Introduction to Hidden Markov Models

Slides Borrowed From Venu Govindaraju

Markov Models

- Set of states: $\{s_1, s_2, ..., s_N\}$
- Process moves from one state to another generating a sequence of states : $S_{i1}, S_{i2}, \dots, S_{ik}, \dots$
- Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} \mid s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} \mid s_{ik-1})$$

• To define Markov model, the following probabilities have to be specified: transition probabilities $a_{ij} = P(s_i | s_j)$ and initial probabilities $\pi_i = P(s_i)$

Example of Markov Model

- Two states : 'Rain' and 'Dry'.
- Transition probabilities: P('Rain'|'Rain')=0.3,

P('Dry'|'Rain')=0.7, P('Rain'|'Dry')=0.2, P('Dry'|'Dry')=0.8

• Initial probabilities: say P(`Rain')=0.4, P(`Dry')=0.6.

Calculation of sequence probability

• By Markov chain property, probability of state sequence can be found by the formula:

$$P(s_{i1}, s_{i2}, \dots, s_{ik}) = P(s_{ik} | s_{i1}, s_{i2}, \dots, s_{ik-1})P(s_{i1}, s_{i2}, \dots, s_{ik-1})$$

= $P(s_{ik} | s_{ik-1})P(s_{i1}, s_{i2}, \dots, s_{ik-1}) = \dots$
= $P(s_{ik} | s_{ik-1})P(s_{ik-1} | s_{ik-2})\dots P(s_{i2} | s_{i1})P(s_{i1})$

• Suppose we want to calculate a probability of a sequence of states in our example, {'Dry','Dry','Rain',Rain'}.

 $P(\{\text{`Dry','Dry','Rain',Rain'}\}) = P(\text{`Rain'}|\text{`Rain'}) P(\text{`Rain'}|\text{'Dry'}) P(\text{`Dry'}|\text{'Dry'}) P(\text{`Dry'}) = 0.3*0.2*0.8*0.6$

Hidden Markov models.

• Set of states: $\{s_1, s_2, ..., s_N\}$

•Process moves from one state to another generating a sequence of states : $S_{i1}, S_{i2}, \dots, S_{ik}, \dots$

• Markov chain property: probability of each subsequent state depends only on what was the previous state:

$$P(s_{ik} | s_{i1}, s_{i2}, \dots, s_{ik-1}) = P(s_{ik} | s_{ik-1})$$

• States are not visible, but each state randomly generates one of M observations (or visible states) $\{v_1, v_2, \dots, v_M\}$

• To define hidden Markov model, the following probabilities have to be specified: matrix of transition probabilities $A=(a_{ij})$, $a_{ij}=P(s_i \mid s_j)$, matrix of observation probabilities $B=(b_i (v_m))$, $b_i(v_m)=P(v_m \mid s_i)$ and a vector of initial probabilities $\pi=(\pi_i)$, $\pi_i = P(s_i)$. Model is represented by $M=(A, B, \pi)$.

Example of Hidden Markov Model

Example of Hidden Markov Model

- Two states : 'Low' and 'High' atmospheric pressure.
- Two observations : 'Rain' and 'Dry'.
- Transition probabilities: P(`Low'|`Low')=0.3, P(`High'|`Low')=0.7, P(`Low'|`High')=0.2, P(`High'|`High')=0.8
- Observation probabilities : P('Rain'|'Low')=0.6, P('Dry'|'Low')=0.4, P('Rain'|'High')=0.4, P('Dry'|'High')=0.3.
- Initial probabilities: say P(`Low')=0.4, P(`High')=0.6.

Calculation of observation sequence probability

•Suppose we want to calculate a probability of a sequence of observations in our example, {'Dry','Rain'}. •Consider all possible hidden state sequences: $P(\{ 'Dry', 'Rain' \}) = P(\{ 'Dry', 'Rain' \}, \{ 'Low', 'Low' \}) + P(\{ 'Dry', 'Rain' \}, \{ 'Low', 'High' \}) + P(\{ 'Dry', 'Rain' \}, \{ 'High', 'Low' \}) + P(\{ 'Dry', 'Rain' \}, \{ 'High', 'High' \})$

where first term is : $P(\{ Dry', Rain'\}, \{ Low', Low'\}) =$ $P(\{ Dry', Rain'\} | \{ Low', Low'\}) P(\{ Low', Low'\}) =$ P(Dry'| Low') P((Rain'| Low') P((Low')P((Low'| Low)) == 0.4 + 0.4 + 0.6 + 0.4 + 0.3

Main issues using HMMs :

Evaluation problem. Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 \dots o_K$, calculate the probability that model M has generated sequence O.

- Decoding problem. Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 \dots o_K$, calculate the most likely sequence of hidden states S_i that produced this observation sequence O.
- Learning problem. Given some training observation sequences $O=o_1 o_2 \dots o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data.

 $O = O_1 \dots O_K$ denotes a sequence of observations $O_k \in \{V_1, \dots, V_M\}$.

Word recognition example(1).

• Typed word recognition, assume all characters are separated.

• Character recognizer outputs probability of the image being particular character, P(image|character).

Word recognition example(2).

- Hidden states of HMM = characters.
- Observations = typed images of characters segmented from the image V_{α} . Note that there is an infinite number of observations
- Observation probabilities = character recognizer scores. $B = (b_i(v_\alpha)) = (P(v_\alpha \mid s_i))$

•Transition probabilities will be defined differently in two subsequent models.

Word recognition example(3).

• If lexicon is given, we can construct separate HMM models for each lexicon word.

• Here recognition of word image is equivalent to the problem of evaluating few HMM models.

•This is an application of **Evaluation problem.**

Word recognition example(4).

- We can construct a single HMM for all words.
- Hidden states = all characters in the alphabet.
- Transition probabilities and initial probabilities are calculated from language model.
- Observations and observation probabilities are as before.

- Here we have to determine the best sequence of hidden states, the one that most likely produced word image.
- This is an application of **Decoding problem.**

Character recognition with HMM example.

• The structure of hidden states is chosen.

• Observations are feature vectors extracted from vertical slices.

- Probabilistic mapping from hidden state to feature vectors:
 - 1. use mixture of Gaussian models
 - 2. Quantize feature vector space.

Exercise: character recognition with HMM(1)

• The structure of hidden states:

Observation = number of islands in the vertical slice.
HMM for character 'A':

Transition probabilities: $\{a_{ij}\} = \begin{pmatrix} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{pmatrix}$ Observation probabilities: $\{b_{jk}\} = \begin{pmatrix} .9 & .1 & 0 \\ .1 & .8 & .1 \\ .9 & .1 & 0 \end{pmatrix}$

•HMM for character 'B':

Transition probabilities:
$$\{a_{ij}\} = \begin{pmatrix} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{pmatrix}$$

Observation probabilities: $\{b_{jk}\} = \begin{pmatrix} .9 & .1 & 0 \\ 0 & .2 & .8 \\ .6 & .4 & 0 \end{pmatrix}$

Exercise: character recognition with HMM(2)

- Suppose that after character image segmentation the following sequence of island numbers in 4 slices was observed:

 {1, 3, 2, 1}
- What HMM is more likely to generate this observation sequence , HMM for 'A' or HMM for 'B'?

Exercise: character recognition with HMM(3)

Consider likelihood of generating given observation for each possible sequence of hidden states:

• HMM for character 'A':

Hidden state sequence	Transition probabilities		Observation probabilities
$s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$.8 * .2 * .2	*	.9 * 0 * .8 * .9 = 0
$s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3$.2 * .8 * .2	*	.9 * .1 * .8 * .9 = 0.0020736
$s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3$.2 * .2 * 1	*	.9 * .1 * .1 * .9 = 0.000324
			Total = 0.0023976

• HMM for character 'B':

Hidden state sequence	Transition probabilities		Observation probabilities
$s_1 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$.8 * .2 * .2	*	.9 * 0 * .2 * .6 = 0
$s_1 \rightarrow s_2 \rightarrow s_2 \rightarrow s_3$.2 * .8 * .2	*	.9 * .8 * .2 * .6 = 0.0027648
$s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_3$.2 * .2 * 1	*	.9 * .8 * .4 * .6 = 0.006912
			Total = 0.0096768

Evaluation Problem.

•Evaluation problem. Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=o_1 o_2 \dots o_K$, calculate the probability that model M has generated sequence O.

• Trying to find probability of observations $O=O_1 O_2 ... O_K$ by means of considering all hidden state sequences (as was done in example) is impractical:

N^K hidden state sequences - exponential complexity.

• Use Forward-Backward HMM algorithms for efficient calculations.

• Define the forward variable $\alpha_k(i)$ as the joint probability of the partial observation sequence $O_1 O_2 \dots O_k$ and that the hidden state at time k is $S_i : \alpha_k(i) = P(O_1 O_2 \dots O_{k_j} q_k = S_i)$

Trellis representation of an HMM

Forward recursion for HMM

• Initialization:

$$\alpha_1(i) = P(o_1, q_1 = s_i) = \pi_i b_i(o_1), 1 \le i \le N.$$

• Forward recursion:

$$\begin{aligned} \alpha_{k+1}(i) &= P(o_1 o_2 \dots o_{k+1}, q_{k+1} = s_j) = \\ \Sigma_i P(o_1 o_2 \dots o_{k+1}, q_k = s_i, q_{k+1} = s_j) = \\ \Sigma_i P(o_1 o_2 \dots o_k, q_k = s_i) a_{ij} b_j(o_{k+1}) = \\ \left[\sum_i \alpha_k(i) a_{ij} \right] b_j(o_{k+1}), \quad 1 \le j \le N, 1 \le k \le K-1. \end{aligned}$$

• <u>Termination</u>:

$$P(o_1 o_2 ... o_K) = \sum_i P(o_1 o_2 ... o_{K_i} q_K = s_i) = \sum_i \alpha_K(i)$$

• Complexity :

N²K operations.

Backward recursion for HMM

• Define the forward variable $\beta_k(i)$ as the joint probability of the partial observation sequence $O_{k+1} O_{k+2} \dots O_K$ given that the hidden state at time k is $S_i : \beta_k(i) = P(O_{k+1} O_{k+2} \dots O_K | q_k = S_i)$

• <u>Initialization:</u>

$$\beta_{K}(i)=1$$
, 1<=i<=N.

• Backward recursion:

$$\begin{split} \beta_{k}(j) &= P(o_{k+1} o_{k+2} \dots o_{K} | q_{k} = s_{j}) = \\ \sum_{i} P(o_{k+1} o_{k+2} \dots o_{K}, q_{k+1} = s_{i} | q_{k} = s_{j}) = \\ \sum_{i} P(o_{k+2} o_{k+3} \dots o_{K} | q_{k+1} = s_{i}) a_{ji} b_{i}(o_{k+1}) = \\ \sum_{i} \beta_{k+1}(i) a_{ji} b_{i}(o_{k+1}), \quad 1 \leq j \leq N, 1 \leq k \leq K-1. \end{split}$$

• <u>Termination:</u>

$$P(o_1 o_2 \dots o_K) = \sum_i P(o_1 o_2 \dots o_K, q_1 = s_i) = \sum_i P(o_1 o_2 \dots o_K, q_1 = s_i) = \sum_i P(o_1 o_2 \dots o_K, q_1 = s_i) P(q_1 = s_i) = \sum_i \beta_1(i) b_i(o_1) \pi_i$$

Decoding problem

Decoding problem. Given the HMM M=(A, B, π) and the observation sequence O=O₁O₂...O_K, calculate the most likely sequence of hidden states S_i that produced this observation sequence.
We want to find the state sequence Q=q₁...q_K which maximizes

 $P(Q | o_1 o_2 ... o_K)$, or equivalently $P(Q, o_1 o_2 ... o_K)$.

• Brute force consideration of all paths takes exponential time. Use efficient **Viterbi algorithm** instead.

• Define variable $\delta_k(i)$ as the maximum probability of producing observation sequence $O_1 O_2 \dots O_k$ when moving along any hidden state sequence $q_1 \dots q_{k-1}$ and getting into $q_k = S_i$.

$$\delta_k(i) = \max P(q_1 \dots q_{k-1}, q_k = s_i, o_1 o_2 \dots o_k)$$

where max is taken over all possible paths $q_1 \dots q_{k-1}$.

Viterbi algorithm (1)

• General idea:

if best path ending in $\mathbf{q}_k = \mathbf{S}_j$ goes through $\mathbf{q}_{k-1} = \mathbf{S}_i$ then it should coincide with best path ending in $\mathbf{q}_{k-1} = \mathbf{S}_i$.

• $\delta_k(i) = \max P(q_1 \dots q_{k-1}, q_k = s_j, o_1 o_2 \dots o_k) = \max_i [a_{ij} b_j(o_k) \max P(q_1 \dots q_{k-1} = s_i, o_1 o_2 \dots o_{k-1})]$

• To backtrack best path keep info that predecessor of S_j was S_i .

Viterbi algorithm (2)

• Initialization:

 $\delta_1(i) = \max P(q_1 = s_i, o_1) = \pi_i b_i(o_1), 1 \le i \le N.$ •<u>Forward recursion:</u>

$$\begin{split} &\delta_{k}(j) = \max P(q_{1} \dots q_{k-1}, q_{k} = s_{j}, o_{1} o_{2} \dots o_{k}) = \\ &\max_{i} [a_{ij} b_{j}(o_{k}) \max P(q_{1} \dots q_{k-1} = s_{i}, o_{1} o_{2} \dots o_{k-1})] = \\ &\max_{i} [a_{ij} b_{j}(o_{k}) \delta_{k-1}(i)], \quad 1 \le j \le N, 2 \le k \le K. \end{split}$$

•<u>Termination</u>: choose best path ending at time K $max_i [\delta_K(i)]$

• Backtrack best path.

This algorithm is similar to the forward recursion of evaluation problem, with Σ replaced by max and additional backtracking.

Learning problem (1)

•Learning problem. Given some training observation sequences $O=o_1 o_2 \dots o_K$ and general structure of HMM (numbers of hidden and visible states), determine HMM parameters $M=(A, B, \pi)$ that best fit training data, that is maximizes P(O | M).

- There is no algorithm producing optimal parameter values.
- Use iterative expectation-maximization algorithm to find local maximum of $P(O \mid M)$ Baum-Welch algorithm.

Learning problem (2)

• If training data has information about sequence of hidden states (as in word recognition example), then use maximum likelihood estimation of parameters:

 $a_{ij} = P(s_i | s_j) = \frac{\text{Number of transitions from state } S_j \text{ to state } S_i}{\text{Number of transitions out of state } S_j}$

 $b_{i}(v_{m}) = P(v_{m} | s_{i}) = \frac{\text{Number of times observation } V_{m} \text{ occurs in state } S_{i}}{\text{Number of times in state } S_{i}}$

Baum-Welch algorithm

General idea:

 $a_{ij} = P(s_i | s_j) = \frac{\text{Expected number of transitions from state } S_j \text{ to state } S_i}{\text{Expected number of transitions out of state } S_j}$

 $b_i(v_m) = P(v_m | s_i) = \frac{\text{Expected number of times observation } V_m \text{ occurs in state } S_i}{\text{Expected number of times in state } S_i}$

 $\pi_i = P(s_i) = E_{x_i}$ Expected frequency in state s_i at time k=1.

Baum-Welch algorithm: expectation step(1)

• Define variable $\xi_k(i,j)$ as the probability of being in state S_i at time k and in state S_j at time k+1, given the observation sequence $O_1 O_2 \dots O_K$.

$$\xi_k(i,j) = P(q_k = s_i, q_{k+1} = s_j | o_1 o_2 \dots o_K)$$

$$\begin{split} \xi_{k}(i,j) &= \frac{P(q_{k} = s_{i} \ , q_{k+1} = s_{j} \ , o_{1} \ o_{2} \ ... \ o_{k})}{P(o_{1} \ o_{2} \ ... \ o_{k})} = \\ \frac{P(q_{k} = s_{i} \ , o_{1} \ o_{2} \ ... \ o_{k}) \ a_{ij} \ b_{j} \left(o_{k+1} \right) P(o_{k+2} \ ... \ o_{K} \mid q_{k+1} = s_{j} \right)}{P(o_{1} \ o_{2} \ ... \ o_{k})} = \\ \frac{\alpha_{k}(i) \ a_{ij} \ b_{j} \left(o_{k+1} \right) \ \beta_{k+1}(j)}{\Sigma_{i} \Sigma_{j} \ \alpha_{k}(i) \ a_{ij} \ b_{j} \left(o_{k+1} \right) \ \beta_{k+1}(j)} \end{split}$$

Baum-Welch algorithm: expectation step(2)

• Define variable $\gamma_k(i)$ as the probability of being in state S_i at time k, given the observation sequence $O_1 O_2 \dots O_K$. $\gamma_k(i) = P(q_k = S_i \mid O_1 O_2 \dots O_K)$

$$\gamma_{k}(i) = \frac{P(q_{k} = s_{i}, o_{1} o_{2} \dots o_{k})}{P(o_{1} o_{2} \dots o_{k})} = \frac{\alpha_{k}(i) \beta_{k}(i)}{\sum_{i} \alpha_{k}(i) \beta_{k}(i)}$$

Baum-Welch algorithm: expectation step(3)

•We calculated
$$\xi_k(i,j) = P(q_k = s_i, q_{k+1} = s_j | o_1 o_2 \dots o_K)$$

and $\gamma_k(i) = P(q_k = s_i | o_1 o_2 \dots o_K)$

• Expected number of transitions from state S_i to state $S_j =$

$$= \sum_{k} \xi_{k}(i,j)$$

- Expected number of transitions out of state $S_i = \sum_k \gamma_k(i)$
- Expected number of times observation V_m occurs in state $S_i = \sum_k \gamma_k(i)$, k is such that $O_k = V_m$
- Expected frequency in state S_i at time k=1: $\gamma_1(i)$.

Baum-Welch algorithm: maximization step

Expected number of transitions from state s_j to state s_i

 $a_{ij} =$

Expected number of transitions out of state s_i

$$\frac{\sum_k \xi_k(i,j)}{\sum_k \gamma_k(i)}$$

 $b_{i}(v_{m}) = \frac{\text{Expected number of times observation } v_{m} \text{ occurs in state } s_{i}}{\text{Expected number of times in state } s_{i}} = \frac{\sum_{k} \xi_{k}(i,j)}{\sum_{k \text{ op} = v_{m}} v_{k}(i)}$

 $\pi_i = (\text{Expected frequency in state } S_i \text{ at time } k=1) = \gamma_1(i).$