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Plan

@ We learned about estimating parametric models and how these then

form classifiers and define decision boundaries
@ Now we turn back to the question of dimensionality.

@ Recall the fish example, where we experimented with the length
feature first, then the lightness feature, and then decided upon a

combination of the width and lightness.
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@ We developed some intuition saying the more features | add, the

better my classifier will be...
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Plan

@ We learned about estimating parametric models and how these then
form classifiers and define decision boundaries

@ Now we turn back to the question of dimensionality.

@ Recall the fish example, where we experimented with the length
feature first, then the lightness feature, and then decided upon a
combination of the width and lightness.
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@ We developed some intuition saying the more features | add, the
better my classifier will be...

@ We will see that in theory this may be, but in practice, this is not the
case—the probability of error will increase after a certain number of
features (dimensionality) has been reached.

J. Corso (SUNY at Buffalo) Dimension Reduction and Component Analys| 2 /102



Plan

@ We learned about estimating parametric models and how these then
form classifiers and define decision boundaries

@ Now we turn back to the question of dimensionality.

@ Recall the fish example, where we experimented with the length
feature first, then the lightness feature, and then decided upon a
combination of the width and lightness.

lightness
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@ We developed some intuition saying the more features | add, the
better my classifier will be...

@ We will see that in theory this may be, but in practice, this is not the
case—the probability of error will increase after a certain number of
features (dimensionality) has been reached.

@ We will first explore this point and then discuss a set of methods for
dimension reduction.
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o Consider a simple arrangement: you
have a sphere of radius r = 1 in a space
of D dimensions.

o We want to compute what is the
fraction of the volume of the sphere
that lies between radius r = 1 — € and
r=1.

o F = = £ DA
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o Consider a simple arrangement: you Vp(1) = V(1 —¢)
have a sphere of radius r = 1 in a space Vb (1)
of D dimensions.

o We want to compute what is the
fraction of the volume of the sphere
that lies between radius r = 1 — € and 1
r=1.

@ Noting that the volume of the sphere
will scale with 7, we have:

0.8 D=5

0.6

0.4

volume fraction

VD(T’) = KDT‘D (1)

0.2

where K is some constant (depending
only on D) oo 0.2 04 06 08 1
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@ Dataset: Measurements taken

from a pipeline containing a
mixture of oil.

e Three classes present
(different geometrical
configuration): homogeneous,
annular, and laminar.

e Each data point is a 12
dimensional input vector
consisting of measurements
taken with gamma ray
densitometers, which measure
the attenuation of gamma
rays passing along narrow
beams through the pipe.




@ 100 data points of features xg

and x7 are shown on the right.

@ Goal: Classify the new data
point at the 'x’.

@ Suggestions on how we might
approach this classification
problem?
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Observations we can make:

@ The cross is surrounded by
many red points and some green
points.

@ Blue points are quite far from
the cross.

o Nearest-Neighbor Intuition:
The query point should be
determined more strongly by
nearby points from the training
set and less strongly by more
distant points.




One simple way of doing it is:

@ We can divide the feature space
up into regular cells.

@ For each, cell, we associated the
class that occurs most
frequently in that cell (in our
training data).

@ Then, for a query point, we
determine which cell it falls into
and then assign in the label
associated with the cell.
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One simple way of doing it is:

@ We can divide the feature space
up into regular cells.

@ For each, cell, we associated the
class that occurs most
frequently in that cell (in our
training data).

@ Then, for a query point, we
determine which cell it falls into
and then assign in the label
associated with the cell.

@ What problems may exist with
this approach?
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@ The problem we are most interested in now is the one that becomes
apparent when we add more variables into the mix, corresponding to
problems of higher dimensionality.

@ In this case, the number of additional cells grows exponentially with
the dimensionality of the space.

@ Hence, we would need an exponentially large training data set to
ensure all cells are filled.
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@ This severe difficulty when working in high dimensions was coined the
curse of dimensionality by Bellman in 1961.

@ The idea is that the volume of a space increases exponentially with
the dimensionality of the space.

o F = = £ DA
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@ How does the probability of error vary as we add more features, in
theory?

@ Consider the following two-class problem:

o The prior probabilities are known and equal: P(w;) = P(wz) = 1/2.
o The class-conditional densities are Gaussian with unit covariance:

p(x|wi) ~ N(py, 1)

®3)
p(x|wz) ~ N(py, T) (4)
where p; = u, pto = —p, and p is an n-vector whose ith component
is (1/4)'/2.
@ The corresponding Bayesian Decision Rule is

decide wy if x"p > 0 (5)
o F
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@ The probability of error is

P(error) = Nors //2 exp | 2/2] dz (6)

where

12 =l = pall® = 43 (1/0) (7)

o Let's take this integral for el

granted... (For more detail, you
can look at DHS Problem 31 in
Chapter 2 and read Section 2.7.)

reducible
error

R, ) Xy X% k R,
JptriePes,) dx [P, dx
R, R,

o = =5 «= = 9ace
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@ What can we say about this

@ The probability of error is

P(error) = Nors //2 exp | 2/2] dz (6)

where

12 =l = pall® = 43 (1/0) (7)

P(x|w;)P(w;)

@ Let's take this integral for

granted... (For more detail, you
can look at DHS Problem 31 in
Chapter 2 and read Section 2.7.)

reducible
error

A

result as more features are R ) e k R,
added? Ip(x|w2)P(w2) dx Ip(x|w,)P(w,) dx
: R, R,

o = = = = 9ac
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The probability of error approaches 0 as n approach infinity because
1/i is a divergent series.

More intuitively, each additional feature is going to decrease the
probability of error as long as its means are different. In the general
case of varying means and but same variance for a feature, we have

x ()

i=1

Certainly, we prefer features that have big differences in the mean
relative to their variance.

We need to note that if the probabilistic structure of the problem is
completely known then adding new features is not going to decrease
the Bayes risk (or increase it).

Q>

[m] = = =
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@ So, adding dimensions is good....

@ ...in theory.

@ But, in practice, performance seems to not obey this theory

[m]

=
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o Consider again the two-class problem, but this time with unknown

means p; and fio.

@ Instead, we have m labeled samples x1, ..., X;,.

@ Then, the best estimate of pu for each class is the sample mean (recall

the parameter estimation lecture).

1 m
e

where x; comes from wy. The covariance matrix is I/m.

(9)
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@ Probablity of error is given by

P(error) = P(x"1i > Olws) =

oz /00 exp [—2%/2] dz (10)

because it has a Gaussian form as n approaches infinity where

Yo = B(2)/ var(2)]"/?

n

(1)
B(z) =Y (1))

(12)
= (1+ 1)

> (1/i)+n/m (13)
=1
=} =
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@ Probablity of error is given by

P(error) = P(x" 1z > O|ws)

L /oo exp [—22/2] dz
V2T Sy,
@ The key is that we can show

Jim 7 =0

(14)
and thus the probability of error approaches one-half as the
dimensionality of the problem becomes very high.

DA
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@ Trunk performed an experiment to investigate the convergence rate of
the probability of error to one-half. He simulated the problem for
dimensionality 1 to 1000 and ran 500 repetitions for each dimension.

@ We see an increase in performance initially and then a decrease (as
the dimensionality of the problem grows larger than the number of

training samples).

PN G4
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Motivation for Dimension Reduction

@ The discussion on the curse of dimensionality should be enough!

@ Even though our problem may have a high dimension, data will often
be confined to a much lower effective dimension in most real world
problems.

o Computational complexity is another important point: generally, the
higher the dimension, the longer the training stage will be (and
potentially the measurement and classification stages).

@ We seek an understanding of the underlying data to

@ Remove or reduce the influence of noisy or irrelevant features that
would otherwise interfere with the classifier;

o Identify a small set of features (perhaps, a transformation thereof)
during data exploration.

J. Corso (SUNY at Buffalo) Dimension Reduction and Component Analys| 18 / 102



Principal Component Analysis

@ We have n samples {x1, X2, .

, Xn )
@ How can we best represent the n samples by a

single vector x¢7?
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Principal Component Analysis

@ We have n samples {x1, X2, .

S X}

@ How can we best represent the n samples by a single vector xg7

o First, we need a distance function on the sample space. Let's use the
Euclidean distance and the sum of squared distances criterion:

Jo(x0) = > _lIxo — x|
k=1

(15)
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Principal Component Analysis

@ We have n samples {x1,x2,...,x,}.
@ How can we best represent the n samples by a single vector xg7

o First, we need a distance function on the sample space. Let's use the
Euclidean distance and the sum of squared distances criterion:

Jo(x0) = > _lIxo — x|
k=1

@ Then, we seek a value of Xy that minimizes Jj.

(15)
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Principal Component Analysis

@ We can show that the minimizer is indeed the sample mean:

1 n

=13
k=1

@ We can verify it by adding m — m into Jy:

(16)
Jo(x0) = _l(x0 — m) — (x4 — m)||?
k=1

(17)
n n
= lxo —m|*+ > Jx, —m|?

k=1 k=1

(18)
@ Thus, Jy is minimized when xg = m. Note, the second term is
independent of xq.

=] 5
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Principal Component Analysis

@ So, the sample mean is an initial dimension-reduced representation of
the data (a zero-dimensional one).

@ It is simple, but it not does reveal any of the variability in the data.

@ Let's try to obtain a one-dimensional representation: i.e., let's project
the data onto a line running through the sample mean.

z 9ac
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Principal Component Analysis

@ Let e be a unit vector in the direction of the line.
@ The standard equation for a line is then

X =m + ae
where scalar a € R governs which point along the line we are and
hence corresponds to the distance of any point x from the mean m.

(19)
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Principal Component Analysis

@ Let e be a unit vector in the direction of the line.
@ The standard equation for a line is then

X =m+ ae (19)

where scalar a € R governs which point along the line we are and
hence corresponds to the distance of any point x from the mean m.
@ Represent point x; by m + age.
@ We can find an optimal set of coefficients by again minimizing the
squared-error criterion

n
Tiar,... anse) = 3 [[(m + axe) — i (20)
k=1
n n n
=S @l ~ 23 are” (xx — m) + 3 xi — m?
k=1 k=1 k=1
(21)
o = - = = 9ac
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Principal Component Analysis

o Differentiating for a; and equating to 0 yields

ar = e' (x; —m)
@ This indicates that the best value for aj is the projection of the point
X onto the line e that passes through m.

(22)

DA
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Principal Component Analysis

o Differentiating for a; and equating to 0 yields

ap = eT(xk - m) (22)
@ This indicates that the best value for aj is the projection of the point
X onto the line e that passes through m.

@ How do we find the best direction for that line?
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Principal Component Analysis

@ What if we substitute the expression we computed for the best aj
directly into the Jj criterion:

n n n
Jie) =) ai =2 ai+) |z —m|?
k=1 k=1 k=1

(23)
[T — )]+ 3 e~ m?
k=1

(24)
T (g — m) (e —m)Te + 3 e —mlf* (25)
k=1
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Principal Component Analysis

@ Define the scatter matrix S as

(26)
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Principal Component Analysis

@ Define the scatter matrix S as

S = (xx — m)(x; — m)
k=1
matrix.

(26)
@ This should be familiar — this is a multiple of the sample covariance
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Principal Component Analysis

@ Define the scatter matrix S as

S = (x)—m)(x; — m)
k=1
matrix.

(26)
@ This should be familiar — this is a multiple of the sample covariance
o Putting it in:

Jl(e) = —

n

e'Se+ Y |x; — m|?
k=1

@ The e that maximizes e'Se will minimize J;.

=] 5

(27)
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Principal Component Analysis

@ We use Lagrange multipliers to maximize e’ Se subject to the
constraint that ||e|| = 1.

u=e'Se— \e'e—1)

(28)
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Principal Component Analysis

@ We use Lagrange multipliers to maximize e’ Se subject to the
constraint that ||e|| = 1.

u=e'Se— \e'e—1)
o Differentiating w.r.t. e and setting equal to 0.

(28)
ou

70 = 2Se — 2)\e

Se = de
@ Does this form look familiar?

(29)

(30)
o =
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Principal Component Analysis

Se = de

@ This is an eigenproblem.

@ Hence, it follows that the best one-dimensional estimate (in a
least-squares sense) for the data is the eigenvector corresponding to
the largest eigenvalue of S.

@ So, we will project the data onto the largest eigenvector of S and
translate it to pass through the mean.

£ DA
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Principal Component Analysis

@ We're already done...basically.
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Principal Component Analysis

@ We're already done...basically.

@ This idea readily extends to multiple dimensions, say d’ < d
dimensions.

@ We replace the earlier equation of the line with

dl
X=m-+ E a;e;
=1

@ And we have a new criterion function

(31)

n

Jo =Y

d’ 2
m + E QAfi€5 X
k=1 i=1

- (32)
o =
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Principal Component Analysis

@ Jy is minimized when the vectors ey, ..., ey are the d’ eigenvectors
fo the scatter matrix having the largest eigenvalues.

These vectors are orthogonal.
They form a natural set of basis vectors for representing any feature x.
The coefficients a; are called the principal components.

Visualize the basis vectors as the principal axes of a hyperellipsoid
surrounding the data (a cloud of points).

@ Principle components reduces the dimension of the data by restricting
attention to those directions of maximum variation, or scatter.

PN G4
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Fisher Linear Discriminant

@ Description vs. Discrimination

@ PCA is likely going to be useful for representing data.
@ But, there is no reason to assume that it would be good for
discriminating between two classes of data.
e 'Q’ versus ‘0.
o Discriminant Analysis seeks directions that are efficient for
discrimination.

z 9ac

30 / 102



Fisher Linear Discriminant

@ Suppose we have a set of n d-dimensional samples with n in set Dy,
and similarly for set Ds.

D’i = {Xla

X}, i={1,2)

(33)
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Fisher Linear Discriminant

@ Suppose we have a set of n d-dimensional samples with n in set Dy,
and similarly for set Ds.

D ={x1,...,%n;}, 1={1,2} (33)
@ We can form a linear combination of the components of a sample x:

Yy=W'X (34)
which yields a corresponding set of n samples y1, .
subsets Vi and ).

., Yn split into

DA
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Fisher Linear Discriminant

onto a line in the direction of w.
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o If we constrain the norm of w to be 1 (i.e., ||[w]|| = 1) then we can

conceptualize that each y; is the projection of the corresponding x;

DA

32 /102



Fisher Linear Discriminant

onto a line in the direction of w.
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o If we constrain the norm of w to be 1 (i.e., ||[w]|| = 1) then we can

conceptualize that each y; is the projection of the corresponding x;
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@ Does the magnitude of w have any real significance?
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Fisher Linear Discriminant

@ For our two-class setup, it should be clear that we want the projection
that will have those samples from class w; falling into one cluster (on
the line) and those samples from class ws falling into a separate
cluster (on the line).

o F = = £ DA
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Fisher Linear Discriminant

@ For our two-class setup, it should be clear that we want the projection
that will have those samples from class w; falling into one cluster (on
the line) and those samples from class ws falling into a separate
cluster (on the line).

@ However, this may not be possible depending on our underlying
classes.

o F = = £ DA
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Fisher Linear Discriminant

@ For our two-class setup, it should be clear that we want the projection
that will have those samples from class w; falling into one cluster (on
the line) and those samples from class ws falling into a separate
cluster (on the line).

@ However, this may not be possible depending on our underlying
classes.

@ So, how do we find the best direction w?



Fisher Linear Discriminant

@ Let m; be the d-dimensional sample mean for class i:

v z€D;

(35)
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Fisher Linear Discriminant

@ Let m; be the d-dimensional sample mean for class i:

v z€D;
@ Then the sample mean for the projected points is

(35)

1
m;

(36)
— T

(37)
And, thus, is simply the projection of m,;.

(38)
o =

DA
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Fisher Linear Discriminant

@ The distance between projected means is thus

g — 1he| = [w' (my — my)|
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Fisher Linear Discriminant

@ The distance between projected means is thus

g — 1he| = [w' (my — my)|
W.

(39)

@ The scale of w: we can make this distance arbitrarily large by scaling
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Fisher Linear Discriminant

@ The distance between projected means is thus
iy —a| = |w' (my — my))| (39)

@ The scale of w: we can make this distance arbitrarily large by scaling
w.

@ Rather, we want to make this distance large relative to some measure
of the standard deviation. ... This story we've heard before.

DA
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Fisher Linear Discriminant

@ To capture this variation, we compute the scatter

~2
5 =

~ 32

Z (y —mi)
yeY;

which is essentially a scaled sampled variance.

= 9ace
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Fisher Linear Discriminant

@ To capture this variation, we compute the scatter

~ 32

Sp = Z (y —mi)
yeY;

which is essentially a scaled sampled variance.

@ From this, we can estimate the variance of the pooled data:

AR

(81 + 33)
samples.

@ 32 + 33 is called the total within-class scatter of the projected

(41)
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Fisher Linear Discriminant

@ The Fisher Linear Discriminant will select the w that maximizes

J(w) = =l
5% + 53
@ It does so independently of the magnitude of w.

(42)
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Fisher Linear Discriminant

The Fisher Linear Discriminant will select the w that maximizes

|y —7712|2
J(w) = 1 "2l 42

It does so independently of the magnitude of w.

This term is the ratio of the distance between the projected means
scaled by the within-class scatter (the variation of the data).

Recall the similar term from earlier in the lecture which indicated the
amount a feature will reduce the probability of error is proportional to
the ratio of the difference of the means to the variance. FLD will
choose the maximum...

u]
)
I
il
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Fisher Linear Discriminant

@ The Fisher Linear Discriminant will select the w that maximizes

|y —7712|2
J(w) = 1 "2l 42

@ It does so independently of the magnitude of w.

@ This term is the ratio of the distance between the projected means
scaled by the within-class scatter (the variation of the data).

@ Recall the similar term from earlier in the lecture which indicated the
amount a feature will reduce the probability of error is proportional to
the ratio of the difference of the means to the variance. FLD will
choose the maximum...

We need to rewrite J(-) as a function of w.

[m] = =
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Fisher Linear Discriminant

@ Define scatter matrices S;:

z€D;

Si= ) (x—m)(x—m)’
and

(43)

Sw =S1+ Sy

(44)
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Fisher Linear Discriminant

@ Define scatter matrices S;:

z€D;

Si= ) (x—m)(x—m)’
and

(43)

Sw=S1+8Sy .
@ Sy is called the within-class scatter matrix.

(44)
@ Sy is symmetric and positive semidefinite.
@ In typical cases, when is Sy nonsingular?
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Fisher Linear Discriminant

@ Deriving the sum of scatters.

2
§ = E (WTX - WTmi>
z€D;

i

ZWT(x—mi)(x—mi) w

=w'S;w

of w:

P+ =w'Syw

@ We can therefore write the sum of the scatters as an explicit function

(45)
(46)
(47)

(48)
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Fisher Linear Discriminant

@ The separation of the projected means obeys

(ﬁ’bl — m2)2 = <WTm1

2
- WTm2>

(49)
=w' (m; —my)(m; — m2)T w (50)
= WTSBW (51)
@ Here, Sp is called the between-class scatter matrix:

SB = (I'Ill — mg) (m1 — mg)

@ Sp is also symmetric and positive semidefinite.
@ When is Sp nonsingular?

=} 5

(52)

DA
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Fisher Linear Discriminant

@ We can rewrite our objective as a function of w.

w'Spw
J(w) = wTSyyw
@ This is the generalized Rayleigh quotient.
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Fisher Linear Discriminant

@ We can rewrite our objective as a function of w.

w'Spw
J(w) = wTSyyw
@ This is the generalized Rayleigh quotient.

(53)
@ The vector w that maximizes J(-) must satisfy

Spw = ASyw
which is a generalized eigenvalue problem.

(54)

DA

41 / 102



Fisher Linear Discriminant

@ We can rewrite our objective as a function of w.

-
J(w) = w'Spw

- wiSyw (53)
@ This is the generalized Rayleigh quotient.
@ The vector w that maximizes J(-) must satisfy
Spw = ASyw
which is a generalized eigenvalue problem.

(54)
e For nonsingular Sy (typical), we can write this as a standard
eigenvalue problem:

Sy Spw = A\w

(55)
o =

DA
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Fisher Linear Discriminant

@ Since ||w/|| is not important and Spw is always in the direction of
(m; — msy), we can simplify
w

:s‘;}

(my —mjy)

e w* maximizes J(-) and is the Fisher Linear Discriminant.

(56)
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Fisher Linear Discriminant

@ Since ||w/|| is not important and Spw is always in the direction of
(m; — msy), we can simplify

_q-1

w* =Sy,

(my —mjy)

e w* maximizes J(-) and is the Fisher Linear Discriminant.
one.

(56)

@ The FLD converts a many-dimensional problem to a one-dimensional
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Fisher Linear Discriminant

@ Since ||w/|| is not important and Spw is always in the direction of
(m; — msy), we can simplify

*

w* = S} (m; — my) (56)

e w* maximizes J(-) and is the Fisher Linear Discriminant.

@ The FLD converts a many-dimensional problem to a one-dimensional
one.

@ One still must find the threshold. This is easy for known densities,
but not so easy in general.

o F = = £ DA
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Classic

@ PCA maximizes the total

scatter across all classes. -
@ PCA projections are thus . T e
optimal for reconstruction S "
from a low dimensional . ¥ /,’*1
basis, but not necessarily s VS
from a discrimination - .\\& . ...H&é'y oo
standpoint. ﬂ*n e
o FLD maximizes the ratio of ’ %, T
the between-class scatter \Q% e
and the within-class scatter. : T
feature 1
@ FLD tries to “"shape” the Fig. 2. A comparison of principal component analysis (PCA) and
scatter to make it more Lol Je e ) o o s e s e

effective for classification. B
=] F = £ DA
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Case Study: EigenFaces versus FisherFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711-720. 1997.

@ Analysis of classic pattern recognition techniques (PCA and FLD) to
do face recognition.

@ Fixed pose but varying illumination.

@ The variation in the resulting images caused by the varying
illumination will nearly always dominate the variation caused by an
identity change.

Fig. 1. The same person seen under different lighting conditions can
appear dramatically different: In the left image, the dominant light
source is nearly head-on; in the right image, the dominant light source
is from above and to the right.
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Case Study: EigenFaces versus FisherFaces
Source: Belhumeur et al. IEEE TPAMI 19(7) 711-720. 1997.
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Case Study: Faces

of the high-dimensional image space.

@ Fact: all of the images of a Lambertian surface, taken from a fixed
viewpoint, but under varying illumination, lie in a 3D linear subspace

= wace
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Case Study: Faces

@ Fact: all of the images of a Lambertian surface, taken from a fixed
viewpoint, but under varying illumination, lie in a 3D linear subspace
of the high-dimensional image space.

@ But, in the presence of shadowing, specularities, and facial
expressions, the above statement will not hold. This will ultimately
result in deviations from the 3D linear subspace and worse
classification accuracy.

o F = = £ DA
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Case Study: Faces

o Consider a set of N training images, {x1, X2,

. XN}
@ We know that each of the N images belongs to one of ¢ classes and
can define a C(-) function to map the image x into a class w,.
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Case Study: Faces

e Consider a set of NV training images, {x1,X2,...,XN}.
@ We know that each of the N images belongs to one of ¢ classes and
can define a C(+) function to map the image x into a class w..

@ Pre-Processing — each image is normalized to have zero mean and
unit variance.

o Why?

=] =) = = £ DA
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Case Study: Faces

e Consider a set of NV training images, {x1,X2,...,XN}.

@ We know that each of the N images belongs to one of ¢ classes and
can define a C(+) function to map the image x into a class w..

@ Pre-Processing — each image is normalized to have zero mean and
unit variance.

o Why?

@ Gets rid of the light source intensity and the effects of a camera’s

automatic gain control.

£ DA
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Case Study: Faces

e Consider a set of NV training images, {x1,X2,...,XN}.

@ We know that each of the N images belongs to one of ¢ classes and
can define a C(+) function to map the image x into a class w..

@ Pre-Processing — each image is normalized to have zero mean and
unit variance.

o Why?
@ Gets rid of the light source intensity and the effects of a camera’s
automatic gain control.

e For a query image x, we select the class of the training image that is
the nearest neighbor in the image space:

x" = arg I{nu;”x —x;|| then decide C(x*) (57)

Xi

where we have vectorized each image.

o < = z 9ac
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Case Study: Faces

@ What are the advantages and disadvantages of the
method in this context?

correlation based
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Case Study: Faces

What are the advantages and disadvantages of the correlation based
method in this context?

Computationally expensive.
Require large amount of storage.

Noise may play a role.

Highly parallelizable.

=] =) = £ DA
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Case Study: Faces

@ Quickly recall the main idea of PCA.

@ Define a linear projection of the original n-d image space into an m-d
space with m < n or m < n, which yields new vectors y:

yi = WTx; k=1,2,...,N
where W € R"*™,

(58)
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Case Study: Faces

@ Quickly recall the main idea of PCA.

@ Define a linear projection of the original n-d image space into an m-d

space with m < n or m < n, which yields new vectors y:

yi = WTx;
where W € R"*™,

@ Define the total scatter matrix S as
N

k=1

Sr=Y_ (xk — ) (X — )

T
where p is the sample mean image.
=] 5
I D DD mension Reduction and Component Analys

k=1,2,.

N

(58)

(59)
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Case Study: Faces

@ The scatter of the projected vectors {y1,y2,

.. 7yN} is
WTSTW

(60)

-
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Case Study: Faces

@ The scatter of the projected vectors {y1, yo,

YN} s
WTSyw
@ Wopt is chosen to maximize the determinant of the total scatter
matrix of the projected vectors:

(60)

Wopt

arg max|W ' SpW|
W
[Wl W9

(61)
o W (62)
where {w;|i = 1,d,...,m} is the set of n-d eigenvectors of St
corresponding to the largest m eigenvalues.
I D DD mension Reduction and Component Analys

= 9ace
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@ An Example:

N Lo Cose Study: Faces

2
Source: http://www.cs.princeton.edu/ cdecoro/eigenfaces/. (not sure
if this dataset include lighting variation...)

=] F
I D DD mension Reduction and Component Analys
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Case Study: Faces

@ What are the advantages and disadvantages of the eigenfaces method
in this context?

DA
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Case Study: Faces

@ What are the advantages and disadvantages of the eigenfaces method
in this context?

@ The scatter being maximized is due not only to the between-class
scatter that is useful for classification but also to the within-clas
scatter, which is generally undesirable for classification.

o If PCA is presented faces with varying illumination, the projection
matrix Wope will contain principal components that retain the
variation in lighting. If this variation is higher than the variation due
to class identity, then PCA will suffer greatly for classification.

@ Yields a more compact representation than the correlation-based
method.

o < = z 9ac
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Case Study: Faces

@ Use Lambertian model directly.

@ Consider a point p on a Lambertian surface illuminated by a point
light source at infinity.

o Let s € R3 signify the product of the light source intensity with the
unit vector for the light source direction.

@ The image intensity of the surface at p when viewed by a camera is
E(p) = a(p)n(p)"s (63)

where n(p) is the unit inward normal vector to the surface at point p,
and a(p) is the albedo of the surface at p (a scalar).

@ Hence, the image intensity of the point p is linear on s.

o < = z 9ac
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Case Study: Faces

@ So, if we assume no shadowing, given three images of a Lambertian
surface from the same viewpoint under three known, linearly
independent light source directions, the albedo and surface normal
can be recovered.

@ Alternatively, one can reconstruct the image of the surface under an
arbitrary lighting direction by a linear combination of the three
original images.

@ This fact can be used for classification.

o F = = £ DA
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Case Study: Faces

@ So, if we assume no shadowing, given three images of a Lambertian
surface from the same viewpoint under three known, linearly
independent light source directions, the albedo and surface normal
can be recovered.

@ Alternatively, one can reconstruct the image of the surface under an
arbitrary lighting direction by a linear combination of the three
original images.

@ This fact can be used for classification.

@ For each face (class) use three or more images taken under different
lighting conditions to construct a 3D basis for the linear subspace.

@ For recognition, compute the distance of a new image to each linear
subspace and choose the face corresponding to the shortest distance.

Q>

[m] = = =
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Case Study: Faces

@ Pros and Cons?
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55 / 102



Case Study: Faces

@ Pros and Cons?

@ If there is no noise or shadowing, this method will achieve error free
classification under any lighting conditions (and if the surface is
indeed Lambertian).

@ Faces inevitably have self-shadowing.

@ Faces have expressions...

o Still pretty computationally expensive (linear in number of classes).

=] =) = = £ DA
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Case Study: Faces

Recall the Fisher Linear Discriminant setup.
@ The between-class scatter matrix

Sp = Z Ni(pi — 1) (p; — )" (64)

@ The within-class scatter matrix

(&
Sw=» > (or—p) (o —p)" (65)
=1 x,€D;

@ The optimal projection W, is chosen as the matrix with orthonormal
columns which maximizes the ratio of the determinant of the
between-class scatter matrix of the projected vectors to the
determinant of the within-class scatter of the projected vectors:

[WTSpW|
Wopt = arg mme}x —|WTSWE.W| o ) (6232@
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Case Study: Faces

@ The eigenvectors {w;|i = 1,2,...,m} corresponding to the m largest
eigenvalues of the following generalized eigenvalue problem comprise
Wopt:
Spwi = A\iSwwi,

1=1,2,...,m
detail.

@ This is a multi-class version of the FLD, which we will discuss in more

(67)

DA
57 / 102



Case Study: Faces

@ The eigenvectors {w;|i = 1,2,...,m} corresponding to the m largest

eigenvalues of the following generalized eigenvalue problem comprise
Wopt:

SBWi = )\iSWWi; 1= 1,2,...,m (67)

@ This is a multi-class version of the FLD, which we will discuss in more
detail.

@ In face recognition, things get a little more complicated because the
within-class scatter matrix Syy is always singular.

o F = = £ DA
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Case Study: Faces

@ The eigenvectors {w;|i = 1,2,...,m} corresponding to the m largest
eigenvalues of the following generalized eigenvalue problem comprise
Wopt:

SBWi = )\iSWWi7 1= 1,2,...,m (67)

@ This is a multi-class version of the FLD, which we will discuss in more
detail.

@ In face recognition, things get a little more complicated because the
within-class scatter matrix Syy is always singular.

@ This is because the rank of Sy is at most N — ¢ and the number of
images in the learning set are commonly much smaller than the
number of pixels in the image.

@ This means we can choose W such that the within-class scatter is
exactly zero.

[m] = =
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Case Study: Faces

@ To overcome this, project the image set to a lower dimensional space
so that the resulting within-class scatter matrix Sy is nonsingular.
e How?
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Case Study: Faces

@ To overcome this, project the image set to a lower dimensional space
so that the resulting within-class scatter matrix Sy is nonsingular.

e How?

@ PCA to first reduce the dimension to N — ¢ and the FLD to reduce it
toc— 1.

° W;',;t is given by the product W nWgaca where

Wpca = arg mW:;,X|WTSTW| (68)
WIWI-ASWpcaW
WFLD = arg max | T .IT_CA B2 PCA ’ (69)
o & = = = wace
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Case Study: Faces

Hypothesis: face recognition algorithms will perform better if they
exploit the fact that images of a Lambertian surface lie in a linear
subspace.

Used Hallinan's Harvard Database which sampled the space of light
source directions in 15 degree incremements.

Used 330 images of five people (66 of each) and extracted five
subsets.

Classification is nearest neighbor in all cases.

o <& = E z 9ac
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Case Study: Faces

NN
IO
MIRENGNN
Subset 1
\\ \ \ -¢ Subset 2

\\ \ \ T Subset 3

\ \ \ / / / Hf Subset 4
UL P Subset 5
Wi

Fig. 3. The highlighted lines of longitude and latitude indicate the light
source directions for Subsets 1 through 5. Each intersection of a lon-
gitudinal and latitudinal line on the right side of the illustration has a
corresponding image in the database.

o < = z 9ac
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Experiment 1: Variation in Lighting
Source: Belhumeur et al. IEEE TPAMI 19(7) 711-720. 1997.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5
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Case Study: Faces

@ Train on Subset 1.
@ Test of Subsets 1,2,and 3.

a5
Eigentace (10}
@ —e—Eigerface (10)
Ess —s-Figentace (10} wio first 3 Correlation
r
r® aGorreiation / Cmminen (10
>
? = —se-Linear Subspace ’/ 7 wiafist3
 ® —x—Fisherface ’
fti 15
e S,
o & - Fisnertace
(%) I PR
i — I
Subsat 1 Subset2 Subset3
Lighting Direction Subset
Extrapolating from Subset 1
Method Reduced Error Rate (%)
Space Subset 1 Subset 2 Subset 3
Eigenface 4 0.0 311 47.7
10 0.0 44 415
Eigenface 4 0.0 133 415
wio 1st 3 1 0. 4.4 27.7
Correlation 29 0. 0. 339
Linear Subspace 15 0. 4.4 9.2
Fisherface 4 0. 0.4 4.6
o 5 = E £ DA
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Case Study: Faces

@ Train on Subsets 1 and 5.
@ Test of Subsets 2, 3, and 4.

Eigentace (10}
Eigentace (10}
wio fist 3
Correlation

Fisherlace

Subset? Subset3
Lighting Direction Subset

Method Reduced Error Rate (%)
Space Subset2 [ Subset3 [ Subset4
Eigenface 1 [ 53 | 754 [ 529 |
10 1111 33.9 20.0
Eigenface 4 3111 60.0 29.4
w/o 1st 3 10 .7 20. 12.9
Correlation 129 .0 2154 7.
Linear Subspace 15 .0 1. 0.
Fisherface 4 0 0. 1.
o F = = DA
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Case Study: Faces

@ All of the algorithms perform perfectly when lighting is nearly frontal.
However, when lighting is moved off axis, there is significant
difference between the methods (spec. the class-specific methods and
the Eigenface method).

=] 5 = E £ DA
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Case Study: Faces

@ All of the algorithms perform perfectly when lighting is nearly frontal.
However, when lighting is moved off axis, there is significant
difference between the methods (spec. the class-specific methods and
the Eigenface method).

@ Empirically demonstrated that the Eigenface method is equivalent to
correlation when the number of Eigenfaces equals the size of the
training set (Exp. 1).

z 9ac

I D DD mension Reduction and Component Analys 64 / 102



Case Study: Faces

@ All of the algorithms perform perfectly when lighting is nearly frontal.
However, when lighting is moved off axis, there is significant
difference between the methods (spec. the class-specific methods and
the Eigenface method).

@ Empirically demonstrated that the Eigenface method is equivalent to
correlation when the number of Eigenfaces equals the size of the
training set (Exp. 1).

@ In the Eigenface method, removing the first three principal
components results in better performance under variable lighting
conditions.



Experiment 1 and 2: Variation in Lighting
Source: Belhumeur et al. IEEE TPAMI 19(7) 711-720. 1997.

@ All of the algorithms perform perfectly when lighting is nearly frontal.
However, when lighting is moved off axis, there is significant
difference between the methods (spec. the class-specific methods and
the Eigenface method).

@ Empirically demonstrated that the Eigenface method is equivalent to
correlation when the number of Eigenfaces equals the size of the
training set (Exp. 1).

@ In the Eigenface method, removing the first three principal
components results in better performance under variable lighting
conditions.

@ Linear Subspace has comparable error rates with the FisherFace
method, but it requires 3x as much storage and takes three times as
long.
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Experiment 1 and 2: Variation in Lighting
Source: Belhumeur et al. IEEE TPAMI 19(7) 711-720. 1997.

@ All of the algorithms perform perfectly when lighting is nearly frontal.
However, when lighting is moved off axis, there is significant
difference between the methods (spec. the class-specific methods and
the Eigenface method).

@ Empirically demonstrated that the Eigenface method is equivalent to
correlation when the number of Eigenfaces equals the size of the
training set (Exp. 1).

@ In the Eigenface method, removing the first three principal
components results in better performance under variable lighting
conditions.

@ Linear Subspace has comparable error rates with the FisherFace
method, but it requires 3x as much storage and takes three times as
long.

@ The Fisherface method had error rates lower than the Eigenface
method and required less computation time.

J. Corso (SUNY at Buffalo) Dimension Reduction and Component Analysi 64 / 102



o
o
s

w
g

o
3
=}

(%]
b
T

o

@ Uses a second database of 16 subjects with ten images of images (5

varying in expression).
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Case Study: Faces

35

30 «
E \
r 25 » & & &
r M * Eigenface
? 20 ‘\
R S Eigenface w/o first
a three components
t 10
€ T—--—--—- — - — - — - — - Fisherface (7.3%)
(%)

0 + + +

o 50 100 150

Number of Principal Components

=] =) = = £ DA

I D DD mension Reduction and Component Analys 66 / 102



J. Corso (SUNY at Buffalo) Dimension Reduction and Component Analys| 67 / 102



Case Study: Faces

@ There may be situations in which PCA might outperform FLD
@ Can you think of such a situation?
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Case Study: Faces

@ There may be situations in which PCA might outperform FLD
@ Can you think of such a situation?

A LDA
PCA] D LDA
. ;o" A
<}
DPCA
........ \
,‘X

describe total scatter.

.
@ When we have few training data, then it may be preferable to
=] 5
I D DD mension Reduction and Component Analys
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Case Study: Faces

@ They tested on the AR face database and found affirmative results.

Test#4 Test#6
60 60
LI e g P—— e
£ 40 —X = 40 D
2 a2 /'/r:‘r/./ 2 w — = P
2 e e 2 et
g 1 .,4.4-//'/ & 1 Lyt
0 0 r
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
Dimensionality Dimensionality

Test#9

—+—PCA —#—PCAW/03 ---a--LDA

Recognition rate
N
8
»

Dimensionality

o <& = E z 9ac
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Multiple Discriminant Analysis

@ We can generalize the Fisher Linear Discriminant to multiple classes.
with some rigor.

@ Indeed we saw it done in the Case Study on Faces. But, let’s cover it

@ Let's make sure we're all at the same place: How many discriminant
functions will be involved in a ¢ class problem?

DA
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Multiple Discriminant Analysis

We can generalize the Fisher Linear Discriminant to multiple classes.

Indeed we saw it done in the Case Study on Faces. But, let's cover it
with some rigor.

Let's make sure we're all at the same place: How many discriminant
functions will be involved in a ¢ class problem?

o Key: There will be ¢ — 1 projection functions for a ¢ class problem

and hence the projection will be from a d-dimensional space to a
(¢ — 1)-dimensional space.

d must be greater than or equal to c.

PN G4
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Multiple Discriminant Analysis

yi:W;rX

The projection is accomplished by ¢ — 1 discriminant functions:

1=1,...,c—1
which is summarized in matrix form as

y=WTx
where W is the d x (¢ — 1) projection function.

O
Q%%g&

[m]

DA
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Multiple Discriminant Analysis

@ The generalization for the Within-Class Scatter Matrix is
straightforward:

Sw = Z S; (72)
i=1
where, as before,
Si= Y (x—m)(x—my)"
and
1

DA
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Multiple Discriminant Analysis

@ The between-class scatter matrix Sp is not so easy to generalize.
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Multiple Discriminant Analysis

@ The between-class scatter matrix Sp is not so easy to generalize.
@ Let’s define a total mean vector

c
1 1
mz—g xz—g n;m;
n n 4
X =1

@ Recall then total scatter matrix

(73)

X

St = Z(x —m)(x—m)"

(74)

DA
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@ Then it follows that

ST:zC:Z(x—mi+mi—m)(x—mi+mi—m)1—

(75)
i=1 x€D;
= Z Z (x —m;)(x — mi)T + Z Z (m; — m)(m; — m)T
i=1 x€D;

i=1 x€D;

(76)
=Sw + an(mz —m)(m; —m)T (77)
i=1

DA

74 / 102



@ Then it follows that

ST:zC: Z(x—mi+mi—m)(x—mi+mi—m)1—

i=1 x€D;

(75)
i=1 x€D;

= Z Z (x —my)(x —my)' + Z Z (m; — m)(m; —m)"
i=1 xeD;

) (76)

=Sw + an(mz —m)(m; —m)T
i=1

(77)
@ So, we can define this second term as a generalized between-class
scatter matrix.

between-class scatter.

@ The total scatter is the the sum of the within-class scatter and the
=] =
I D DD mension Reduction and Component Analys
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Multiple Discriminant Analysis

@ We again seek a criterion that will maximize the between-class scatter
of the projected vectors to the within-class scatter of the projected
vectors.

@ Recall that we can write down the scatter in terms of these
projections:

m; = 1 Z y and m= — ‘ n;m; (78)
Sw = Z D (v —my)(y —my)" (79)
Sp = Zni(ﬁ“ —m)(m; —m)" (80)

o = E E = 9ace
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Multiple Discriminant Analysis

@ Then, we can show

§W = WTSWW (81)
§B = WTSBW (82)

DA
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Multiple Discriminant Analysis

@ Then, we can show

Sy = WSy W
Sp = WISpW

(81)
(82)
@ A simple scalar measure of scatter is the determinant of the scatter
matrix. The determinant is the product of the eigenvalues and thus is
the product of the variation along the principal directions.

J(W)

_ Sp| _ [WTSpW|

Sw| [WTSwW|

(83)
o =
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Multiple Discriminant Analysis

@ The columns of an optimal W are the generalized eigenvectors that
correspond to the largest eigenvalues in
Spw; = \iSww;

(84)
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Multiple Discriminant Analysis

@ The columns of an optimal W are the generalized eigenvectors that
correspond to the largest eigenvalues in

SBWZ' = )\lSle

If Sy is nonsingular, then this can be converted to a conventional

(84)
eigenvalue problem. Or, we could notice that the rank of Sp is at
most ¢ — 1 and do some clever algebra...
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Multiple Discriminant Analysis

@ The columns of an optimal W are the generalized eigenvectors that
correspond to the largest eigenvalues in

Spw; = \iSww; (84)

o If Sy is nonsingular, then this can be converted to a conventional
eigenvalue problem. Or, we could notice that the rank of Sp is at
most ¢ — 1 and do some clever algebra...

@ The solution for W is, however, not unique and would allow arbitrary
scaling and rotation, but these would not change the ultimate
classification.



Image PCA

@ Observation: To apply PCA and FLD on images, we need to first

“vectorize” them, which can lead to high-dimensional vectors. Solving
the associated eigen-problems is a very time-consuming process.
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Image PCA

@ Observation: To apply PCA and FLD on images, we need to first

“vectorize” them, which can lead to high-dimensional vectors. Solving
the associated eigen-problems is a very time-consuming process.
@ So, can we apply PCA on the images directly?

DA
78 / 102



Image PCA

@ Observation: To apply PCA and FLD on images, we need to first
“vectorize” them, which can lead to high-dimensional vectors. Solving
the associated eigen-problems is a very time-consuming process.

@ So, can we apply PCA on the images directly?
@ Yes!

@ This will be accomplished by what the authors' call the image total
covariance matrix.

£ DA

I D DD mension Reduction and Component Analys 78 / 102



Image PCA

@ Define A € R™*"™ as our image.

@ Let w denote an n-dimensional column vector, which will represent
the subspace onto which we will project an image

y =Aw
which yields m-dimensional vector y.

@ You might think of w this as a “feature selector.”

@ We, again, want to maximize the total scatter...

(85)
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Image PCA

@ We have M total data samples.
@ The sample mean image is

| M
M= D> A (86)
j=1
@ And the projected sample mean is
LM
m = M Z Y; (87)
j=1
1M
=7 > Aw (88)
j=1
= Mw (89)
=] 5 = E £ DA
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Image PCA

@ The scatter of the projected samples is

(90)
[(A; = M)w][(A; — M)w] (91)
tr(S) =w' (f:

(A —M)T(A; - M)) w (92)

DA
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Image PCA

@ So, the image total scatter matrix is
M

J=1

Sr=) (Aj-M)T(A; - M)

(93)
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Image PCA

@ So, the image total scatter matrix is

M

J=1

Sr=) (Aj-M)T(A; - M)

(93)

@ And, a suitable criterion, in a form we've seen before is

Ji(w) =w'S;w

(94)

= 9ac
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Image PCA

@ So, the image total scatter matrix is
M
j=1

Sr=>) (A;-M)T(A; - M)

(93)
@ And, a suitable criterion, in a form we've seen before is
Ji(w) =w'S;w

(94)
orthonormal eigenvectors of S; corresponding to the largest
eigenvalues of S;.

=] 5

@ We know already that the vectors w that maximize J; are the
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Image PCA

@ Dataset is the ORL database
o 10 different images taken of 40 individuals.
Facial expressions and details are varying.

o
o Even the pose can vary slightly: 20 degree rotation/tilt and 10% scale.
o Size is normalized (92 x 112).

@ The first five images of each person are used for training and the
second five are used for testing.

o = = = = 9ac
83 / 102




Image PCA

e IMPCA varying the number of extracted eigenvectors (NN classifier):

Projection 1 2 3 4 5
vector number

Minimum distance 73.0 83.0 86.5 88.5 88.5
Nearest neighbor 85.0 92.0 93.5 94.5 94.5
Projection 6 7 8 9 10
vector number

Minimum distance 88.5 90.0 90.5 91.0 91.0
Nearest neighbor 95.0 95.0 95.5 93.5 94.0

= = = 9ac
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Image PCA

o IMPCA vs. EigenFaces vs. FisherFaces for Recognition
Recognition rate Eigenfaces
Minimum distance

Nearest neighbor

Fisherfaces
89.5% (46)

88.5% (39)  91.0%
93.5% (37)  88.5% (39)  95.5%

IMPCA
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Image PCA

o IMPCA vs. EigenFaces vs. FisherFaces for Recognition

Recognition rate Eigenfaces Fisherfaces IMPCA

Minimum distance 89.5% (46) 88.5% (39) 91.0%
Nearest neighbor 93.5% (37) 88.5% (39) 95.5%

e IMPCA vs. EigenFaces vs. FisherFaces for Speed

Time (s) Feature Classification  Total
extraction time  time time
Eigenfaces (37) 371.79 5.16 376.95
Fisherfaces (39) 378.10 5.27 383.37
IMPCA (112 x 8) 27.14 25.04 52.18
[m] = - =

z 9ac
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Image PCA

@ There is a clear speed-up because the amount of computation has
been greatly reduced.
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Image PCA

@ There is a clear speed-up because the amount of computation has
been greatly reduced.

@ However, this speed-up comes at some cost. What is that cost?
o Why does IMPCA work in this case?
o What is IMPCA really doing?
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Locally Linear Embedding

@ So far, we have covered a few methods for dimension reduction that
all make the underlying assumption the data in high dimension lives
on a planar manifold in the lower dimension.

e The methods are easy to implement.

o The methods do not suffer from local minima.
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Locally Linear Embedding

@ So far, we have covered a few methods for dimension reduction that
all make the underlying assumption the data in high dimension lives
on a planar manifold in the lower dimension.

e The methods are easy to implement.

o The methods do not suffer from local minima.
o But, what if the data is non-linear?
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Locally Linear Embedding

@ In non-linear dimension reduction, one must discover the global
internal coordinates of the manifold without signals that explicitly

indicate how the data should be embedded in the lower dimension (or
even how many dimensions should be used).

= 9ac
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Locally Linear Embedding

@ In non-linear dimension reduction, one must discover the global
internal coordinates of the manifold without signals that explicitly
indicate how the data should be embedded in the lower dimension (or
even how many dimensions should be used).

@ The LLE way of doing this is to make the assumption that, given
enough data samples, the local frame of a particular point x; is linear.
LLE proceeds to preserve this local structure while simultaneously
reducing the global dimension (indeed preserving the local structure
gives LLE the necessary constraints to discover the manifold).



Locally Linear Embedding

underlying manifold.

@ Suppose we have n real-valued vectors x; in dataset D each of
dimension D. We assume these data are sampled from some smooth
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Locally Linear Embedding

@ Suppose we have n real-valued vectors x; in dataset D each of

dimension D. We assume these data are sampled from some smooth
underlying manifold.

o Furthermore, we assume that each data point and its neighbors lie on
or close to a locally linear patch of the manifold.

o = E E =
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Locally Linear Embedding

@ Suppose we have n real-valued vectors x; in dataset D each of
dimension D. We assume these data are sampled from some smooth
underlying manifold.

o Furthermore, we assume that each data point and its neighbors lie on
or close to a locally linear patch of the manifold.

@ LLE characterizes the local geometry of these patches by linear
coefficients that reconstruct each data point from its neighbors.

o If the neighbors form the D-dimensional simplex, then these
coefficients form the barycentric coordinates of the data point.

o In the simplest form of LLE, one identifies K such nearest neighbors
based on the Euclidean distance.

e But, one can use all points in a ball of fixed radius, or even more
sophisticated metrics.

[m] = =
I D DD mension Reduction and Component Analys 89 / 102
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Locally Linear Embedding

@ We can write down the reconstruction error with the following cost
function:

Jue, (W) =)

2

X; — Winj
( J

(95)

@ Notice that each row of the weight matrix W will be nonzero for only

K columns; i.e., W is a quite sparse matrix. l.e., if we define the set
N(x;) as the K neighbors of x;, then we enforce

o We will enforce that the rows sum to 1, i.e,, >, Wj;
invariance.)

=] 5

= 1. (This is for
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Locally Linear Embedding

@ Note that the constrained weights that minimize these reconstruction
errors obey important symmetries: for any data point, they are

invariant to rotations, rescalings, and translations of that data point
and its neighbors.

=] =) = = £ DA
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Locally Linear Embedding

@ Note that the constrained weights that minimize these reconstruction
errors obey important symmetries: for any data point, they are
invariant to rotations, rescalings, and translations of that data point
and its neighbors.

@ This means that these weights characterize intrinsic geometric
properties of the neighborhood as opposed to any properties that
depend on a particular frame of reference.

o F = = £ DA
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Locally Linear Embedding

@ Note that the constrained weights that minimize these reconstruction
errors obey important symmetries: for any data point, they are
invariant to rotations, rescalings, and translations of that data point
and its neighbors.

@ This means that these weights characterize intrinsic geometric
properties of the neighborhood as opposed to any properties that
depend on a particular frame of reference.

@ If we suppose the data lie on or near a smooth nonlinear manifold of
dimension d < D. Then, to a good approximation, there exists a
linear mapping (a translation, rotation, and scaling) that maps the
high dimensional coordinates of each neighborhood to global internal
coordinates on the manifold.

Q>
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Locally Linear Embedding

@ So, we expect that the characterization of the local neighborhoods

(W) in the original space to be equally valid for the local patches on
the manifold.

@ In other words, the same weights WW;; that reconstruct point x; in the

original space should also reconstruct it in the embedded manifold
coordinate system.

@ First, let's solve for the weights. And, then we'll see how to use this
point to ultimately compute the global dimension reduction.

z 9ac
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Locally Linear Embedding

@ Solving for the weights W is a constrained least-squares problem.

o Consider a particular x with K nearest neighbors n; and weights w;
€ =

which sum to one. We can write the reconstruction error as

2

X — ijnj
J

(97)

ij(x -n;)
J

(98)
= Z ijijk
jk

(99)

where Cj;, is the covariance (x —n;)(x —n;) "

=] 5
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Locally Linear Embedding

@ We need to add a Lagrange multiplier to enforce the constraint
Zj w; = 1 and then the weights can be solved in closed form.

@ The optimal weights, in terms of the local covariance matrix, are
>k Ot
ik
w; = —]_1 .
Zlm Ilm

(100)
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Locally Linear Embedding

@ We need to add a Lagrange multiplier to enforce the constraint
Zj w; = 1 and then the weights can be solved in closed form.

@ The optimal weights, in terms of the local covariance matrix, are
>k Ot
ik
w; = —]_1 .
Zlm Ilm
solve the linear system

(100)
@ But, rather than explicitly inverting the covariance matrix, one can

Z Cirwy =1
k

(101)

and rescale the weights so that they sum to one.

=] 5
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Locally Linear Embedding

@ Each high-dimensional input vector x; is mapped to a low-dimension
vector y; representing the global internal coordinates on the manifold.

@ LLE does this by choosing the d-dimension coordinates y; to
minimize the embedding cost function:

2

Jue,(y) = Z (102)

i

Yi— Z Wiy
J

@ The basis for the cost function is the same—Ilocally linear
reconstruction errors—but here, the weights W are fixed and the
coordinates y are optimized.
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Locally Linear Embedding

@ This defines a quadratic:

JLLe, (y) = Z

)

2
Yi— Z Wiy
J

=Y My(yly;)
where

ij

(103)
(104)

Mij = 6i5 — Wiy = Wi + > Wi Wi
K
with d;; is 1 if j # ¢ and 0 otherwise.

(105)
o =
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Locally Linear Embedding

@ To remove the degree of freedom for translation, we enforce the
coordinates to be centered at the origin:

Zyi =0 (106)

@ To avoid degenerate solutions, we constrain the embedding vectors to
have unit covariance, with their outer-products satisfying

1 T
n%yyl (107)

@ The optimal embedding is found by the bottom d 4+ 1 non-zero
eigenvectors, i.e., those d + 1 eigenvectors corresponding to the
smallest but non-zero d + 1 eigenvalues. The bottom eigenvector is

the unit vector the corresponds to the free translation, it is discarded.
ST R R
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Locally Linear Embedding

LLE ALGORITHM
1. Computethe neighborsof eachdatapoint, X;.

2. Computetheweightsiv;; thatbestreconstruceachdatapoint X; from
its neighborsminimizing the costin eq.(1) by constrainedinearfits.

3. Computethevectors}_’; bestreconstructetdy theweightsiv;;, minimizing
thequadratidform in eq.(2) by its bottomnonzeroeigervectors.

LLE illustrates a general principle of manifold learning, elucidated by
Tenenbaum et al[11], that overlapping local neighborhoods—collectively
analyzed—can provide information about global geometry. (From Saul and
Roweis 2001)

= A

] = JQAC
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Locally Linear Embedding

©)

o <& = E z 9ac
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Example 2

Source: Saul and Roweis, An Introduction to Locally Linear Embedding, 2001

K=4.
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Locally Linear Embedding

presence of nonlinear structure.

yield similar results; thus the significant differences in these embeddings reveal the
=] 5
I D DD mension Reduction and Component Analys

If the lip images described a nearly linear manifold, these two methods would
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Locally Linear Embedding

e Computing nearest neighbors scales O(Dn?) in the worst case. But,
in many situations, space partitioning methods can be used to find
the K nearest neighbors in O(nlogn) time.

=] =) = = £ DA
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Locally Linear Embedding

e Computing nearest neighbors scales O(Dn?) in the worst case. But,
in many situations, space partitioning methods can be used to find
the K nearest neighbors in O(nlogn) time.

e Computing the weights is O(DnK?).
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Locally Linear Embedding

e Computing nearest neighbors scales O(Dn?) in the worst case. But,

in many situations, space partitioning methods can be used to find
the K nearest neighbors in O(nlogn) time.

e Computing the weights is O(DnK?).
e Computing the projection is O(dn?).
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Locally Linear Embedding

Computing nearest neighbors scales O(Dn?) in the worst case. But,
in many situations, space partitioning methods can be used to find
the K nearest neighbors in O(nlogn) time.

Computing the weights is O(DnK?3).

Computing the projection is O(dn?).

All matrix computations are on very sparse matrices and can thus be
implemented quite efficiently.

=] =) = = £ DA
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