: 
     { 1, 3, 2, 1} 

•  What HMM is more likely to generate this observation 
sequence , HMM for ‘A’ or HMM for ‘B’ ? 

Exercise: character recognition with HMM(2) 



 Consider likelihood of generating given observation for each 
possible sequence of hidden states: 

•  HMM for character ‘A’: 
Hidden state sequence Transition probabilities Observation probabilities 

 s1→ s1→ s2→s3 .8 * .2  * .2         *      .9 *  0  *  .8  * .9   =    0    

 s1→ s2→ s2→s3 .2 * .8  * .2         *      .9 * .1  *  .8  * .9   =  0.0020736   

 s1→ s2→ s3→s3 .2 * .2  *  1         *      .9 * .1  *  .1  * .9   =  0.000324    

Total  =  0.0023976  
•  HMM for character ‘B’: 

Hidden state sequence Transition probabilities Observation probabilities 

 s1→ s1→ s2→s3 .8 * .2  * .2         *      .9 *  0  *  .2  * .6   =    0    

 s1→ s2→ s2→s3 .2 * .8  * .2         *      .9 * .8  *  .2  * .6   =  0.0027648   

 s1→ s2→ s3→s3 .2 * .2  *  1         *      .9 * .8  *  .4  * .6   =  0.006912    

Total  =  0.0096768  

Exercise: character recognition with HMM(3) 



• Evaluation problem. Given the HMM  M=(A, B, π)   and  the 
observation sequence  O=o1 o2 ... oK , calculate the probability that 
model M has generated sequence  O . 
•  Trying to find probability of observations O=o1 o2 ... oK  by 
means of considering all hidden state sequences (as was done in 
example) is impractical:  
       NK hidden state sequences - exponential complexity. 

•  Use Forward-Backward HMM algorithms for efficient 
calculations. 

•  Define the forward variable αk(i) as the joint probability of the 
partial observation sequence o1 o2 ... ok  and that the hidden state at 
time k is si  : αk(i)= P(o1 o2 ... ok , qk= si )  

Evaluation Problem. 
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Trellis representation of an HMM 



•  Initialization:  
      α1(i)= P(o1  , q1= si ) = πi bi (o1) , 1<=i<=N. 

•  Forward recursion: 
      αk+1(i)= P(o1 o2 ... ok+1 , qk+1= sj ) =  

 Σi P(o1 o2 ... ok+1 , qk= si , qk+1= sj ) =  
 Σi P(o1 o2 ... ok , qk= si) aij bj (ok+1 ) =  
 [Σi αk(i) aij ] bj (ok+1 ) ,     1<=j<=N, 1<=k<=K-1. 

•  Termination:  
 P(o1 o2 ... oK) = Σi P(o1 o2 ... oK , qK= si) = Σi αK(i) 

•  Complexity :  
 N2K operations. 

Forward recursion for HMM 



•  Define the forward variable βk(i) as the joint probability of the 
partial observation sequence ok+1 ok+2 ... oK  given  that the hidden 
state at time k is si  : βk(i)= P(ok+1 ok+2 ... oK |qk= si ) 
•  Initialization:  
      βK(i)= 1  , 1<=i<=N. 
•  Backward recursion: 
      βk(j)= P(ok+1 ok+2 ... oK | qk= sj ) =  

 Σi P(ok+1 ok+2 ... oK , qk+1= si  | qk= sj ) =  
 Σi P(ok+2 ok+3 ... oK | qk+1= si) aji bi (ok+1 ) =  
 Σi βk+1(i) aji bi (ok+1 ) ,     1<=j<=N, 1<=k<=K-1. 

•  Termination:  
      P(o1 o2 ... oK) = Σi P(o1 o2 ... oK , q1= si) =  

 Σi P(o1 o2 ... oK  |q1= si) P(q1= si) = Σi β1(i) bi (o1) πi  

Backward recursion for HMM 



• Decoding problem. Given the HMM  M=(A, B, π)   and  the 
observation sequence  O=o1 o2 ... oK , calculate the most likely 
sequence of hidden states si that produced this observation sequence. 
•  We want to find the state sequence Q= q1…qK which maximizes  
P(Q | o1 o2 ... oK ) , or equivalently P(Q , o1 o2 ... oK ) . 
•  Brute force consideration of all paths takes exponential time. Use 
efficient Viterbi  algorithm instead. 
•  Define variable  δk(i)  as the maximum probability of producing 
observation sequence o1 o2 ... ok  when moving along any hidden 
state sequence q1… qk-1 and getting into qk= si  . 
         δk(i) = max P(q1… qk-1 , qk= si  ,  o1 o2 ... ok)   
       where max is taken over all possible paths q1… qk-1 . 

Decoding problem 



•  General idea: 
 if best path ending in qk= sj  goes through qk-1= si  then it     
 should coincide with best path ending in qk-1= si . 
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•  δk(i) = max P(q1… qk-1 , qk= sj  ,  o1 o2 ... ok) =  
maxi [ aij bj (ok )  max P(q1… qk-1= si  ,  o1 o2 ... ok-1) ] 
•  To backtrack best path keep info that predecessor of sj was si. 

Viterbi algorithm (1) 



•  Initialization: 
  δ1(i) = max P(q1= si  ,  o1) = πi bi (o1) , 1<=i<=N. 

• Forward recursion: 
    δk(j) = max P(q1… qk-1 , qk= sj  ,  o1 o2 ... ok) =  
     maxi [ aij bj (ok ) max P(q1… qk-1= si  ,  o1 o2 ... ok-1) ] =  
     maxi [ aij bj (ok ) δk-1(i) ] ,     1<=j<=N, 2<=k<=K. 

• Termination:  choose best path ending at time K 
             maxi [ δK(i) ] 
•  Backtrack best path. 

  This algorithm is similar to the forward recursion of evaluation 
problem, with Σ replaced by max and additional backtracking. 

Viterbi algorithm (2) 



• Learning problem. Given some training observation sequences  
O=o1 o2 ... oK  and general structure of HMM (numbers of 
hidden and visible states), determine HMM parameters M=(A, 
B, π)   that best fit training data, that is maximizes P(O | M) .  

•  There is no algorithm producing optimal parameter values. 

•  Use iterative expectation-maximization algorithm to find local 
maximum of  P(O | M) - Baum-Welch  algorithm. 

Learning problem (1) 



•  If training data has information about sequence of hidden states 
(as in word recognition example), then use maximum likelihood 
estimation of parameters: 

  aij= P(si | sj) = 
Number of transitions from state sj to  state si 

         Number of transitions out of state sj 

bi(vm ) = P(vm | si)= 
Number of times observation vm occurs in state si 

            Number of times in state si 

Learning problem (2) 



General idea: 

aij= P(si | sj) = 
Expected number of transitions from state sj to  state si 

        Expected number of transitions out of state sj 

bi(vm ) = P(vm | si)= 
Expected number of times observation vm occurs in state si 

     Expected number of times in state si 

πi = P(si) =  Expected frequency in state si at time k=1.  

Baum-Welch algorithm 



•  Define variable ξk(i,j) as  the probability of being in state si at 
time k and in state sj at  time k+1, given the observation 
sequence o1 o2 ... oK .  
           ξk(i,j)= P(qk= si  , qk+1= sj  | o1 o2 ... oK)  

ξk(i,j)= 
P(qk= si  , qk+1= sj  , o1 o2 ... ok) 
         P(o1 o2 ... ok) = 

P(qk= si  , o1 o2 ... ok) aij bj (ok+1 ) P(ok+2  ... oK |  qk+1= sj )  
                                 P(o1 o2 ... ok) = 

   αk(i) aij bj (ok+1 ) βk+1(j)  
Σi Σj αk(i) aij bj (ok+1 ) βk+1(j) 

Baum-Welch algorithm: expectation step(1) 



•  Define variable γk(i) as  the probability of being in state si at 
time k, given the observation sequence o1 o2 ... oK .  
           γk(i)= P(qk= si   | o1 o2 ... oK)  

γk(i)= 
P(qk= si , o1 o2 ... ok) 
    P(o1 o2 ... ok) = 

  αk(i) βk(i)  
Σi αk(i) βk(i) 

Baum-Welch algorithm: expectation step(2) 



• We calculated  ξk(i,j) = P(qk= si  , qk+1= sj  | o1 o2 ... oK)  
               and      γk(i)= P(qk= si   | o1 o2 ... oK)  

•  Expected number of transitions from state si to state sj = 
                   =  Σk  ξk(i,j) 
•  Expected number of transitions out of state si  = Σk  γk(i) 

•  Expected number of times observation vm occurs in state si = 
                   = Σk  γk(i) , k is such that ok= vm  
•  Expected frequency in state si at time k=1 :  γ1(i) .  

Baum-Welch algorithm: expectation step(3) 



aij  =  Expected number of transitions from state sj to  state si 

        Expected number of transitions out of state sj 

bi(vm )   =  Expected number of times observation vm occurs in state si 
     Expected number of times in state si 

πi = (Expected frequency in state si at time k=1)  =  γ1(i).  

= 
Σk  ξk(i,j) 
 Σk  γk(i) 

= 
 Σk  ξk(i,j) 
Σk,ok= vm γk(i) 

Baum-Welch algorithm: maximization step 


